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Abstract 

The Gibbs phenomenon is a well-known effect that is produced at discontinuities of a function 

represented by the Fourier expansion when it is truncated to perform numerical calculations. 

This phenomenon appears because it is not possible to fit a discontinuous function as the 

summation of continuous functions, such as it is done with the Fourier expansion. Only 

considering infinite terms of the summation, the Fourier expansion fits the real signal. From a 

general point of view, it will affect to the final results since the representation of the signal does 

not include higher frequencies. It is true that the higher is the truncation, the better are the results, 

but an error is always committed. The Gibbs phenomenon has been studied in electric signal 

and diffractive optics, where the Fourier expansion is commonly used. In this work, we drop 

complex mathematics to show the effect of the Gibbs phenomenon on the near field propagation 

of diffraction gratings (self-imaging phenomenon) and also possible implementations of some 

corrections which allow diminishing the analytical or numerical errors in comparison with less 

accurate approaches. Anyway, the conclusions of this work would be applicable to other 

numerically solved diffractive problems which include sharp edges apertures. Simulations are 

compared with experiments giving interesting results. 
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1. Introduction 

The concept of diffraction was firstly introduced by Francesco Maria Grimaldi in 1660, 

[1]. It consists of a series of phenomena that occur when light approaches sharp edges, obstacles, 



and apertures of size similar to the wavelength of the impinging light, [2[3]. Diffraction itself 

can be explained by using the Huygens-Fresnel principle as the interference between the 

secondary spherical waves emerging from the edges or the apertures and it has been observed 

for electromagnetic waves such as light but also happens for acoustic or matter waves, [4[5]. 

Diffraction has been analyzed by many scientists along the history, from Isaac Newton to 

Thomas Young, giving explanation based on diffraction theory to very impressive phenomena 

such as the well-known double slit experiment, [6]. Related to diffraction phenomena, one of 

the most important optical elements that has been under analysis and used for lots of applications 

during the years is the diffraction grating. A diffraction grating is an optical element that 

modulates periodically one or more than one properties of the light transmitted or reflected from 

it, [7]. Amplitude-based or phase-based diffraction gratings are the most common types but one 

may find diffraction gratings that modulate the polarization state, [8[9], or spatial coherence 

state of light, [10[11]. Usually, diffraction gratings present sharp edges and it contributes, join 

to their feature size, to diffract the light after them. In any case, numerical simulations including 

periodical objects commonly need to perform some approximations. When one tries to solve an 

optical problem which involves apertures, they must be usually represented as a truncated 

Fourier series summation to obtain numerical results. In fact, Fourier series summation is widely 

used in several branches of science such as physics or mathematics, [12]. Summarizing, being 

( )f x  a continuous periodical and differencing function, one may represent it as an infinite 

summation as 
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where p is the period of the function and cn are the corresponding Fourier coefficients that are 

calculated as 
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Now, if the infinite Fourier expansion is truncated for numerical simulations, the Gibbs 

phenomenon appears at discontinuities of the function, [13[15]. This phenomenon appears 

because it is not possible to fit a discontinuous function as the summation of continuous 

functions. Only considering infinite terms of the summation, the Fourier expansion fits the real 

function. From a general point of view, it will affect to the final results since the representation 

of the function does not include higher frequencies. The Gibbs phenomenon is well-known in 



electric signal processing and it has been also shown in optics, [16]. Suppression of Gibbs 

phenomenon has been achieved in computation of diffractive fields, [17[18], but involving very 

complex methods. In this work, we show a simple visualization of the Gibbs phenomenon effect 

when we propagate in the Fresnel regime the field after illuminating a binary amplitude-based 

diffraction grating with a plane wave, showing also possible implementations of some 

corrections which allow diminishing the numerical errors in comparison with the common 

Fourier series expansion of the transmittance of the grating. The conclusions of this work are 

also applicable to other problems which involve diffraction by sharp edges apertures and 

numerical simulations. 

2. Theoretical approach 

Firstly, let us consider a periodical diffractive element whose transmittance may be 

expressed by ( )f x , being x the axis parallel to the element. Then, the infinite Fourier series 

expansion of ( )f x  is given by Eq. (3). For clarifying the meaning of the infinite Fourier series 

expansion, let us take a diffractive element whose transmittance is square-shaped. For simplicity 

and without loss of generality, we take a binary amplitude-based periodical element with 0 and 

1 transmittance levels. So, the corresponding Fourier coefficients calculated from Eq. (2) result 
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We show in Table 1 the values of the first Fourier coefficients of the proposed example. 

Notice that due to the geometry of the problem and the kind of diffractive element, the even 

orders are strictly zero and the odd orders are symmetric, (n odd)n nc c−= . 

In addition, we show in  the transmittance given by the Fourier expansion of the considered 

element for different orders of truncation (values of n). As can be observed, even taking n=101, 

the real transmittance is not completely restored. It presents values lesser than 0 and higher than 

1. This fact has repercussions on the interpretation of numerical results and on the comparison 

between them and experiments. For example, performing analytically the free propagation of 

light passing through the considered element, we find very different results depending on the 

order of truncation of the Fourier series expansion. In Figure 2 we show four examples of free 



propagation for some cases shown in Figure 1, illuminated with a plane wave of wavelength 

500nm = . 

   

  

Figure 1.-  Series expansion of a binary amplitude diffraction grating transmittance for different orders of truncation 
and different approaches for summation (Fourier, σ-approximation, Fejér and Riesz). In the Riesz summation δ=0.0001. 

 

Table 1. First Fourier coefficients of the Fourier expansion of a binary amplitude-based diffraction grating 

c0 c1 c3 c5 c7 c9 

0.5 -0,.3183 0.1061 -0.0637 0.0455 -0.0354 

 

Then, to obtain more accurate results without nonsense intensity values, we should 

increase the order of truncation up to infinity. Although, if we look at signal theory on this issue, 

there are some formulations for adjusting the Fourier summation that eliminate, or at least 

mitigate, the Gibbs phenomenon, [19[20]. Here we will try the σ-approximation, the Fejér 



summation and the Riesz summation. All of them consists of using alternative polynomial 

expansions instead of the Fourier expansion. 

 

 

Figure 2.-  Free propagation of the diffractive element obtained from the Fourier series expansion for different values of n. 

Plane wave illumination. 

2.1 σ-approximation  

A possible formulation of the σ-approximation consists of the following expression, 
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where sinc( ) sin( ) /  =  is called the Lanczos σ factor, [21].  



From a mathematical point of view, the implication of changing the Fourier series 

expansion by the σ-approximation is merely a multiplicative factor to each ordinary Fourier 

coefficient, ck. Obviously, this factor is different for each term of the summation. Then, the 

Gibbs phenomenon will be quasi-eliminated without many complications. We show in Figure 

1b the same cases as for the Fourier summation but using the σ-approximation for fitting the 

diffractive element. As can be observed, the peaks below zero and over one transmittance are 

almost cancelled and therefore we almost do not have transmittance values which do not 

correspond to the real transmittance of the optical element. Besides, considering n=101 the 

shape of the profile/transmittance is quasi-squared, as it should be. 

2.2 Fejer summation  

As we have mentioned before, another summation for fitting periodical functions 

minimizing the Gibbs phenomenon is the so-called Fejér summation, [22]. It is defined as 
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This method consists of the summation of arithmetical averages. It is demonstrated that 

the Fejér summation converges in all cases in which the Fourier summation also converges. We 

also show in Figure 1c the Fejér summation equivalent to the Fourier summation also shown in 

Figure 1a. We can observe that for n=101 the Fejér summation almost has the same shape than 

the original transmittance with only slight curved corners. cS in Eq. (5) are the conventional 

Fourier coefficients calculated by using Eq. (2). On the other hand, Fejér summation does not 

have any sense for n=1 but we plot it for completeness.  

2.3 Riesz summation  

Finally, another summation method able to eliminate the Gibbs phenomenon is the so-

called Riesz summation, [23]. This method is similar to the Fejér summation method but 

introduces a new parameter δ. With this summation, as it can be demonstrated, the profile results 

more squared for small values of δ. In this case, the summation is 
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We show in Figure 1d the same cases as for the Fourier summation but using the Riesz 

summation. It is clear that this summation also fits the real transmittance better than the Fourier 

expansion and does not have values below zero or over one. cS in Equation (6) are the 

conventional Fourier coefficients calculated by using Equation (2). 

To give a better understanding of all approaches, we show in Figure 3 a comparison 

between all presented summations for n=101. As can be observed, Fourier summation gives 

wrong values higher than 1 and very fluctuating. On the other hand, the other three summations 

are smoother and without fluctuations. In addition, they almost do not give values upper than 

one, being the σ-approximation the most squared one even though it still has some values upper 

than one that do not have physical sense. 

 

Figure 3.-  Numerical comparison between all types of summation considered in this work to fit the transmittance of an 

amplitude diffraction grating. We only show one of the tops of the transmittance for clearness. δ = 0.0001 for the Riesz 

summation. 



3. Experimental approach 

 

Following, we present a very common experiment which consists of obtaining the near 

field diffraction pattern of a binary amplitude-based diffraction grating illuminated by a plane 

wave. The set-up includes a collimated laser for illumination, a diffraction grating fixed at a 

plane and a camera which is able to move along the optical axis. As it is well known, Talbot 

self-images are expected at the near field of the grating, [24[25].  

 

 

Figure 4.-  (left) Experimental propagation of the amplitude-based diffraction grating at the near field, (right) first self-

image profile given by experiment and the four summations considered in this work. 

 

Talbot effect consist of the replication of the grating pattern at several distances so-called 

Talbot distances given by 2 /Tz mp = , with m entire. In this experiment, we are going to 

compare the profile of the first experimental Talbot self-image with those given by the truncated 

Fourier summation and the three presented alternatives. We show in Figure 4 (left) the 2D carpet 

obtained from the experiment. The period of the used grating is 20μmp = . In addition, we 

show in Figure 4 (right) the profile of the first self-image in the center and all fittings given by 

summations analyzed along this work up to n=101. The way we have chosen to evaluate which 

summation fits better the experimental profile of the first self-image is the subtraction of the 

self-image profile given by the summations from the experimental one and calculation of the 

standard deviation. The obtained results for different values of n are shown in Table 2. As can 



be observed, the Riesz summation gives better results for all considered cases. We have used 

4096 pixels to define the grating with length equal to 20 times the period so each pixel 

corresponds to 0.0977 microns. 

 

Table 2. Standard deviations of the subtraction of the experimental first self-image from each numerical summation. 

n 5 11 101 

σFourier 0.6827 0.6827 0.6827 

σFejer 0.6124 0.6504 0.6791 

σRiesz 0.5801 0.6351 0.6774 

σSigma 0.6577 0.6772 0.6826 

Conclusions 

To conclude, in this work we probe that simple modifications of the finite Fourier series 

expansion such as the σ-approximation, the Riesz summation or the Fejér summation, fit better 

the transmittance of optical diffractive elements with sharp edges than the Fourier summation 

itself. In particular, we show how these special summations widely used in signal processing 

can be used in optical numerical simulations which included binary amplitude-based diffraction 

gratings, giving more accurate representation of the transmittance than the conventional Fourier 

series expansion. These results are also applicable to other diffractive problems which involve 

numerical calculations on diffraction which involves sharp edges apertures. In addition, the 

usage of alternative summations instead of Fourier summation could give more exact results 

with less iterations, which will improve the computing process, by reducing the computation 

time. 
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