
Can one kilogram of iron float on water? 
 

 

All general physics text books include a chapter regarding hydrostatics. 
Archimedes and Pascal principles are commonly covered but surface tension is merely 
named. Few people knows that surface tension contributes to the buoyancy of any object, 
with more or less relevance 1. I think that including surface tension in general physics 
courses is important to understand all phenomena regarding hydrostatics and this is why 
every year, before starting the lesson regarding hydrostatics, I pose a question to the 
students: Can one kilogram of iron float on water? Usually, some of them answer 
instinctively saying “no, that is not possible”. Others, knowing that I am used to show 
them physics “tricks” in the classroom, remain thoughtful. Anyway, it is a question that 
would be answered negatively by around 90% of questioned people. Although, as we will 
show along the present manuscript, there are at least two ways to make one kilogram of 
iron floating. When we think about one kilogram of iron or other metal, we use to think 
about it as a compact cubic-shaped block. If that is the thought, the answer to the 
mentioned question is negative, since the weight overcomes the other forces, such as the 
buoyance force, among others 2-5.  

However, what would happen if the kilogram of iron was an extremely thin sheet? 
Could we place it on the water and floating? To answer it, we need to look at the forces 
that would act on the iron sheet. Supposing that it does not penetrate into the water, the 
only forces acting to it are its weight and the surface tension exerted by the water surface, 
Figure 1. The force exerted by the surface tension 6,7, is given by 

 2F rπ γ= , (1) 

where r is the radius of the piece in contact with the water surface, supposed circular, and 
γ is the surface tension (γ=72.5·10-3 N/m for the water). This force should be enough to 
counteract the weight, given by w mg= , being g=9.8 m/s2 the gravitational acceleration. 
By applying the static condition and considering the iron sheet as a circle, we can obtain 
the necessary surface to counteract the weight action, whose radius is  

 2
mgr πγ= , (2) 

resulting r=21.51 m. From the radius, the surface results S=1454 m2. Considering that the 
iron density is 7874 kg/m3, the thickness of the sheet should be t=87 nm. It results in an 
extremely thin film but, in theory, it would be possible.  

  

Figure 1.- Forces acting to the iron sheet on the water. 



 The other option is making the buoyance force equals the weight 8-10, Figure 2. 
This force is given by 

 lB gVρ= , (3) 

where ρl=1000 kg/m3 is the density of water and V is the volume of water displaced by 
the iron. To compensate the weight, the displaced volume needs to be / lV m ρ= , resulting 
V=10-3 m3. In this case, the force due to the surface tension will be neglectable.  

There are many ways to achieve the necessary displaced volume but we will 
assume a semi-spherical shape. The volume of a semi-sphere is given by 32 / 3erπ . Thus, 
the radius of the sphere can be obtained as 
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resulting re=7.8 cm. To achieve this exterior radius with one kilogram of iron, the sphere 
must be hollow. Then, we may obtain the interior radius as 
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being ρm=7874 kg/m3 the iron density, and resulting ri=7.4 cm. Supposing a shell with 
hemispherical shape, another valid expression for the inner radius results 
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The thickness of the iron boat results t=4 mm, approximately and, in this way, the 
kilogram of iron will float.  

  

Figure 2.- Forces acting to the iron boat on the water. 

Finally, since it is difficult to manage one kilogram of iron, we may perform a 
didactic experiment by using aluminum foil. Firstly, we cut a circular piece of foil and 
fill a basin with water. As we may observe in Figure 3a, the piece of aluminum remains 
on the surface of the water. We have measured the radius and mass of the piece of 
aluminum, resulting 6.5r cm=  and 0.45m g= , respectively. Then the surface tension, 
obtained with Eq. (1), and the weight result 22.96 10 NF −= ⋅  and 34.4 10 Nw −= ⋅ , 
respectively. As the surface tension is higher than the weight, it floats. Having a closer 



look at Figure 3a, we observe the effect of the surface tension in the light shadows and 
reflections around the aluminum piece. Following, we may decrease the surface tension 
of water by adding liquid soap. Thus, the aluminum piece does not float but falls to the 
bottom of the basin, Figure 3b. To finalize, making a shell with it, we may achieve it to 
float again, Figure 3c. This time is due to buoyance force, since surface tension is 
neglectable.  

 

 

(a) 
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Figure 3.- (a) Smooth aluminum circular foil floating on the water due to the surface 
tension, (b) smooth aluminum circular foil dropped to the bottom of the water thanks to 
the soap, and (c) aluminum shell floating on the water due to the buoyance force. 

In this manuscript, a question difficult to be answered, a priori, such as: Can one 
kilogram of iron float on water? is answered with no doubt. It is a question that cannot be 
answered without some knowledge about hydrostatics. We show that, there are at least 
two ways to achieve it. One of them by using the surface tension of water and the other 
by using the buoyance force or Archimedes theorem. In both cases, the kilogram of iron 
surprisingly floats. Finally, we prove it experimentally by using aluminum foil. This 
exercise and experimental demonstration could be interesting as example of both 
phenomena in undergraduate courses or even first course of university degrees. 
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