000129957 001__ 129957
000129957 005__ 20250307094029.0
000129957 0247_ $$2doi$$a10.1103/PhysRevB.108.165130
000129957 0248_ $$2sideral$$a136301
000129957 037__ $$aART-2023-136301
000129957 041__ $$aeng
000129957 100__ $$0(orcid)0000-0003-2995-6615$$aRomán-Roche, Juan
000129957 245__ $$aExact solution for quantum strong long-range models via a generalized Hubbard-Stratonovich transformation
000129957 260__ $$c2023
000129957 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129957 5203_ $$aWe present an exact analytical solution for quantum strong long-range models in the canonical ensemble by extending the classical solution proposed in Campa et al. [J. Phys. A: Math. Gen. 36, 6897 (2003)]. Specifically, we utilize the equivalence between generalized Dicke models and interacting quantum models as a generalization of the Hubbard-Stratonovich transformation. To demonstrate our method, we apply it to the Ising chain in transverse field and discuss its potential application to other models, such as the Fermi-Hubbard model, combined short- and long-range models, and models with antiferromagnetic interactions. Our findings indicate that the critical behavior of a model is independent of the range of interactions, within the strong long-range regime, and the dimensionality of the model. Moreover, we show that the order-parameter expression is equivalent to that provided by mean-field theory, thus confirming the exactness of the latter. Finally, we examine the algebraic decay of correlations and characterize its dependence on the range of interactions in the full phase diagram.
000129957 536__ $$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41$$9info:eu-repo/grantAgreement/ES/MCIU/FPU20-07231$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 862893-FATMOLS$$9info:eu-repo/grantAgreement/EC/H2020/862893/EU/Molecular spin qudits offering new hope for quantum computing/FATMOLS$$9info:eu-repo/grantAgreement/ES/DGA/E09-17R-Q-MAD$$9info:eu-repo/grantAgreement/ES/CSIC/PTI-001
000129957 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000129957 590__ $$a3.2$$b2023
000129957 592__ $$a1.345$$b2023
000129957 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b201 / 439 = 0.458$$c2023$$dQ2$$eT2
000129957 591__ $$aPHYSICS, CONDENSED MATTER$$b31 / 79 = 0.392$$c2023$$dQ2$$eT2
000129957 591__ $$aPHYSICS, APPLIED$$b62 / 179 = 0.346$$c2023$$dQ2$$eT2
000129957 593__ $$aElectronic, Optical and Magnetic Materials$$c2023$$dQ1
000129957 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000129957 594__ $$a6.3$$b2023
000129957 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000129957 700__ $$0(orcid)0009-0007-8481-0981$$aHerráiz-López, Víctor$$uUniversidad de Zaragoza
000129957 700__ $$0(orcid)0000-0003-4478-1948$$aZueco, David
000129957 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000129957 773__ $$g108, 16 (2023), 165130 [11 pp.]$$pPhys. Rev. B$$tPhysical Review B$$x2469-9950
000129957 8564_ $$s1181687$$uhttps://zaguan.unizar.es/record/129957/files/texto_completo.pdf$$yVersión publicada
000129957 8564_ $$s2715890$$uhttps://zaguan.unizar.es/record/129957/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000129957 909CO $$ooai:zaguan.unizar.es:129957$$particulos$$pdriver
000129957 951__ $$a2025-03-07-09:38:54
000129957 980__ $$aARTICLE