000129977 001__ 129977 000129977 005__ 20241125101150.0 000129977 0247_ $$2doi$$a10.1021/acs.inorgchem.3c01943 000129977 0248_ $$2sideral$$a136308 000129977 037__ $$aART-2023-136308 000129977 041__ $$aeng 000129977 100__ $$aBara-Estaún, Alejandro 000129977 245__ $$aSingle-molecule conductance behavior of molecular bundles 000129977 260__ $$c2023 000129977 5060_ $$aAccess copy available to the general public$$fUnrestricted 000129977 5203_ $$aControlling the orientation of complex molecules in molecular junctions is crucial to their development into functional devices. To date, this has been achieved through the use of multipodal compounds (i.e., containing more than two anchoring groups), resulting in the formation of tri/tetrapodal compounds. While such compounds have greatly improved orientation control, this comes at the cost of lower surface coverage. In this study, we examine an alternative approach for generating multimodal compounds by binding multiple independent molecular wires together through metal coordination to form a molecular bundle. This was achieved by coordinating iron(II) and cobalt(II) to 5,5′-bis(methylthio)-2,2′-bipyridine (L1) and (methylenebis(4,1-phenylene))bis(1-(5-(methylthio)pyridin-2-yl)methanimine) (L2) to give two monometallic complexes, Fe-1 and Co-1, and two bimetallic helicates, Fe-2 and Co-2. Using XPS, all of the complexes were shown to bind to a gold surface in a fac fashion through three thiomethyl groups. Using single-molecule conductance and DFT calculations, each of the ligands was shown to conduct as an independent wire with no impact from the rest of the complex. These results suggest that this is a useful approach for controlling the geometry of junction formation without altering the conductance behavior of the individual molecular wires. 000129977 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105881RB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131318B-I00 000129977 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000129977 590__ $$a4.3$$b2023 000129977 592__ $$a0.928$$b2023 000129977 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b8 / 44 = 0.182$$c2023$$dQ1$$eT1 000129977 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1 000129977 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ1 000129977 593__ $$aInorganic Chemistry$$c2023$$dQ1 000129977 594__ $$a7.6$$b2023 000129977 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000129977 700__ $$aPlanje, Inco J. 000129977 700__ $$aAlmughathawi, Renad 000129977 700__ $$aNaghibi, Saman 000129977 700__ $$aVezzoli, Andrea 000129977 700__ $$aMilan, David C. 000129977 700__ $$aLambert, Colin 000129977 700__ $$0(orcid)0000-0001-9193-3874$$aMartin, Santiago$$uUniversidad de Zaragoza 000129977 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza 000129977 700__ $$aNichols, Richard J. 000129977 700__ $$aHiggins, Simon J. 000129977 700__ $$aYufit, Dmitry S. 000129977 700__ $$aSangtarash, Sara 000129977 700__ $$aDavidson, Ross J. 000129977 700__ $$aBeeby, Andrew 000129977 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física 000129977 773__ $$g62, 51 (2023), 20940-20947$$pInorg. chem.$$tInorganic Chemistry$$x0020-1669 000129977 8564_ $$s5220119$$uhttps://zaguan.unizar.es/record/129977/files/texto_completo.pdf$$yVersión publicada 000129977 8564_ $$s3297479$$uhttps://zaguan.unizar.es/record/129977/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000129977 909CO $$ooai:zaguan.unizar.es:129977$$particulos$$pdriver 000129977 951__ $$a2024-11-22-12:06:30 000129977 980__ $$aARTICLE