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Abstract 

In this manuscript, a non typical kind of simple pendulum called Truncated Simple Pendulum 
is analyzed to obtain its oscillation period, frequency, and angular frequency. It is easily 
derived that its motion can be viewed as the concatenation of two pendular movements with 
different lengths, contributing each one to half of the period of the complete oscillation. An 
analytical formulation is derived and corroborated with an experiment showing high 
agreement. This experiment could be interesting as a proposed exercise for the students or as 
a laboratory practical work. Besides, the gravity acceleration can be determined from each 
singular experiment and averaged to obtain it with lesser experimental error. In addition, it 
can be used to evaluate energy conservation theorem and small angle approximation (Law of 
isochronism) for the pendular oscillation. The level of the manuscript makes it appropriate for 
undergraduate students and introductory physics courses. 
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1. Introduction 

Oscillatory movement is a fundamental part of every 
general physics course. Depending on the level of the course, 
different approaches can be done. The simplest oscillatory 
element is that formed by a mass hanging on a spring, [1, 2]. 
The position of the mass in terms of the time can be obtained 
by solving the following differential equation 
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2
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mdt
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where ξ  is the position, k is the elastic constant of the spring 
and m is the hanging mass, Figure 1a. The general solution to 
this equation is a harmonic movement such as 
 ( ),( ) sint A tξ ω φ= ± +  (2) 

where k mω = , A is the amplitude, and φ  is the initial 
phase.  

Another oscillatory system commonly taught is the simple 
pendulum, Figure 1b, [3-5]. It consists of a rope without mass 
and a punctual mass hanging of it. In this case, the differential 
equation to solve is 
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θ θ+ =  (3) 

where g is the gravity acceleration, L0 is the length of the 
pendulum, and θ is the angle measured from the upright, see 
Figure 1b. 

For small perturbations around the equilibrium state,        
Eq. (3) can be solved resulting also in a harmonic oscillation 

 ( ),( ) sint A tθ θθ ω φ= ± +  (4) 
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where Aθ  is the angular amplitude, 0g Lθω = , and φ  is the 
initial phase. 

 
Figure 1. (a) Mass hanging from a spring, (b) simple 
pendulum. 

Other more complex oscillatory examples are the rotary 
spring or the physical pendulum. Although, both of them can 
be easily analyzed for small perturbations and the solution is 
also a harmonic function with k Iδω =  for the rotary spring, 

[6], and I mgd Iω =  for the physical pendulum, [7,8], where 
k is the rotary spring constant, I the inertia moment in both 
cases, m the mass of the physical pendulum, and d the distance 
from the hanging point to the center of mass of the physical 
pendulum. The oscillation period, 2 /T π ω= , for all 
mentioned cases is resumed in Table 1. 

Table 1. Period of the four depicted cases of oscillatory 
movement. 

 Linear 
spring 

Simple 
pendulum 

Rotary 
spring 

Physical 
pendulum 

T 2 m kπ  02 L gπ  2 I kπ  2 I mgdπ  

2. The Truncated Simple Pendulum. Theoretical 
approach. 

In this manuscript, we analyze a particular case of simple 
pendulum that we have called Truncated Simple Pendulum. It 
consists of a simple pendulum whose oscillation is suddenly 
cut at the middle of the oscillation with a stop. Three instants 
of the oscillation are shown in Figure 2. 

Considering that the collision with the stop is totally 
elastic, it is plausible to think that the oscillation period can be 
estimated as the summation of half the period of a simple 
pendulum with length L0 and half the period of a simple 
pendulum with length, L, as 

 ( )0 .tT L L
g
π

= +  (5) 

We may express L in terms of L0 as L=(1-n)L0 with 
0,1n   ∈ . Thus, Eq. (5) results 

 ( )0 .1 1LT n
g

π= + −  (6) 

 
Figure 2. Three instants of the Truncated Simple Pendulum 
oscillation. 

We show in Figure 3 (black solid line) the dependence of 
the relative period of the truncated simple pendulum, 0/T T , 
on the relative lenghts of both pendular movements, 0/L L . 

 
Figure 3. Relative period of the Truncated Simple Pendulum 
oscillation in terms of the stop position, theoretical calculated 
with Equation (6) (black solid line) and experimental data (red 
circles). 

In addition, from Eq. (6), the frequency, f, and angular 
frequency, ω , may be derived, resulting 
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3. The Truncated Simple Pendulum. Experimental 
approach. 

To verify the theoretical result, we have performed the 
corresponding experiment. We show in Figure 4 the used 
experimental set-up in which we have measured four positions 
of the stop. Each period has been calculated as the average over 
ten measurements, Table 2, and the experimental results are 
also plotted in Figure 4 (red circles). To do it, we have assured 
that the maximum angles at both sides of the stop remained 
small enough to be able to verify Eq. (6). As can be observed, 
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the coincidence between theory and experiment is very good, 
so we can assume that the theoretical prediction was right and 
we can model the truncated simple pendulum as the 
concatenation of two simple pendula, one with length L0 and 
the other one with length L, each one being half the period of 
each oscillation. 

 
Figure 4. Experimental set-up used to measure the period of 
the Truncated Simple Pendulum. m=50 g and L0=30 cm. 

4. Determination of g. 

As it is well known, the simple pendulum can be used to 
determine the gravity acceleration by measuring the period of 
the oscillation and its length. The Truncated Simple Pendulum 
can be also used to obtain it by measuring the same 
magnitudes. Besides, by displacing the stop up and down, 
several experiments can be performed easily. We show in 
Table 2 the experimental period for different 0/L L  values and 
the corresponding g, determined by using Eq. (5). From the 
four values, the mean gravity acceleration results                        
g= 9.7845 m/s2, which is close to the tabulated value. 

Table 2. Experimental data used to determine the gravity 
acceleration, g, by using Eq. (5). 

0/L L  2/3 1/2 1/3 1/6 
Texp (s) 1.007 0.939 0.867 0.769 
g (m/s) 9.6345 9.7945 9.7924 9.9167 

 

5. Energy conservation and Law of Isochronism. 

Any oscillation in air or other medium suffers from friction 
forces that eventually produce the object to stop. The decay of 
the velocity depends on the velocity itself and the shape of the 
object, among some properties of the medium. For relatively 
small velocities, the friction force or drag force is proportional 
to them, F v∝ , [9]. Although, for higher velocities, the 
friction force is proportional to the velocity to a higher power, 
n, nF v∝ , [9]. The maximum velocity of a pendular motion 
happens at the lower point of the trajectory and depends on the 
initial angle, 0θ , and the length of the pendulum. For the first 
oscillation in air, we may consider that the energy remains 
constant, as an approximation. Then, by applying energy 
conservation, the maximum velocity is obtained as, [9], 
 0max 0 .2 (1 cos )v gL θ= −  (8) 

We show in Figure 5 the maximum velocity in terms of the 
initial angle for several pendulum lengths. The maximum 
velocity is proportional to the root square of the pendulum 
length for a fixed initial angle, as usual.  

 
Figure 5. Maximum velocity of the pendulum in terms of the 
initial angle for several lengths, L, Eq. (8).  

Once the pendulum reaches the stop and applying energy 
conservation again, the mass oscillates up to a final angle 
measured from the upright, given by 

 
0

0 .1acos 1 (1 cos )
L L

θ θ
 
 
  

= − −  (9) 

Figure 6 shows this dependence. When θ  reaches π , it 
means that the mass has enough energy to pass over the stop 
and complete a lap. As an example, it is observed that for 

0/ 0.5L L =  (green line in Figure 6) and 0 2πθ = , the mass 
reaches the upright after hitting the stop. In this case, if the 
initial angle is slightly bigger, the mass would go over the stop 
and would complete the lap. 
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Figure 6. Final angle, θ, for the first oscillation in terms of the 
initial angle, θ0, for several values of 0/L L , Eq. (9). 

Secondly, Law of Isochronism says that the simple 
pendulum period does not depend on the oscillation amplitude. 
This is true only for small perturbations, that is to say, small 
angles with respect to the upright. By looking at Figure 6 and 
Eq. (9), we may extract the maximum initial angle that would 
be possible to do not break the Law of Isochronism, taking into 
account that the final angle will be higher than the initial one 
in all cases except for 0/ 1L L = , obviously. Usually, small 
angles are considered for max 0.1 radθ < . From Eq. (9), the 
maximum initial angle is given by 
 0,max 0 max ,acos 1 (1 cos )L Lθ θ  = − −  (10) 

which results in 0,max 0.03 radθ = . Despite this angle is quite 
small, the equations derived along this manuscript can be 
applied for bigger angles just assuming a certain error in the 
obtained predictions. 

Conclusions 

In this manuscript, a non usual kind of pendulum has been 
analyzed to determine its dynamics and its period. It has been 
called Truncated Simple Pendulum and consists of a simple 
pendulum which is stopped when it reaches the upright, 
becoming a pendulum of shorter length. The dynamics of the 
pendulum can be examined as that of two concatenated 
pendular movements with different length. In a similar fashion 
as the conventional simple pendulum, the gravity acceleration 
can be determined from each singular exeriment and averaged 
to obtain it with smaller error. In addition, we have obtained 
the initial angle for that the mass is able to reach the upright 
and pass over the stop, completing a lap. The obtention of the 
period or the gravity acceleration of the Truncated Simple 
Pendulum can be used as a proposed exercise for the students 
or even made as a practical one in the laboratory. The contents 

of this manuscript and the conclusions are adequate for 
undergraduate students or even first course of university 
degrees. 
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