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Evaluación y comparación de sistemas de
planificación de navegación de robots en entornos

dinámicos

RESUMEN

Este trabajo aborda un análisis comparativo de diferentes técnicas de planificación de
movimientos en entornos dinámicos. Se basa en trabajos anteriores, en los que se desar-
rollaron dos técnicas de planificación de movimientos para un robot que se mueve en un
entorno dinámico. Se trata de técnicas de navegación robocéntricas en las que el modelo del
entorno dinámico se basa en el espacio de velocidad-tiempo del robot, donde se representan
tanto los objetos estáticos como dinámicos. La primera técnica trabaja sobre un espacio
de velocidades bidimensional (velocidad lineal-velocidad angular). Explota la idea de iden-
tificar la mejor estrategia en función de la situación en la que se encuentra el robot, y que
depende de la localización y velocidad relativas entre el robot y los obstáculos. La segunda
técnica optimiza una función objetivo en el espacio de velocidad-tiempo para obtener co-
mandos óptimos y trayectorias seguras, ponderando criterios de maximización de velocidad,
seguridad (distancia a obstáculos) y suavidad de movimientos. Además, incorpora la técnica
desarrollada en el primer trabajo como heuŕıstica para mejorar la toma de decisiones, dando
lugar a Strategies-Optimization.

Para evaluar el rendimiento de la navegación con dichas técnicas se define una serie de
métricas, que permiten seleccionar los mejores parámetros de optimización para cada tipo de
escenario. Estas métricas evalúan y comparan los comportamientos en diferentes escenarios,
lo que permite tener una evaluación completa de todas las técnicas.

Además, en aplicaciones reales los robots tienen que moverse en escenarios tanto de in-
terior como de exterior. Sin embargo, para que los robot construyan un mapa del entorno,
se localicen y navegen utilizan diferentes sensores, debido al tipo de información disponible
(laser en interior y GPS en exterior) y a la incertidumbre de cada sensor en cada momento
(pérdida o reducción de precisión del GPS, pocas caracteŕısticas para construir el mapa).
Esto provoca discontinuidades en localización o incluso pérdida de ello, lo que debe evitarse.
En este trabajo se presenta una técnica de localización unificada para entornos de interior-
exterior que permite una transición continua entre una zona de la que se dispone un mapa
construido con los sensores láser a bordo del robot y una zona que utiliza el GPS para la
localización del robot.



Evaluation and comparison of planning systems for
robot navigation in dynamic environments

ABSTRACT

This work addresses a comparative analysis of different techniques for robot motion plan-
ning in dynamic environments. It is based on previous works, which developed two mo-
tion planning techniques based on the velocity-time space of the environment to map static
and moving objects. The first technique works on a bi-dimensional velocity space (linear
velocity-angular velocity). It exploits the idea of situation-based strategies identification,
which depends on several relative locations and velocities between the robot and the ob-
stacles. The second technique searches for the optimal commands obtained by optimizing
an objective function in the velocity-time space, weighing criterion for maximizing veloc-
ity, safety (distance to obstacles) and smooth of movements. In addition, it integrates the
first technique as heuristic to improve the decision making procedure and thus yielding the
Strategies-Optimization technique.

Metrics for assessing the performance of the navigation with those techniques in different
scenarios are defined, which allows obtain the best optimization parameters and have a com-
plete comparison of the techniques.

Moreover, in real robotic applications the robots have to move within indoor and outdoor
scenarios. However, to achieve mapping, localization and navigation tasks, the robots utilize
different sensors, due to the type of available information (rangefinder infoor, GPS outdoor)
and the sensor uncertainty at each moment (lost or reduced precision of GPS, few features
to build a map and to localize). These issues lead to discontinuities in localization or even
lost of it, which has to be avoided. This work presents a unified localization technique for
indoor-outdoor environments that allows a seamless transition between a mapped zone using
laser rangefinder on-board sensors and a GPS based localization zone.
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Chapter 1

Introduction

1.1 Motivation

In order to use robots in real environments, they need to adapt the motion to the obstacles
appearing during the mission. A lot of work has been devoted over the years to developing
motion planning and reactive navigation techniques. Many of these have focused on static
scenarios, and the solutions can be considered to be sufficiently robust. However, in many
of the missions in which robots have to operate together with people (i.e. museums, rescue,
factories, etc.), robust planning in dynamic environments is compulsory.

[10] and [11] develop new planning techniques which confer the high degree of manoeu-
vrability needed in highly dynamic environments and that combine decision strategies and
optimization techniques for safe navigation, working directly on the command space, in our
case the velocity space. This work introduces the metrics defined in [15] to quantitatively
asses the performance of the resulting motion, which in turn makes available well-founded
criteria for selecting the control parameters of the planner. [15] include the results for [11]
and its integration with [10].

One of the objectives of this work is to evaluate the technique developed in [10] with those
metrics to obtain a comparison of the different planning techniques. Specifically, the tasks
involved were:

• Use the same software to construct the static and moving object maps of the scenario
as in [11].

• Evaluate the technique using the metrics in scenarios with more obstacles and moving
in non-straight trajectories.

• Analize the results obtained and compare them with respect to the other planning
techniques.

The final result of the analysis and the conclusions extend the article [15], sent to the
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journal Autonomous Robots.

It is common in indoor robotics applications to assume a limited environment (a room,
a building floor...) for localization purposes. This limitation is forced by the need of a finite
map of the features in the zone to localize the robot. Due to the sparseness of the features
needed to get a reliable localization system, the use of maps in outdoor scenarios is uncom-
mon. Instead, outdoor applications usually utilize GPS based localization which avoids any
limitation in the environment as it is accessible almost everywhere.

However, there are few systems that provide a continuous localization for both indoor and
outdoor scenarios in such a way that the robot is not confined in a limited space. Main diffi-
culties come from the fact that very different sensors (odometry, IMU, rangefinders, GPS...)
are needed to get a good estimation. These problems become more obvious during the tran-
sitions as measurements are more imprecise.

Another objetive of this work is to contribute a unified framework for a seamless localiza-
tion during navigation within different type of environments. The tasks related to this issue
were:

• Identify the zones of an environment where the localization system has to operate,
which have different characteristics.

• Implement a method to localize the robot integrating different sources of information,
which weights them depending on the situation of the robot.

• Propose a technique to determine the orientation of the robot based on GPS measure-
ments.

• Evaluate the technique with real experiments

The results are presented in [21] (attached in the appendix) in the Fist Iberian Conference
on Roboics. In section 4.3.1 an extension of the method to estimate the orientation from GPS
measurements is proposed, and the results are written as part of [20], for the Int. Conference
on Robotics and Automation.

The work carried out is part of the projects Intelligent Technologies for Autonomous
Transportation of Goods Indoors and Outdoors (TITAMie) and Teams of robots for Logistics,
Maintenance and Environment monitoring (TELOMAN).

1.2 Structure of the work

Following this introduction, chapter 2 deals with planning techniques for robot navigation
in dynamic environments. It includes the modeling of the environment of the robot and the
general procedure followed to take decisions for navigating. Then, it analyzes two planning
techniques and their integration, as well as metrics for their evaluation and comparison. Next,
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chapter 4 introduces a method to provide a seamless localization system between indoor and
outdoor scenarios. The evaluation of the technique with real experiments is also shown. The
conclusions about the work carried out are included in chapter 5.

The appendix section contains the article Seamless indoor-outdoor robust localization for
robots ([21]).

Finally, a list of figures and tables, and the bibliography consulted are included.
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Chapter 2

Motion planning in dynamic
environments

2.1 Related work

Traditionally, reactive approaches have been combined with global planning techniques lead-
ing to so called iterative motion planning, e.g. ([3], [5], and [12]). These techniques calculate
several steps ahead depending on the time available. The planner evaluates different branches
in a tree within a horizon and works out a partial trajectory.

Modeling the dynamic environment is one of the major problems which it is necessary to
solve. The dynamics of the environment has to be described efficiently so as to reduce the
response time while complying with motion decisions in real time. In [1], expanded in [18],
the V OS (Velocity Obstacle Space) deterministic model was proposed to model environments
with moving obstacles.

The issue of safety for motion planning in dynamic environments was considered in [9],
reasoning about the time horizon for it. The motion safety issue has been formally studied by
the concept of Inevitable Collision States (ICS ) developed in [4]. ICS provides the knowledge
to ensure safe robot motion by computing the states in which the robot must not be located.
[19] addressed the motion safety issue in the Velocity Obstacles framework using the ICS
concept by experimenting with a time horizon appropriate for the velocity obstacle.

[16] proposed a model that considered the continuous velocity space as the control space,
in which all velocity commands driving to trajectories in the free space could be chosen, but
the trajectories are not explicitly computed. The dynamics of the environment is mapped
in this space, so it is implicitly used when the velocity commands are finally selected for
every sampling period. This information allows to deal with the safety issue, computing the
safest strategies in a time horizon within the field of view of the robot sensors, computing
new commands to react. Thus the computational time is reduced, and planning techniques
can be applied in real time. The idea of computing motions to the robot passes before the
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moving object or the robot slows down until the object passes is exploited as a strategy in
the planning techniques developed by [10] and [11], which are addressed in this work.

Specifically, the work carried out in this Master’s thesis focuses on the formalization and
evaluation of the Situation-Strategies technique ([10]), and its comparison with respect to
Cost-Optimization and Situation-Optimization techniques ([11]).

2.2 Modeling the environment

The basis of the planning techniques developed in [10] and [11] is the robot-environment
model. This model is completely defined in [14]. It represents the three-dimensional velocity-
time space in a reference attached to the robot in a robocentric approach. Intuitively, free
commands and commands leading to collision are explicitly represented in this space. It is
also possible to simultaneously reason about safety issues because the further evolution of
the environment is directly mapped in the model. Some assumptions are made in order to
simplify the modeling:

• The non holonomic robot plans long-term straight and circular paths, within the plan-
ning space-time horizon. But more complex trajectories can be followed when the nav-
igation plan is executed by connecting short circular paths, maintaining a continuous
curvature, as the model is re-computed every sampling period.

• Circular, clothoid, anti-clothoid and straight trajectories are achieved to execute the
planned ones, complying with the kinodynamic constraints of the robot, and maintain-
ing a continuous curvature.

• The objects move following straight paths with constant velocity. As the model is
recomputed every sampling period, the motion of the objects could be considered as a
sequence of short straight paths.

• The moving objects in the model are modeled as polygons such as wrapping squares or
rectangles. For moving objects it is not necessary to use their exact shape, it is enough
to model the space swept by them when they are moving.

Most of these constraints can be relaxed, and do not pose a limitation for the essence
of the proposed method. For the sake of clarity [14] apply these restrictions to explain the
model building procedure, which is outlined in the next section.

2.2.1 The DOVTS space

The modeling of the moving objects in the velocity space represents the maximum and min-
imum velocities that the robot must have to just collide when the object passes in front of
the robot or the obstacle passes after the robot, respectively. They are computed for a set of
paths from the current robot location. From this computation, free and prohibited velocities
are represented in the velocity-time space. An implicit information about the proximity and

7



(a) (b) (c)

Figure 2.1: (a) Workspace. (b) Collision band, path rj and collision points Pc1j and Pc2j in the robocentric
(R) Configuration Space, (c) Multiple paths.

(a) (b)

Figure 2.2: (a) Velocity-time DOV TS space. (b) Projection of DOV TS, DOV S, on the plane (v, w).

moving objects velocities is mapped. This allows to apply different strategies, depending on
that information and the priorities of the mission, time or safety.

In this section the DOV TS (Dynamic Object Velocity-Time) space defined in [14] is in-
troduced. The maximum robot velocity following a path leading to collision with a moving
object and the minimum velocity to escape before an object arrives and their associated
times are computed. In Fig. 2.1a, the workspace with a robot and an object is represented.
In Fig. 2.1b the corresponding Configuration space is shown, in which the robot is a point
and the object is enlarged with the robot radius. In this figure the band of collision is also
represented. This is the area swept by the object when moving in a straight line. The object
is depicted in two locations (xo

1 and xo
2), which are related to the locations the robot would

reach (points Pc1j and Pc2j) following a circular trajectory rj . Pc1j is the robot position after
the object has just passed it at time t1j and Pc2j is the position which the robot has just
passed before the object reaches it at time t2j .
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From the known object location xo = (xo, yo, φo) in the robot local reference and its
velocity vo, the points of collision (Pc1j(x1j , y1j) and Pc2j(x2j , y2j)) and the corresponding
times t1j and t2j are calculated as in [14]. These calculations are extended to the whole space,
considering a range of curvature radii between rl and rr (see Fig. 2.1c). Vlow and Vhigh are
respectively the set of maximum and minimum velocities computed for all the rj paths:

Vlow = {v1j}, tlow = {t1j},∀rj
Vhigh = {v2j}, thigh = {t2j},∀rj (2.1)

Definition 1. DOV T dynamic object is defined in the velocity space as,

DOV T = {(v, w, t)|Vlow ≤ (v, w) ≤ Vhigh, tlow ≤ t ≤ thigh}

Definition 2. FV T is defined in the velocity space as,

FV T = {(v, w, t) /∈ DOV T}

Definition 3. DOV TS space is defined as,

DOV TS = DOV T ∪ FV T

Figure 2.2a represents DOV TS. The intuitive idea is that choosing velocity commands
under DOVT might lead to collision if this command is applied from now on. In other words,
safe velocity commands have to be chosen in the free velocity space outside the DOVT sur-
face. Commands under the DOVT surface can be selected, but they can only be temporally
applied. This time can be estimated from the t co-ordinate, the time to collision being the
distance to the surface from the current (w, v) coordinates.

In a first approach, in [10], the proposed planning strategies will use the (w, v) projection
of DOV TS. Figure 2.2b represents this projection, which is named DOV S (Dynamic Ob-
ject Velocity space). Note that the circular paths are transformed in this plane into straight
lines (r = v/w). In this figure, v1 and v2 are the extreme velocities computed for the path rj .

Definition 4. The DOV object is defined as:

DOV = {(v, w)|Vlow ≤ (v, w) ≤ Vhigh}

The velocities belonging to DOV are not safe ones. So, safe velocity commands, FV ,
have to be selected outside of DOV , that is,

FV = {(v, w) /∈ DOV }

The contour of DOV represents the velocity limits defined in equations 2.1. In Fig. 2.2b,
FV and DOV velocities are depicted.
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(a) (b)

(c) (d)

Figure 2.3: (a) A situation with two moving objects near to each other in WS. (b) The situation represented
in DOVTS. (c) Projection of both moving objects in DOVS space.(d) The merged DOV object.

2.2.2 Dealing with multiple objects in the DOVS

In the DOV TS space, several moving objects are represented as their corresponding DOV T
surfaces. Figure 2.3 shows a situation with two objects. Clearly, the highest surface in
Fig. 2.3b corresponds to the farthest or the slowest object with respect to the robot, and the
lowest surface to the nearest or the quickest obstacle. Working in this space, the velocity-time
room between both surfaces can be utilized for maneuvering among the objects. This implies
working directly in the DOV T space. [11] dealt with this issue and it will be outlined in
section 2.5. Figure 2.3c shows the projection of both surfaces in the DOV space. When this
space is used to plan the trajectories, the DOV objects are merged to obtain one compound
DOV object, as represented in Fig. 2.3d. Now reasoning in this space to compute the
motion commands in the free velocity space (FV ) is made using the merged object,

DOVmerged = ∪mi=1(DOVi)

2.2.3 Static objects in the DOVS

The representation of static objects in DOVS requires a slightly different formulation from
that used with the dynamic objects.
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(a) (b)

Figure 2.4: (a) Mapping a corridor into DOVS. The red points correspond to scan laser points, the green
points are the points after extending the walls with the robot radius. (b) The corridor mapped into DOVS
showing the maximum velocity reachable on each path.

Let Dsafe be the length that the robot covers on a path to reach zero speed from its
current velocity. If the distance to a static object is greater than Dsafe, then the circular
path in DOVS is mapped as free, i.e., all these velocities are free of collision. Otherwise, the
maximum velocity that the robot should have to stop at before a collision, vstop, is calculated,
and it is mapped into DOVS. Any higher velocity is mapped as a collision one. Thus, the
static and moving objects are represented in the same framework. Figure 2.4 depicts the
result of mapping a static corridor-like object into DOVS.

2.3 Decision making strategies

This section explains the general strategy of decision making in the planning technique de-
veloped in [10]. The problem is similar to a situation in which a pedestrian aims to cross a
road while cars are passing. The pedestrian must decide how to do this safely. In our case
the robot has to decide how to do the same. In such a situation, the main decision the robot
must take is whether to pass before the obstacle arrives or to wait until the obstacle has
passed.

The motion planning techniques are inspired from behaviors of humans navigating in
pedestrian traffic that tries to take advantage of the complete manoeuvrability of the robot
while simultaneously trying to reach the following goal in the shortest time possible. The
robot can decide the motion plan for a time horizon, generating a trajectory at the maxi-
mum velocity possible in every instant, given the environment perceived by the sensors at
every moment. The main criterion of the system is to preserve the safety of the robot, and
consequently of the objects around it. Nevertheless, other criteria are simultaneously or hier-
archically balanced, such as the rapid motion towards the goal, smooth changes in motions,
etc.

Figure 2.5 reflects this idea. Basically there are two main planning strategies: passing
before the object (RobotFront) and passing after the object (RobotBehind). In turn, each
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Figure 2.5: Trajectory in green corresponds to when the robot passes before moving obstacle and the
trajectory in blue to when the robot passes after moving obstacle.

strategy is decomposed into different sub-strategies depending on whether the robot is before,
inside or after the collision band. The execution of each motion strategy depends in turn on
several decision variables, such as the relative location and the relative velocity between the
robot and the objects, and the number of surrounding objects, formally defined in the next
section.

2.4 Situation-Strategies planning technique

The decision making strategies defined in the previous section, extend to different situations
that the robot might detect by means of its onboard sensors. The situation identification is
made from several decision variables computed in DOV S and WS spaces. This section is a
formalization of the technique developed in [10].

2.4.1 Decision variables

A set of decision variables is computed to detect the situations. Some of the variables are
obtained from the workspace (WS), others from the velocity space (DOV S). Table 2.1
summarizes all of them, including a brief explanation about their meaning. The table shows
the acronyms, the meaning of the variables and their use in the different situations. The
variables are utilized in the navigation strategies to identify the current situation, from which
a specific motion action will be processed. Figure 2.6 depicts some of the decision variables
mapped on the DOV S space.

12



Variable Meaning Situation

WS

RelPos relative position before, in or after the collision band all
AngDis angular distance robot-goal all

DOVS

FV −DOV free and non-free (DOV )velocities all
Vhigh-Vlow min.velocities to pass before-max.velocities to pass behind PassingBefore, SlowingDown
VV alley min(Vhigh) PassingBefore

UpperFree free angular velocities at maximum linear velocity PassingBefore, PassingAligned
LowerFree free velocities in lower zone (v < Vlow) SlowingDown

BehindV el − FrontV el velocities to manoeuver with respect to the object AvoidingObject, PassingBehind
MaxAngV el maximum angular velocity all
SafeV el velocities to brake before crash SlowingDown

BoundRight−BoundLeft boundaries of free velocities at both sides AvoidingObject
SteeringDir mapped angular deviation all
GoalDir mapped goal direction all

Table 2.1: Decision variables in WS and DOVS spaces. Vhigh-Vlow are computed for all the radii.

(a) (b)

Figure 2.6: Decision variables on DOVS space. (a) Situation in which there are UpperFree (magenta, blue
and pink). (b) Situation in which UpperFree is empty, and would lead to collisision (grey).

2.4.2 Navigation planning

The robocentric planner developed in [10] assumes that there is a path planner at a higher
level computing the consecutive subgoals to be reached in order to move to the final goal. The
planner executes cyclically. It establishes a medium-term local plan in the horizon defined by
the field of view of the sensors, but only the first step of this plan is executed for a sampling
period. Thus the plan can be modified in the next steps according to de environment dynam-
ics. In each sampling period the relative situation and motion between robot and objects are
analyzed by means of the decision variables defined in the previous section and the situations
identified.

Figure 2.7 shows the situation tree, which is evaluated for every cycle, establishing the
navigation strategy for the situation identified. It instances the decision strategies described
in section 2.3. The leaves are all the situations that can be identified. The intuitive idea

13



for the applied actions is to choose velocity commands in successive steps in the velocity
free space of DOV S (FV ). Roughly speaking, the criteria to select these commands are to
apply a sequence of maximum linear and angular accelerations to reach the maximum linear
velocity if it is possible.

Figure 2.7: Situations Tree. Leaves represent all the situations that can be identified. Each of them has an
associated navigation strategy.

If there are no objects in the field of view, the FreeMotion situation is reached. The
action applied aligns the robot towards the goal, reaching GoalDir mapped in DOV S, by
applying a sequence of clothoid (to reduce the angular deviation to the goal) and anticlothoid
(to reach the maximum linear velocity) trajectories.

If there are objects in the field of view, the variable RelPos (Table 2.1) expressing the
relative situation of the robot with respect to the collision band of the object is analyzed.
If the robot has passed the object (AfterBand in the tree), the FreeMotion situation is
reached. In the InBand state two situations can be reached. The first is FreeMotion that
applies actions as previously explained. Otherwise, a CertainCollision situation appears
when the robot is in a state of inevitable collision. This situation can only happen when
objects suddenly appear close to the robot.

From the BeforeBand state, one of the two global strategies is selected: RobotFront
or RobotBehind. In turn, depending on the relative position and velocity of the robot and
objects, and on the safety criteria, four situations can be reached: PassingBefore, and
PassingAligned for the first strategy, and SlowingDown and AvoidingObject for the sec-
ond. The current situation is detected by means of the decision variables. More details of
each situation are now given.
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a) RobotFront Strategy

The Robotfront strategy shown in Fig. 2.5 is implemented by means of two possible sub-
strategies, depending on the situation detected: PassingBefore or PassingAligned. These
situations are distinguished by whether there are free velocities in the UpperFree zone or
not. The actions to be applied in both situations are explained.

PassingBefore Situation

In this situation the robot passes before the object (see Fig. 2.8). To achieve this, an
UpperFree velocity over Vhigh is selected (V 3). This velocity is reached through a sequence
of a clothoid (V 1 − V 2) to align the robot towards the goal until reaching V 2 velocity at
maximum angular acceleration, and an anti-clothoid (V 2 − V 3) to speed up and reach the
V 3 velocity in the minimum number of steps. The sequence is maintained until the next
sampling period.

PassingAligned Situation

In this situation (see Fig. 2.9) a zone free of collision exists on one side of the DOV ,
which matches the velocities leading the robot in the same direction as the object move-
ment. Safety is the priority in this case, so an extremal control to escape this situation has
to be applied. The robot combines clothoid and anti-clothoid trajectories to align and escape.

b) RobotBehind Strategy

This strategy leads the robot to pass after the moving obstacle (see Fig. 2.5). When the
UpperFree = {∅} velocities are not reachable (see Fig. 2.6b), the only option for the robot
is slowing down and choosing LowerFree velocities so that the object passes first, using the
BoundRight (BR) or BoundLeft (BL) velocities. The manoeuver is made using the SafeVel
defined in Table 2.1, which is the highest linear velocity value at which the robot can brake to
avoid a collision. The trajectories computed cause the robot to go around the object, passing
after it and thus avoiding entering the collision band.

Two situations can be found, depending on the free velocities that can be reached:
SlowingDown or AvoidingObject (see Fig. 2.7).

SlowingDown Situation

This corresponds to the case in which UpperV el velocities in the DOV S cannot be cho-
sen because they would lead to collision. Since the upper velocities are prohibited (see
Fig. 2.10a), a prioritized safety criterion is taken. A sequence of anti-clothoid and clothoid
trajectories is applied to escape from the dangerous velocities. When the UpperFree 6= {∅},
an anti-clothoid at maximum acceleration makes the robot move towards the goal at maxi-

15



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: Evolution of PassingBefore situation. The highest velocities (V 3) can be chosen for the robot
to pass before the moving object.

(a) (b) (c) (d)

Figure 2.9: Evolution in PassingAligned situation. The robot has to align to the direction of motion of the
object to avoid collision by passing in front of the object, as can be seen between Loc3 and Loc4, where a
FreeMotion situation appears.

mum velocities. Figure 2.10 represents this sequence.

AvoidingObject Situation

This represents a situation in which the moving object velocity lies in the zone of DOV ,
and so there is a danger of collision (see Fig. 2.11). There are two zones in UpperFree

16



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.10: Evolution in SlowingDown situation. The robot has to slow down to avoid the collision, by
combining anti-clothoid trajectories until reaching high and free velocities, permitting the object passes before
the robot.

velocities free of collision, representing angular velocities higher than the represented by
BoundRight(BR) and BoundLeft(BL). First the angular velocity closest to the GoalDir is
chosen to escape from collision, reaching maximum linear velocity V 1.

Although these strategies are designed to reach the maximum velocities whilst maintain-
ing the robot and environment safety, they do not ensure an optimal control in the sense of
minimum time to goal, or under another criterium. The technique developed in [11], intro-
duced in the next section, minimizes a cost function that balances several criteria related to
time to goal and safety.

2.5 Cost-Optimization planning technique

A main objective of this Master’s thesis is to compare Situation-Strategies with Cost-Optimization
and Strategies-Optimization. Thus, this section summarizes the basis of the two last tech-
niques but does not give details. To extend the information refer to [11] and [15].

The Cost-optimization planning technique ([11]) is based on the optimization of a cost
function to compute the optimal motion commands, stating the optimization problem in the
DOV TS space. Working on the bidimensional projection (DOV S) of the DOV TS as de-
scribed in section 2.4 restricts the action and movement capacity of the robot, due to the
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(a) (b) (c) (d)

Figure 2.11: Evolution of AvoidingObject situation. The robot manoeuvres to pass in front of or behind
the object, depending on the current relative situation between the goal and the robot. Blue line is GoalDir,
representing every moment the direction for aligning the goal.

tendency to choose movements in the velocity free space (FV ), when some commands under
the forbidden obstacle surface (DOV T ) are still available.

First, the Cost-Optimization technique discretizes the DOV TS creating a mesh of rectan-
gular prismatic cells with regular sizes, δv, δω, δt, balancing both precision and computational
cost. The space defined by the forbidden surface is represented as occupied cells. Second,
an A∗-like search algorithm is used in this space to find the optimal trajectory in terms of
velocity sequences. It explores iteratively the free cells or nodes of the mesh, opening several
paths from the initial node and generating a spanning tree from the lowest level correspond-
ing to the current time (t = 0). In each iteration, the neighbor cells in FV T , corresponding
to free velocities, are visited and the one with the lowest cost is expanded. Finally, a cost
objective function is defined to guide the search, which balances time to goal, safety in terms
of proximity to obstacles, and smooth motions with limited velocity changes:

f(c) = g(c) + h(c)

where g(c) is the cost of reaching the current cell from the initial cell and h(c) is a heuristic
term that estimates the cost of reaching the goal from the current cell. This heuristic cost is
defined from three weighted components:

h(c) = αv · hv + αd · hd + αs · hs

The first term hv is computed as the minimum number of iterations in v and w to reach
the next velocity goal (or the number of cells to traverse in FV T ). In Fig. 2.12 the DOV TS
for two moving objects is represented. As can be seen, a velocity goal is computed for each
moving object. These are used to lead the search sequentially for the optimal trajectories.
The second one hd estimates the time that the robot needs to reach the goal from the current
location, without considering obstacles. The third component hs contributes to safe motions,
avoiding obstacles. It is measured as the distance from the corresponding cell to the DOV T
surface in the T axis.
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Figure 2.12: Two moving objects in DOVTS space. Goal(1) and Goal(2) represent two velocity goals
(GoalVel) computed in the Free Velocity Spàce of DOVTS.

2.5.1 Strategies-Optimization : integration of Situation-Strategies and Cost-
Optimization

This section outlines the Strategies-Optimization technique, defined in [11] and extended in
[15].

In the Cost-Optimization approach, the velocity subgoals are chosen only using a proxim-
ity to the aligning direction (GoalDir variable) criterion. This imposes some constraints on
finding the optimal command in the presence of obstacles. The Situation-Strategies method
allows velocity subgoals to be chosen using more complex criteria than that proposed in Cost-
Optimization. For this reason, [11] propose an approach to integrate both techniques.

The key point is the velocity cost term hv in the cost optimization function, which is
redefined as:

hs(c) = αv · hsv + αd · hd + αs · hs

where hsv is now computed from the GoalV el of the Situation-Strategies technique.

[11] evaluates the performance between Cost-Optimization and the integration of both
Situation-Strategies and Cost-Optimization. Figure 2.13 shows two simulations in a sim-
ple scenario. The first one is carried out without using Situation-Strategies, that is, only
the Cost-Optimization is active. The second one represents the same scenario in which
both Situation-Strategies and Cost-Optimization are active. It can be seen that not using
the Situation-Strategies yields a longer and more oscillatory trajectory. In the integrated
Strategies-Optimization the maximum linear velocity is also maintained for longer.
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(a)

(b)

Figure 2.13: Image taken from [11], where simulations in two cases are displayed: (a) Only the Cost-
Optimization technique is active, αv = 0, αd = 1, αs = 1. (b) Both techniques are active, αv = 1, αd =
0.5, αs = 1. Notice that in the second case the maximum linear velocity is maintained whilst in the first one
the time to goal is higher and the trajectory more oscillatory.
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Chapter 3

Situation-Strategies evaluation and
comparison with Cost-Optimization
and Strategies-Optimization

3.1 Metrics for assessment

[15] defines a methodology to evaluate the quality of the movement with the Cost-Optimization
and Strategies-Optimization techniques, as a function of the α parameters of the cost func-
tion. Table 3.1 shows the metrics used for evaluation, defined to evaluate the performance
of the techniques and to determine the most suitable selection of the α parameters for the
Cost-Optimization and Strategies-Optimization methods: the percentage in time to goal im-
provement, in smoothness of the motion measured as change of the velocity (acceleration),
and in the safe distance. Instead of using absolute values for quantifying the criteria, [15]
computes relative values with respect to the worst case in each scenario.

The work carried out for the Master’s thesis focuses on using the same metrics to evaluate
the Situation-Strategies approach and compare it with the others techniques.

3.1.1 Simulation scenarios

Two kinds of navigation scenarios with moving objects have been chosen. The first includes
few moving objects around the robot (uncluttered scenario, between 10 and 12)), and four
different goals to achieve. The second contains a high density of moving objects reducing the
ability of the robot to navigate (cluttered scenario, between 20 and 25), and also four different
goals to reach. Both scenarios are non structured and the obstacles moving around reduce
the robot capability of navigating. We have also introduced non-straight line trajectories for
the objects, to test simultaneously the robustness of the navigation techniques. Figure 3.1
depicts a snapshot of the simulation in one of the scenarios. Appendix A contains several
steps during one of the simulation in the cluttered scenario.
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Metrics Expressions

time saving, mt

(%)
1
M ·

M∑

j=1

1−
[
t(j)

Tmax

]

reduction in the change of υ, ma

(%)
1
M ·

M∑

j=1

1−
[
δv(j)

δVmax

]

safety distance, md

(%)
1
M ·

M∑

j=1

1−
[
d(j)

Dmax

]

success rate, ms

(m)
1
M ·

M∑

j=1

s(j)

Table 3.1: Evaluation Metrics. M is the number of tests for each method and kind of scenario, Tmax,
δVmax and Dmax are the maximum values of time, change of velocity and distance to obstacles in each test,
respectively.

Parameters p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
αv 0.498 0.333 0.00 0.00 0.048 1.00 0.40 0.20 0.40 0.50 0.25 0.25

αd 0.005 0.333 1.00 0.20 0.0 0.00 0.20 0.40 0.40 0.1670 0.25 0.50

αs 0.498 0.333 0.00 0.80 0.952 0.00 0.40 0.40 0.20 0.333 0.50 0.25

Table 3.2: Set of representative samples of combinations of α parameters. The time to goal, smoothness of
the motion and the safety are weighted.

The method used to track the moving objects was EKF-based, in which the state vector
included the location and the velocities of the tracked objects. The static and moving object
maps of the scenario were obtained using the method developed in [13] to model a dynamic
environment.

The Situation-Strategies, Cost-Optimization and Strategies-Optimization techniques have
been tested and compared. For the two last approaches, a set of representative samples of the
set of all combinations of α parameters are used to evaluate the cost function (Table 3.2),
ranging from values that try to improve the time of mission to others that assess the safety.
All these scenarios account for 200 test situations, which have been considered representative
for extracting well-founded conclusions about the performance of the techniques and how to
choose the weighting parameters for navigation.

The three techniques were analyzed using the evaluation parameters defined in 3.1 for
each of the twelve optimization parameter α combinations shown in 3.2. For the metrics
shown in 3.1, M = 4 beacuse 4 different goals have been defined in each kind of scenario.

Figure 3.1.1 shows the results in the uncluttered and in the cluttered scenarios, respec-
tively. The discontinuity in some trend lines and the zero points correspond to combinations
with low rates of success (ms) and are therefore discarded. As it could be expected the re-
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sults for Cost-optimization and Strategies-Optimization outperformed the ones obtained for
Situation-Strategies in all the metrics and scenarios. Time saving and reduction in change of
velocities were better, and regarding safety the use only of the Situation-Strategies leads to
a more conservative navigation, far from the obstacles.

Roughly speaking, better results are obtained for the three metrics using the integrated
Strategies-Optimization technique. Also, it can be seen that in uncluttered scenarios the
best performance is obtained with parameters that give more weight to the time to velocity
goal term (αv), or that give equal weight to the three criteria, that is combinations p1 and
p2. Conversely, for cluttered scenarios, it is important to highlight the safety term (αs), for
example parameters p4 and p9, although weighting the three terms similarly (like in p2)
also provides a good behavior. p3 has been discarded because it drives to collision in some
scenarios.

(a) (b)

Figure 3.1: (a) A snaphot of the scenario. The controlled robot is the green object coming from the lower
space. (b) The objects tracked by the perception system in that instant.
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(a) Time saving (a) Time saving

(b) Reduction in the change of v (b) Reduction in the change of v

(c) Increase in safety factor (c) Increase in safety factor

Figure 3.2: Values of the metrics for the uncluttered (left) and cluttered (right) scenarios for Situation-
Strategies, Cost-Optimization and Strategies-Optimization techniques. Yellow circles represent the maximum
value with no collisions.

24



Chapter 4

Seamless localization

The scenarios we consider are very heterogeneous, composed by mapped and unmapped
zones and with variable GPS coverage. Therefore, it is necessary to provide the robot with
a robust and seamless localization system to perform a safe and trustful navigation. Next, a
description of the localization system proposed is given (completely developed in [21]).

4.1 Related work

In [17], the authors integrate, by means of a Kalman filter, a laser-based SLAM method with
GPS, IMU and odometry measurements for a continuous localization. However, EKF scheme
assumes independence between measurements but SLAM output and GPS measurements
are highly correlated as they are both estimations of the same variables of the robot state.
These independence assumptions, when real correlations are high, lead to incoherent estima-
tions because they are overconfident. Thus, our approach applies the covariance intersection
method [8] to avoid these problems.

In situations where compass cannot be used and the orientation of the robot cannot be
directly measured from GPS, it has to be derived from other measurements. [7] proposes a
Kalman Filter to fuse odometry/IMU and GPS measurements. To estimate the orientation
of the robot they use two consecutive GPS measurements assuming that the robot is moving
straight, which may be broken easily as the frequency of the GPS decreases. In [6], using
the same estimation, the authors determine the likelihood of the estimated orientation by
comparing it to the estimation obtained from the IMU. If they diverge, GPS based estimation
is discarded. However, this technique would accept a bad estimation that is coherent with a
bad IMU measurement. Thus, we propose a method to calculate the orientation of the robot
from several GPS measurements whenever the robot moves straightforward to improve the
estimation of the filter.
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4.2 Localization framework

The localization technique proposed combines different methods in a robust way to be able to
seamlessly localize the robot in very heterogeneous scenarios. Specifically, this method dis-
tinguishes among different situations that may be found in such kind of scenario and obtains
the best estimation. Table 4.1 sums up the situations detected depending on the current po-
sition of the robot (inside or outside the map) and the quality of the GPS (see [21] for details).

Good GPS Bad GPS No GPS

Inside Map Outdoors Transition Indoors

Outside Map Outdoors Outdoors (No GPS)

Table 4.1: Situation detection

To track the best estimation of the localization x an Extended Kalman Filter with a
covariance intersection scheme during the update phase is used. The prediction is computed
from the odometry/IMU data yod, as shown in (4.1), where Q is the covariance of the
odometry/IMU error and F is the Jacobian of the prediction function.

x(k+1|k) = x(k|k)⊕ uod(k+1) (4.1)

uod(k+1) = yod(k+1)⊕ y−1od (k)

P(k+1|k) = F(k)P(k|k)F(k)′ + Q(k+1)

The update phase is based on the covariance intersection method which permits the fusion
of different information sources with unknown correlation among them. In this case, three
different sources are used: the odometry prediction x(k+1|k), the GPS estimation ygps and
ymap the estimation of a laserscan-based localization, using the method defined in [2], in
mapped zones, as shown in (4.2). The final estimation is computed by means of a weighted
sum of all the sources. For weighting, besides using the covariance matrices of the estimations,
P, Rgps and Rmap respectively, three factors (γod, γgps and γmap) are applied depending on
the situation in which the robot is at each moment as defined in Table 4.2.

P(k+1|k+1)−1 =γmap R−1map + γgps R−1gps (4.2)

+ γod P−1(k+1|k)

x(k+1|k+1) =P(k+1|k+1)(γmap R−1map ymap

+ γgps R−1gps ygps

+ γod P−1(k+1|k) x(k+1|k))

4.3 GPS-based orientation

In this framework, the only direct source of absolute orientation estimations is the map-
based method from the ymap measurement. GPS only provides directly position estimations,
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Situation γmap γgps γod

Indoors 0.5 0.0 0.5

Transition (inside map) 0.5 0.0 0.5

Outdoors (no GPS) 0.0 0.0 1.0

Outdoors (good GPS) 0.0 0.5 0.5

Table 4.2: Update weights in different situations

so the orientation when there is not a map must be obtained in another way. Compass can
directly measure the orientation of the robot but it is affected by the magnetic fields of the
environment, making unusable its estimations in scenarios with sources of magnetic fields. In
absence of other information, odometry/IMU estimations can be used for this purpose. But
it accumulates error during the movement. It is possible to try estimating the orientation
from several GPS measurements to compute ygps in the expression 4.2, but it is only a precise
way when the robot is moving close to a straight line path. The orientation is calculated from
a set of consecutive GPS measurements {xgps0, · · · ,xgpsn} under some constraints using the
mixture of gaussians of equations from (4.3) to (4.5).

θ̂ =

n∑

j=1

wj θ̂j , σ2 =

n∑

j=1

wj

(
σ2j +

(
θ̂j − θ̂

)2)
(4.3)

wj =
1

n− 1

(
1−

σ2j∑n
k=1 σ

2
k

)
(4.4)

θ̂j = arctan

(
ygpsj − ygps0
xgpsj − xgps0

)
(4.5)

The constraints imposed to consider this estimation to be used in the update step are a
minimum distance d between the initial xgps0 measurement and the following one, a mini-
mum number of GPS measurements needed n such that the distance between xgps0 and xgpsn
is L for a given GPS measurement frequency, and that all them has taken place while the
steering angle φ of the robot has a value close to 0, making sure that the robot is moving in a
straight line and thus that the estimated orientation is constant. For more details refer to [21].

Depending on whether the GPS-based orientation has been calculated or not, the GPS
measurement and covariance in (4.2) take different values. If we have an orientation estima-
tion from the GPS,

ygps =
(
xgps, ygps, θ̂

)′
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Rgps=




Rxgps 0 −wn
L Rxgps sin α̂

0 Rygps
wn
L Rygps cos α̂

−wn
L Rxgps sin α̂ wn

L Rygps cos α̂ σ2




Otherwise, the orientation is taken from the prediction step (given by odometry/IMU), and
then,

ygps =



xgps
ygps

0


 , R−1gps =




1
Rxgps

0 0

0 1
Rygps

0

0 0 0




4.3.1 Improvement of the GPS-based orientation method

The method explained above imposes some constraints to estimate the orientation of the
robot based on GPS measurements. The steering angle φ of the wheels were used, in order
to estimate that the robot was moving in straight line, when φ ' 0. But it can not always be
a good measure of this behavior. The constraints to use this method to estimate the robot
orientation are analyzed from several experiments.

Next, we present the experiments performed to propose different constraints to the method
which are less conservative but still achieving good orientation estimations. By weakening
the restrictions we are able to obtain these estimations more often, reducing the orientation
error accumulated from the odometry/IMU prediction.

In the first experiment the robot moves at constant linear velocity and the steering angle
φ takes values from equation (4.6). Parameter A may take values from {0.1, 0.2, 0.3, 0.4} and
ω from the set {0.0, 0.5, 1.0, 1.5, 2.0}.

φ(t) = A sin(ωt) (4.6)

Figure 4.1 illustrates the results obtained with A = 0.4 and ω = 2. In figure 4.1a, the GPS
positions of the robot are depicted, which show the robot is moving nearly in straight line.
The steering angle, the orientation from odometry and the orientation computed from GPS
measurements are shown in Fig. 4.1b, which reflects that the amplitude of the steering angle
is bigger than the one provided by the odometry. So in general the robot orientation is a
better source than the steering angle to determine whether the robot is moving in straight line.

Figure 4.1b also depicts that when the robot is not moving the value of the orientation
jumps. To analyze the conditions to get a good estimation of the orientation, we have mea-
sured the error in the estimations while navigating the robot as straight as possible along
12m at constant speed. Figure 4.2 shows the square mean error of the estimations. For
distances greater than 0.4 there is no improvement in the estimations. Therefore, whenever
the procedure for estimating the orientation is initialized, the minimum distance d between
the initial xgps0 data and the next one to estimate the orientation should be of 0.4. In this
experiment we found that the threshold th for the maximum variation of orientation accepted
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Figure 4.1: Results obtained from the experiment following (4.6) with A = 0.4 and ω = 2.
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Figure 4.2: Mean square error of the estimation of the orientation using GPS in straight line for different
minimum distance constraint.

to determine if the robot is moving in straight line were 1 ◦ every 2m, approximately. Oth-
erwise, the orientation only can be computed from the odometry/IMU estimation.

The constraint on the total distance L between the initial xgps0 measurement and the
last one used to estimate the orientation is examined by performing several experiments in
which the robot moves following non-straight paths. The frequency of the GPS measure-
ments is 4Hz. Figures 4.3a and 4.3b show the number of total estimations and the mean of
the covariances of the orientation obtained during the experiment for different values of L.
Values higher than 1m would decrease the frequency of orientation updates as the number
of total estimations is considerably reduced, so they are discarded. A value of L = 1 re-
duces almost in 25% the number of estimations computed with respect to L = 0.5, whereas
there is no much difference in covariance. Thus, we consider that a total distance of 0.5 wolud
increase the number of updates of orientation and provide good estimations of the orientation.

The method to estimate the orientation with these new constraints is outlined in Algo-
rithm 1, which follows equations from (4.3) to (4.5). In lines 7 and 8, ∆θodom is the total
variation of orientation experimented in odometry during the interval between xgps0 and
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Figure 4.3: Results of the experiment to determine L.

Algorithm 1 Estimation of the orientation from GPS measurements

Require:
1: xgps0 is the initial GPS measurement taken as reference
2: xgpsj is the current GPS measurement
3: th is the maximum variation of orientation in odometry accepted to determine if the robot moves

in straight line
4: d is the minimum distance between xgps0 and xgpsj
5: L is the total distance to estimate the orientation
6: procedure EstimateOrientation(xgps0, xgpsj , th, d, L)
7: if ∆θodom > th then
8: xgps0 = xgpsj
9: else

10: if Distance(xgps0,xgpsj) >= d then

11: θ̂j(xgps0,xgpsj), σ
2
j (xgps0,xgpsj)

12: if Distance(xgps0,xgpsj) >= L then

13: return θ̂, σ2

14: xgps0 = xgpsj
15: end if
16: end if
17: end if
18: end procedure

xgpsj . If ∆θodom is not under th (i.e, the robot is not moving in straight line) we discard the
GPS measurements considered for the estimation so far and initialize the GPS measurement
of reference with the current one. Line 14 reflects that once the estimation of the orienta-
tion has been calculated, the process is initiated and the GPS measurement of reference is
initialized with the current one.

4.3.2 Results

This section presents the results obtained from the experiment to compare the GPS-based
orientation improvement method with respect to the previous approach. The platform used
is a Robucar-TT1 equipped with IMU, odometry, three range-finder sensors and GPS receiver
(figure 4.4).

1www.robosoft.com
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Figure 4.4: Robucar-TT platform

In [21] a real experiment in a large scenario within indoor and outdoor scenarios was
achieved. Figure 4.5 reproduces the experiment, showing the continuity in localization and
the limited uncertainty in the whole trajectory using the unified localization technique. This
work extends the technique presented to improve the orientation estimation from GPS mea-
surements when it can provide better estimations as explained in section 4.2. We focus our
analysis only in a interval of the full experiment where the robot is not moving in a straight
line (see green rectangle in figure 4.5).

Figure 4.6a shows the pose estimations with both methods and the GPS data received.
The previous method does not update the orientation from GPS because the robot is not
moving in straight line. Now, we obtain better results in the pose estimations, which are closer
to GPS measurements. In figure 4.6b the detail of the GPS-based orientation estimated from
both methods is illustrated. It is clear the improvement in orientation estimation using the
GPS-based technique.
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Figure 4.5: Test scenario for evaluating our localization method. It covers an area of 12000m2 and the
trajectory length is about 1000 meters.
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Figure 4.6: Robot’s pose and orientation estimations in a non-straight stretch.
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Chapter 5

Conclusions

Regarding the planning of motion for robots in dynamic environments, a comparison of differ-
ent planning techniques has been developed. The metrics defined in [15] and its use to quan-
titatively evaluate the performance of the navigation for Cost-Optimization and Strategies-
Optimization have served to guide the evaluation of Situation-Strategies and to elaborate
founded conclusions on the performance of the three techniques.

As a result of the evaluation, sets of optimization parameters can be selected to be applied
in the Strategies-Optimization planning technique. This methodology allows this selection to
be made under a well-founded criterion, yielding a reduced number of best control parameters
to be applied in different situations and scenarios.

Future work will focus on the extension of the technique to sharing the decision making
process among several robots and obtaining optimized plans.

Regarding localization, the previously developed robust seamless continuous localization
technique ([21]) for indoor-outdoor environments has been improved. A unified framework
for continuous localization in large environments has been presented. The most suitable and
accurate sensors in each moment are integrated to provide a continuous localization without
discontinuities in the estimations and having a limited uncertainty, even when transitions
indoor-outdoor or viceversa are produced. The parameters and conditions allowing the best
sensor integration have been obtained from several experiments in real environments.
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Appendix A

Simulations

A.1 Cluttered scenario

This section shows several steps of the simulation performed to evaluate the Situation-
Strategies technique.

This scenario contains a high density of moving objects, which reduces considerably the
capability of the robot to navigate. Figure A.2 shows several snapshots during the simulation.
Some of the objects describe non-straight trajectories to test the robustness of the navigation
techniques. In such a scenario, with such amount of moving objects, the velocity space is
usually complety occupied and thus the robot has to wait until the moving objects has passed.

Figure A.1 describes the linear and angular velocity profiles during the simulation. The
robot tries to maintain the maximum linear velocity when it is possible. However, it has to
slow down several times during the simulation and even stop to assure the safety. At the
end of the simulation, when almost all the objects have passed the robot can increase the
velocity, reaching the goal at maximum linear velocity.

Figure A.1: Velocity profiles in the cluttered scenario.
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Figure A.2: Snapshots of the simulation in the cluttered scenario
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Abstract. In this paper we present a unified localization technique for
indoor-outdoor environments that allows a seamless transition between a
mapped zone using laser rangefinder on-board sensors and a GPS based
localization zone. Different situations are detected during the indoor-
outdoor transitions, in which the sensors used change and the localization
estimator has to manage them properly for a continuous localization. The
quality in the GPS measurements and the zone where the robot is local-
ized are used to determine the best instant for switching the localization
parameters for adapting to the situations.

1 Introduction

It is common in indoor robotics applications to assume a limited environment (a
room, a building floor, etc) for localization purposes. This limitation is forced by
the need of a finite map of the features in the zone to localize the robot. There
are many map-based methods for robot localization (see [1] for a selection) that
use different sensors achieving good results.

Due to the sparseness of the features needed to get a reliable localization
system, the use of maps in outdoor scenarios is uncommon. Instead, outdoor
applications usually utilize GPS based localization which avoids any limitation
in the environment as it is accessible almost everywhere.

However, there are few systems that provide a continuous localization for
both indoor and outdoor scenarios in such a way that the robot is not confined
in a limited space.

Main difficulties come from the fact that very different sensors (odometry,
IMU, rangefinders, GPS, etc) are needed to get a good estimation. The outputs
of some of them completely change depending on the situation of the robot:
the GPS gets no measurements indoors, open spaces make rangefinders useless,
varying magnetic fields influence compass measurements, etc. Also, the use of
different reference frames requires a special consideration of the measurements.
All these problems become more obvious during the transitions as measurements
are more imprecise.

? This work was partially supported by the Spanish project DPI2012-32100 and by
Project DGA T04-FSE.



Some authors have adapted techniques from cell phones and use WPAN
and WLAN based localization [2]. These approaches rely on a fixed and known
infraestructure and provide results with an accuracy that may not be enough
for autonomous robots.

Some approaches, such as [3], rely on the ability of a GPS based Kalman
filter to deal with temporary loss of measurements. However, as the duration of
this temporary loss increases, the estimation becomes more uncertain.

For transition detection, [4] uses a learning scheme using vision that allows
to differenciate indoor and outdoor light characteristics.

In [5], the authors integrate, by means of a Kalman filter, a laser-based SLAM
method with GPS, IMU and odometry measurements for a continuous localiza-
tion. However, EKF scheme assumes independence between measurements but
SLAM output and GPS measurements are highly correlated as they are both es-
timations of the same variables of the robot state. These independence assump-
tions, when real correlations are high, lead to incoherent estimations because
they are overconfident. Thus, in our approach, we use the covariance intersec-
tion method [6] to avoid these problems.

In situations where compass cannot be used, the orientation of the robot
cannot be directly measured from GPS and has to be derived from other mea-
surements. [7] proposes a Kalman Filter to fuse odometry/IMU and GPS mea-
surements, and the result is integrated into a Monte Carlo localization approach.
To estimate the orientation of the robot they use consecutive GPS measurements,
assuming that the robot is moving straight in between. This assumption is too
strong to be considered in a general scenario. In [8], using the same estimation,
the authors determine the likelihood of the estimated orientation by comparing
it to the estimation obtained from the IMU. If they diverge, GPS based estima-
tion is discarded. However, this technique would accept a bad estimation that
is coherent with a bad IMU measurement. Thus, in our approach we propose
a method to calculate the orientation of the robot from several GPS measure-
ments whenever the robot moves straightforward to improve the estimation of
the filter.

In real applications where indoor and outdoor scenarios are mixed, it is nec-
essary to have a robust continuous localization without discontinuities when the
scenario changes (indoor to outdoor, or vice versa) or when the most accurate
sensors have to be chosen. In this paper, we contribute a unified framework for
a seamless localization during navigation within different types of environments.

2 Scenario and sensors

The continuous localization system for robots has to work in a scenario composed
by zones with different characteristics:

– Indoor and outdoor mapped zones.
– Zones with no GPS coverage.
– Zones covered with imprecise GPS.
– Zones with good GPS coverage.



These zones overlap each other in such a way that the mapped area contains
zones of different GPS coverage or not coverage at all. The scenario may not be
completely mapped, but the position of all the mapped zones in GPS coordinates
is known.

To estimate the localization and orientation of the robot in 2D we have three
sources of information:

– Odometry plus IMU with high frequency in the whole scenario, in the sequel
odometry/IMU.

– Laser rangefinder based localization in the mapped zone, as proposed in [9].

– GPS based localization.

3 Situations in the environment

We have defined five different situations in which the robot may be, depending
on the characteristics of the environment. Each of these situations requires a
different measurement policy, as they present different characteristics.

3.1 Description of situations

Indoors. When the robot is in an indoor situation, GPS is unavailable and the
localization completely relies on the map-based technique.

Transition Indoors–Outdoors. Inside the map. The robot starts receiving
GPS signals, but they are too bad to be used. As the robot is inside the map, the
map-based localization can still be used although the uncertainty will be bigger
as the robot is leaving the map.

Transition Outdoors–Indoors. Inside the map. In this situation, the GPS
measurements become worse and they cannot be used anymore. However, as the
robot is inside the map, the map-based localization can be used instead. But
previously, we need to give a prior of the position of the robot to the indoor
localization because after a while being out of the map, the indoor localization
becomes corrupted due to the lack of rangefinder measurements. This action is
called a reset. The prior information is taken from the current estimation of the
robot localization computed using the GPS.

Outdoors. Outside the map with bad GPS. The robot is outside the map,
so the indoor localization cannot be used anymore. But there is no GPS signal or
it is not good enough to be used so that the robot cannot use any measurement
but the prediction from the odometry/IMU.



Outdoors. Outside the map with good GPS. The robot receives good
enough GPS measurements and thus they are used to estimate the position
of the robot. Notice that the uncertainty of the GPS is still being considered
during update. Depending on coverage conditions and on the kind of path, the
GPS measurements can be used or not to compute orientation.

3.2 Detection of situations

To detect in which situation the robot is, we use two variables: the GPS quality
and the estimated position of the robot at that moment.

Receiving a GPS signal, even with an estimation of the measurement error, it
is not enough to consider it as useful. In zones with bad GPS coverage (near high
walls, below trees, etc), GPS provides awful estimations moreover if there were no
previous good GPS estimations. In these cases, if the robot provides good enough
prediction via odometry and IMU, it is better to discard the measurements rather
than integrate them into the filter. To decide if a GPS measurement is useful, we
define a quality value Qgps which is computed from the variances of the latitude
and the longitude measured using (1).

Qgps = −log(σ2
latσ

2
lon) (1)

This quality measurement has been adopted after some experimental tests in
different scenarios and it is related to the GPS covariance: the quality increases
as the volume of uncertainty decreases. The number of satellites has also been
considered as a quality measurement. However, the latter is more volatile than
the first one and the uncertainty volume presents bigger discontinuities in the
indoor-outdoor transitions and vice versa, as shown in Figure 1.
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Fig. 1: GPS Quality and number of satellites during two experiments in different
scenarios. Shadowed zoned represent indoor zones

However, this is not enough to decide if the robot is indoors or not. It is
possible that we receive no GPS at all (see Figure 1 on the left round t = 700 s)



or a really bad quality GPS (as in Figure 1 on the right after t = 900 s) being
outside a building. In these cases, we use the best estimation of the localization
of the robot to know if it is inside a building or not. We are assuming that we
know where the buildings are because they have been previously mapped.

Table 1 sums up the detection of the situations depending on the observed
variables.

Table 1: Situation detection
Good GPS Bad GPS No GPS

Inside Map Outdoors Transition Indoors

Outside Map Outdoors Outdoors (No GPS)

4 Continuous Localization

The first problem to deal with when considering different sources of measure-
ments is that each source has a different frame of reference. Thus, we have defined
a common frame where all the measurements are transformed into. This frame
is defined in such a position that we can estimate its localization using both the
map and the GPS.

The method proposed is based on a time discretized bayesian filter approach
working in all those changing situations seamlessly. The measurements from
different sources are weighted depending on the situation of the robot and on
their own covariance. The localization of the robot at time tk, xk = (x, y, θ)k
and its covariance Pk is tracked. The filter is divided in two steps, prediction
and update.

4.1 Prediction

In the prediction step, the information from the odometry/IMU source yod is
used as the estimation of the movement of the robot since the last measurement
from GPS or laser based localization. Odometry/IMU measurements accumulate
error as time evolves so that we use uod the relative movement with respect to a
previous measurement instead of the absolute value. This phase corresponds to
the prediction step of a Extended Kalman Filter [10], where F is the jacobian of
the prediction function (2).

x(k + 1|k) = x(k|k)⊕ uod(k + 1) (2)

uod(k + 1) = yod(k + 1)⊕ y−1od (k)

P(k + 1|k) = F(k)P(k|k)F(k)′ + Q(k + 1)

Symbol ⊕ represents the composition of affine transformations in the plane
(translation and rotation) in homogeneous coordinates. As odometry/IMU mea-
surements are always available, the prediction step is performed at each time



step. The uncertainty of the localization increases because of the odometry error
Q.

4.2 Update

In the update phase, the measurements from GPS 〈ygps,Rgps〉 and from laser-
based localization 〈ymap,Rmap〉 are used to correct the predictions made in
the previous phase. In case of the map-based localization measurements, the
particle filter technique described in [9] is used. According with that approach,
ymap is the mass center of the most promising cluster of particles and Rmap is
the population variance of the particles in the cluster.

All the measurements have three components y = (x, y, θ), which corresponds
to the components of the state being tracked. Odometry and map based local-
ization provide orientation information but GPS data do not give it directly. In
Section 5 we present a procedure to estimate it in some cases.

The general framework we use (3) is based on the covariance intersection filter
[6]. This formulation permits the fusion of measurements from different sources
that may be correlated, avoiding the statistical independence requirements of
EKF approaches. The parameters γmap, γgps, γod weight the covariances and
their selection is described later, in section 4.3.

P(k + 1|k + 1)−1 = γmapR
−1
map+γgpsR

−1
gps + γodP

−1(k + 1|k)

x(k + 1|k + 1) = P(k + 1|k + 1)(γmapR
−1
mapymap+

γgpsR
−1
gpsygps+

γodP
−1(k + 1|k)x(k + 1|k)) (3)

4.3 Update Tuning

Depending on the situation of the robot, the weighting values γmap, γgps, γod
in (3) take different values so that the final estimation relies on a mixture of
the measurements and the prediction. In addition to that, the measurement
covariances are also used to weight the estimation, giving more importance to
smaller covariance estimations.

We set to 0.0 the weights of the sensors that are unreliable in each situation
(e.g. GPS is set to 0.0 in indoor situations). The rest of the weights are equally
set so that the sum of all of them is 1.0. This way, the only weighting factor
for the measurements are the covariance matrices of the reliable sensors. The
specific weights for the measurements in each situation are defined in Table 2.

5 Outdoor Orientation

Outdoors, the GPS provides the robot position. However, it does not directly
provide the orientation of the robot. We propose a technique to estimate the
orientation of the robot based on a set of GPS measurements.



Table 2: Update weights in different situations
Situation γmap γgps γod Reset

Indoors 0.5 0.0 0.5 No
In–Out (inside map) 0.5 0.0 0.5 No
Out–In (inside map) 0.5 0.0 0.5 Yes
Outdoors (no GPS) 0.0 0.0 1 No

Outdoors (good GPS) 0.0 0.5 0.5 No

During a distance L in which the robot moves straightforward, i.e. the steer-
ing angle is 0 and the orientation θ remains constant, different GPS measure-
ments are stored. For each measurement, an estimation of the orientation θ̂j is
calculated using (4). The covariances of the measurements Rgps0 and Rgpsj are
propagated by means of the jacobian to get the covariance of the orientation σj .
Then, once the robot has reached the distance L, a final estimation of the robot’s
orientation is calculated (5) as a weighted sum of the individual computed esti-
mations (Figure 2), based on a mixture probability density function defined in
[10]. The weights are valued depending on the covariance of each estimation (6).

θ̂j = arctan(
ygpsj − ygps0

xgpsj − xgps0

) (4)

θ̂ =
n∑

j=1

wj θ̂j , σ
2 =

n∑

j=1

wj

(
σ2
j +

(
θ̂j − θ̂

)2)
(5)

wj =
1

n− 1

(
1−

σ2
j∑n

k=1 σ
2
k

)
(6)

Parameter L may be tuned for each scenario. As L increases, more GPS
measurements are used to compute orientation, leading to a more accurate es-
timation. However, it requires that the robot moves long straight trajectories.
After several experimental tests, we have set L = 2.5m as a trade-off between
accuracy and the need of long straight trajectories.

The measurement terms 〈ygps,Rgps〉 used in the update phase in (3) are
finally obtained as follows:

1. If the robot moves in a straight line (an orientation estimation can be com-
puted),

ygps =



xgps
ygps
θ̂


 , Rgps =




Rxgps
0 −wn

L Rxgps
sin θ̂

0 Rygps

wn

L Rygps
cos θ̂

−wn

L Rxgps
sin θ̂ wn

L Rygps
cos θ̂ σ2



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Fig. 2: Orientation of the robot obtained from GPS measurements

2. If the robot does not move in straight line the orientation is taken from the
prediction step (given by odometry/IMU), and then,

ygps =



xgps
ygps

0


 , R−1gps =




1
Rxgps

0 0

0 1
Rygps

0

0 0 0




Note that the error in the position components (xgps, ygps) in GPS measure-
ments are uncorrelated. However, as the orientation is computed from those com-
ponents, there are non-zero correlation terms when the robot moves in straight
line.

6 Results

In this section we present the experimental results obtained to show the robust-
ness of the methods proposed above.

The platform used is a Robucar-TT1 with all the sensors needed on-board
and car-like motion capabilities (see Figure 3).

First, to show the capabilities of the outdoor localization method in good
GPS measurement conditions, including orientation estimation, we designed an
experiment in which the robot autonomously navigates describing a rectangle
defined by four goals on its corners.

The navigation technique is an adaptation of the ORM technique [11] for
car-like vehicles. It takes into account the kinodynamic constraints of the robot

1 www.robosoft.com



Fig. 3: Robucar-TT platform equipped with IMU, odometry, three range-finder
sensors and GPS receiver

and permits maneuvers to avoid obstacles and to guide the robot towards the
goal. The details of the navigation technique are out of the scope of this paper.

The goals are defined by GPS coordinates so that the localization should
permit the robot to repeat the rectangular path with no drift although the
odometry accumulates significant errors.

Figure 4 shows the trajectory followed by the robot completing 11 times the
rectangular path for a total distance travelled of 2696m with an average speed
of 0.95ms−1.
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Fig. 4: Estimated localization (solid line) and odometry measurements (dashed
line) for the rectangle experiment. The goals are represented by stars.

Figure 5 presents the evolution of the estimation drift during the experiment.
We compare the filter localization estimation from the odometry/IMU and the
GPS-based one. As known, odometry drift keeps growing with time, being the
orientation error the main cause of the position error as well. At the end of the
experiment, the odometry reaches a maximum of 18m of position error and more



than 0.3 rad of orientation error. Meanwhile, the estimation of the localization
method is able to keep bounded the error to a small value.

0 500 1000 1500 2000 2500 3000
Time (s)

0

2

4

6

8

10

12

14

16

18

Di
st

an
ce

 (m
)

0 500 1000 1500 2000 2500 3000
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

An
gu

la
r d

is
ta

nc
e 

(r
ad

)

Fig. 5: Position (left) and orientation (right) error of the filter estimation (solid
line) and the odometry (dashed line) during the experiment

Second, we designed a full experiment involving all kinds of situations and
transitions. Figure 6 shows the trace of the robot during the experiment. The
scenario covers an area of 12000m2 and the robot navigates for more than 1000
meters. In the zones with good localization, the variance of the estimation was
below 0.1m for x and y and below 0.05 rads for the orientation. The maxima
in the variances of the estimations occur during transitions, the estimations
are reset as well as during the outdoor with no GPS measurements due to the
odometry error accumulation. However, transitions are temporal situations and,
soon as a measurement is received, variances return to low values. In case of
indoor-outdoor transitions, the covariance of the orientation may remain in high
values for a longer period because the robot can only measure its orientation
when it is moving in straight lines.

Figure 7 show in detail some transition examples of the experiment. On the
top left figure, the robot starts inside the building with map-based localization.
After leaving the building, the GPS data arrive but their quality is too low to
be useful, mainly because the robot navigates close to a wall. The robot leaves
the map but still the GPS is imprecise so the odometry/IMU prediction is used
until a good enough GPS signal is received.

On the top right, all the trace remains inside the map limits. The robot
navigates towards the building and when it is in front of the door, the GPS
quality dramatically drops down and thus an outdoor-indoor transition is de-
tected. In that moment, the map-based localization is reset, corresponding to a
covariance enlargement. After a while inside the indoor zone, where the robot
is continuously localized in the map by means of the laser and odometry/IMU
measurements, the robot leaves the building and, when the GPS signal is good
enough, an indoor-outdoor transition is detected and the localization system
adapts to the outdoor situation.



Fig. 6: A complete experiment. All the transitions are shown in which the filter
works in the continuous localization.

As can be seen in the second row of Figure 7, localization continuity is kept
along the experiment. Only around transitions, some discontinuities may be
found as transitions take place in zones where some of the sensors start to pro-
vide bad measurements. However, the biggest gap detected is about 0.5m in
x coordinate. A bigger discontinuity was found in t = 250 s (Figure 7 bottom
right) caused by a spurious bad GPS measurement.

7 Conclusions

We present a mobile robot localization method that allows a robot to seam-
lessly switch between indoor and outdoor environments. We propose an outdoor
GPS-based localization method which is able to estimate the position and orien-
tation of the robot bounding the drifting error obtained from the odometry/IMU
measurements.

By using a GPS quality estimation and the robot localization (in map or not),
we can determine which is the situation of the robot and select the measurements
to achieve the best continuous localization.

All the contributions have been tested in different experiments with a car-like
platform. The data obtained in those experiments validates their functionality
and robustness.
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Fig. 7: In the first row, two examples of transitions where it is shown the GPS-
based localization (blue), the laser-based localization (red) and the estimation
using our method (black). The ellipses represent the uncertainty. In the second
row the state variables (in black) during these transitions are depicted. Red
crosses represent the GPS data received. The background color indicates whether
the robot is using the GPS (gray) or not (white) for localization.

In future works, a smoother approach to the transition method can be stud-
ied, by using the weights in the covariance intersection framework to minimize
the gaps during transitions. Also, an study of the limits of the GPS-based ori-
entation method will be performed to determine the best parameters such as
maximum curvature or minimum distance needed to get a good estimation.
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