000129975 001__ 129975
000129975 005__ 20241125101150.0
000129975 0247_ $$2doi$$a10.1103/PhysRevE.108.044146
000129975 0248_ $$2sideral$$a136304
000129975 037__ $$aART-2023-136304
000129975 041__ $$aeng
000129975 100__ $$aFytas, Nikolaos G.
000129975 245__ $$aFinite-size scaling of the random-field Ising model above the upper critical dimension
000129975 260__ $$c2023
000129975 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129975 5203_ $$aFinite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical simulations. In the present manuscript we address this problem in the even more complicated case of disordered systems. In particular, we investigate the scaling behavior of the random-field Ising model at dimension D=7, i.e., above its upper critical dimension D>sub>u=6, by employing extensive ground-state numerical simulations. Our results confirm the hypothesis that at dimensions D>D<sub>u, linear length scale L should be replaced in finite-size scaling expressions by the effective scale L<sub>eff=L<sup>D/D<sub>u. Via a fitted version of the quotients method that takes this modification, but also subleading scaling corrections into account, we compute the critical point of the transition for Gaussian random fields and provide estimates for the full set of critical exponents. Thus, our analysis indicates that this modified version of finite-size scaling is successful also in the context of the random-field problem.
000129975 536__ $$9info:eu-repo/grantAgreement/ES/MICINN AEI/PID2022-136374NB-C21$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-094684-B-C21
000129975 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000129975 590__ $$a2.2$$b2023
000129975 592__ $$a0.805$$b2023
000129975 591__ $$aPHYSICS, MATHEMATICAL$$b12 / 60 = 0.2$$c2023$$dQ1$$eT1
000129975 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000129975 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b17 / 40 = 0.425$$c2023$$dQ2$$eT2
000129975 593__ $$aStatistics and Probability$$c2023$$dQ2
000129975 593__ $$aStatistical and Nonlinear Physics$$c2023$$dQ2
000129975 594__ $$a4.5$$b2023
000129975 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000129975 700__ $$0(orcid)0000-0002-3376-0327$$aMartín-Mayor, Víctor
000129975 700__ $$aParisi, Giorgio
000129975 700__ $$aPicco, Marco
000129975 700__ $$aSourlas, Nicolas
000129975 773__ $$g108, 4 (2023), 044146 [9 pp.]$$pPhys. rev., E$$tPhysical Review E$$x2470-0045
000129975 8564_ $$s775128$$uhttps://zaguan.unizar.es/record/129975/files/texto_completo.pdf$$yVersión publicada
000129975 8564_ $$s3157113$$uhttps://zaguan.unizar.es/record/129975/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000129975 909CO $$ooai:zaguan.unizar.es:129975$$particulos$$pdriver
000129975 951__ $$a2024-11-22-12:06:29
000129975 980__ $$aARTICLE