Searching for promisingly trained artificial neural networks

Lujano-Rojas, Juan M. (Universidad de Zaragoza) ; Dufo-López, Rodolfo (Universidad de Zaragoza) ; Artal-Sevil, Jesús Sergio (Universidad de Zaragoza) ; García-Paricio, Eduardo (Universidad de Zaragoza)
Searching for promisingly trained artificial neural networks
Resumen: Assessing the training process of artificial neural networks (ANNs) is vital for enhancing their performance and broadening their applicability. This paper employs the Monte Carlo simulation (MCS) technique, integrated with a stopping criterion, to construct the probability distribution of the learning error of an ANN designed for short-term forecasting. The training and validation processes were conducted multiple times, each time considering a unique random starting point, and the subsequent forecasting error was calculated one step ahead. From this, we ascertained the probability of having obtained all the local optima. Our extensive computational analysis involved training a shallow feedforward neural network (FFNN) using wind power and load demand data from the transmission systems of the Netherlands and Germany. Furthermore, the analysis was expanded to include wind speed prediction using a long short-term memory (LSTM) network at a site in Spain. The improvement gained from the FFNN, which has a high probability of being the global optimum, ranges from 0.7% to 8.6%, depending on the forecasting variable. This solution outperforms the persistent model by between 5.5% and 20.3%. For wind speed predictions using an LSTM, the improvement over an average-trained network stands at 9.5%, and is 6% superior to the persistent approach. These outcomes suggest that the advantages of exhaustive search vary based on the problem being analyzed and the type of network in use. The MCS method we implemented, which estimates the probability of identifying all local optima, can act as a foundational step for other techniques like Bayesian model selection, which assumes that the global optimum is encompassed within the available hypotheses.
Idioma: Inglés
DOI: 10.3390/forecast5030031
Año: 2023
Publicado en: Forecasting 5, 3 (2023), 550-575
ISSN: 2571-9394

Factor impacto CITESCORE: 5.8 - Computational Theory and Mathematics (Q1) - Decision Sciences (miscellaneous) (Q1) - Economics, Econometrics and Finance (miscellaneous) (Q1) - Computer Science Applications (Q2)

Factor impacto SCIMAGO: 0.532 - Economics, Econometrics and Finance (miscellaneous) (Q1) - Decision Sciences (miscellaneous) (Q2) - Computational Theory and Mathematics (Q2) - Computer Science Applications (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-123172OB-I00
Financiación: info:eu-repo/grantAgreement/EUR/AEI/TED2021-129801B-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-31-09:55:25)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Ingeniería Eléctrica



 Registro creado el 2024-01-12, última modificación el 2024-07-31


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)