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Abstract

Visual scene understanding is the process of extracting high-level information from visual

data to gain a deeper understanding of the elements and entities in a scene, as well as

to reason about their context and relationships. It is an essential area of research within

Artificial Intelligence and Computer Vision and has applications in numerous fields, such as

medical image analysis, autonomous robots or vehicles, and augmented and virtual reality.

A special case of visual scene understanding is video data processing, which is often required

in many real-world use cases. Video data processing, as opposed to still images, provides a

more complete representation of the scene, but often presents specific additional challenges.

Neural Networks and Deep Learning have played a significant role in the processing of

visual data, achieving state-of-the-art performance on many tasks. However, these methods

have certain challenges and limitations, accentuated when processing video information

instead of still images, which hinder their applicability for real-time or resource-constrained

applications. Deep Neural Networks tend to be complex and computationally expensive,

which often implies a high energy cost and latency. Moreover, Deep Learning algorithms

typically demand a large amount of labeled data that is frequently difficult to obtain, and

often struggle to generalize to new data domains. This thesis addresses some of these

challenges and proposes different solutions for efficient video-based scene understanding,

designed to learn from low-scale datasets and/or run with minimal computational resources.

In particular, towards novel efficient scene understanding approaches, we work on improved

video object detection and action recognition tasks, and the use of event cameras:

Object detection aims to localize and classify different objects in the scene. Although

it has been widely studied for its application on still images, its performance on video

data is more challenging. State-of-the-art video-based methods overcome specific video

artifacts with complex and computationally expensive Deep Neural Networks. Differently,

we propose a post-processing method that localizes possible temporal inconsistencies in

the predictions of any object detector, and efficiently refines these detections with global

information to better match the real objects.

Action recognition analyzes the human motion to identify the kind of action or gesture

that is being performed. Real applications, like augmented or virtual reality, require the

recognition of actions of variable nature, performed by different persons, and in heteroge-

neous environments. For this purpose, we propose two methods designed specifically for

full-body and hand-only action recognition, based on the use of pose skeleton coordinates,

that achieve these generalization capabilities.

Although RGB cameras are the most common sensors used for visual scene understand-

ing, using non-RGB sensors can be beneficial for certain environments and applications.

In this thesis, we study the use of event cameras due to their specific properties in scene

representation and efficiency. These sensors capture only sparse illumination changes, ig-

noring the redundant static parts of the scene, and provide exceptional robustness to fast

motions and challenging illumination conditions. Different from prior work, we effectively

benefit from specific event data properties to achieve very high efficiency while also having

a high performance in different scene understanding tasks.

All the code, trained models, and data developed in this thesis have been open-sourced

for a broader impact on the scientific community and real-world applications.

iii



iv



Resumen

La comprensión visual de escenas es el proceso de extracción de información de alto nivel

a partir de datos visuales para obtener un entendimiento más profundo de los elementos

y entidades de una escena, aśı como para razonar sobre su contexto y relaciones. Es un

área de investigación esencial dentro de la Inteligencia Artificial y la Visión por Computa-

dor y tiene aplicaciones en numerosos campos, como el análisis de imágenes médicas, los

veh́ıculos autónomos y la realidad aumentada y virtual. Un caso especial de comprensión

visual de escenas es el procesamiento de datos de v́ıdeo, que suele ser necesario en muchos

casos. El procesamiento de datos de v́ıdeo, a diferencia de las imágenes, proporciona una

representación más completa de la escena, pero a menudo presenta desaf́ıos adicionales.

Las redes neuronales y el aprendizaje profundo han desempeñado un papel importante

en el procesamiento de datos visuales, logrando un alto rendimiento en muchas tareas. Sin

embargo, estos métodos presentan ciertos retos y limitaciones, acentuados al procesar infor-

mación de v́ıdeo en lugar de imágenes fijas, que dificultan su aplicabilidad para aplicaciones

en tiempo real o con recursos limitados. Las redes neuronales profundas tienden a ser com-

plejas y costosas desde el punto de vista computacional, lo que a menudo implica un elevado

coste energético y latencia. Además, los algoritmos de aprendizaje profundo suelen requerir

una gran cantidad de datos etiquetados que a menudo son dif́ıciles de obtener, y a pueden

tener dificultades para generalizar a nuevos dominios de datos. Esta tesis aborda algunos

de estos desaf́ıos y propone diferentes soluciones para la comprensión eficiente de escenas

basadas en v́ıdeo, diseñadas para aprender de conjuntos de datos pequeños y/o ejecutarse

con recursos computacionales mı́nimos. En particular, trabajamos en tareas detección de

objetos de v́ıdeo y reconocimiento de acciones, y en el uso de cámaras de eventos:

La detección de objetos tiene como objetivo localizar y clasificar diferentes objetos en

la escena. Aunque se ha estudiado ampliamente para su aplicación en imágenes fijas,

su rendimiento en datos de v́ıdeo es más dif́ıcil. Los métodos más avanzados diseñados

para procesamiento de video tratan artefactos espećıficos de v́ıdeo con redes neuronales

profundas complejas y costosas desde el punto de vista computacional. De forma diferente,

nosotros proponemos un método de post-procesado que localiza posibles inconsistencias

temporales en las predicciones de cualquier detector de objetos, y refina eficientemente

estas detecciones con información global para ajustarse mejor a los objetos reales.

El reconocimiento de acciones analiza el movimiento humano para identificar el tipo

de acción o gesto que se está realizando. Aplicaciones reales, como la realidad aumen-

tada o virtual, requieren el reconocimiento de acciones de naturaleza variable, realizadas

por diferentes personas, y en entornos heterogéneos. Para ello, proponemos dos métodos

diseñados espećıficamente para el reconocimiento de acciones de cuerpo completo y de sólo

manos, basados en el uso de coordenadas de poses, que consiguen estas capacidades de

generalización.

Aunque las cámaras RGB son los sensores más utilizados para la comprensión visual de

escenas, el uso de sensores no RGB puede ser beneficioso para determinados entornos y apli-

caciones. En esta tesis, estudiamos el uso de cámaras de eventos debido a sus propiedades

espećıficas en la representación de escenas y eficiencia. Estos sensores capturan sólo cam-

bios de iluminación dispersos, ignorando las partes estáticas redundantes de la escena, y

proporcionan una robustez excepcional frente a movimientos rápidos y condiciones de ilu-
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minación complicadas. A diferencia de trabajos anteriores, nos beneficiamos eficazmente

de las propiedades espećıficas de los datos de eventos para lograr una eficiencia muy alta

y, al mismo tiempo, un alto rendimiento en diferentes tareas de comprensión de escenas.

Todo el código, los modelos entrenados y los datos desarrollados en esta tesis son de

código abierto para lograr un mayor impacto en la comunidad cient́ıfica y en las aplicaciones

del mundo real.
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Chapter 1

Introduction

Artificial Intelligence has experienced huge growth in recent years due to various factors.

Firstly, the growing utilization of technological tools and connected devices provide an

abundance of data for intelligent systems to learn from. For instance, in 2022, every minute

500 new hours of video were uploaded to YouTube, 66K photos were shared on Instagram,

1M hours were streamed, and 104 hours were spent in Zoom meetings1. Additionally, the

development in computing technology and data storage capabilities makes it possible to

process vast amounts of data quickly and efficiently. In a world that is becoming increasingly

digital and where data production is continuously accelerating, we need to develop the

right tools to effectively utilize that data for the creation of more intelligent and valuable

applications.

Visual data is a very important part of modern technology as it is increasingly preva-

lent in our daily lives. Within the field of artificial intelligence, computer vision focuses

on developing algorithms and techniques to enable machines to interpret and understand

this visual information of the world around us. One of the essential problems studied in

computer vision is visual scene understanding, which leverages visual data to gain a

deeper understanding of the elements and entities in a scene, as well as to reason about

their context and relationships. These capabilities are important for a range of practical

applications that have a high impact on our daily life. For instance, autonomous driving

and smart surveillance benefit from the identification of persons and objects from a scene

as well as their movement intention; Artificial or Virtual Reality (AR/VR) and human-

machine interaction benefit from the identification of actions performed by persons and

their interactions with objects; healthcare and medical assistance systems benefit from the

automatic identification and segmentation of different anatomical structures or anomalies

in medical images, which can aid in diagnosis and treatment planning; agriculture can ben-

efit from visual crop analysis to optimize its growth, detect pests and diseases, and improve

irrigation and fertilization practices. Figure 1.1 illustrates some of these examples.

Although some of these scene understanding tasks can be simplified to image data

processing, many of them require or can be enhanced with the processing of video data

instead of still images. Video data provides more complete information about what is

happening in the scene over time, but it can also introduce more challenges for automated

processing, such as motion blur, defocus, variable frame rate, occlusions, and atypical ob-

1https://www.domo.com/data-never-sleeps

1
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2 Chapter 1. Introduction

(a) Factory automation in Ama-

zon warehouses

(b) Autonomous driving at Tesla (c) Augmented reality for

interior design at Cylindo

Figure 1.1: Samples of applications that require visual scene understanding. (Sources:

https://www.aboutamazon.com , https://www.tesla.com , https://www.cylindo.com)

ject poses. To take advantage of the information provided by videos and address the new

challenges they introduce, it is necessary to develop methods that take into account the

temporal dimension. However, this often results in very complex solutions. For instance,

specific video-based methods can overcome certain video artifacts but often come at the

cost of heavy computational requirements, which increase their working latency and com-

putational usage, making them less practical for real-world scenarios. Consequently, there

is a need for more efficient solutions that can effectively process video data and improve

the applicability of proposed solutions for real-world applications.

Besides video data, the use of non-RGB recording cameras can also be used to

create a more complete representation of the scene. The use of different types of sensors,

either individually or in combination with RGB cameras, can provide different information

that benefits different scene understanding tasks. Of special relevance, depth cameras and

LiDARs (see Fig. 1.2a) provide information about the distance and relative positions of

objects in a scene, very useful for applications such as autonomous driving; infrared sensors

can detect infrared radiation, making them ideal for autonomous surveillance in low-light

conditions; hyperspectral cameras (see Fig. 1.2b) capture a wide range of the electromag-

netic spectrum, making them suitable to monitor crops in agriculture; and event cameras

(see Fig. 1.2c) capture fast and sparse changes in the scene, such as movement or changes in

brightness, very valuable information for industry automation or autonomous driving. De-

spite the potential benefits of these non-RGB and multi-modal camera setups, research and

development in these areas remain underrepresented in the scientific community, limiting

their applicability in real-world scenarios.

Regardless of the data modality used, and similarly to many other fields in last years,

recent advances in scene understanding are dominated by the use of deep learning. These

models have the ability to learn intricate patterns from large datasets, achieving high levels

of accuracy and generalization.

1.1 Deep Learning for Scene Understanding

As previously mentioned, the growth of artificial intelligence, and in particular the ma-

chine learning field, has been greatly accelerated by the increasing availability of data and

advancements in computing technology. Unlike traditional methods which rely on human-

https://www.aboutamazon.com
 https://www.tesla.com
https://www.cylindo.com


1.1. Deep Learning for Scene Understanding 3

(a) LiDAR sensor (b) Hyperspectral image (c) Event camera [132]

Figure 1.2: Information recorded from different non-RGB sensors. (Sources: https://ve

lodynelidar.com/ , http://rst.gsfc.nasa.gov/)

defined rules, machine learning algorithms have the ability to learn from data, uncovering

patterns that lead to more optimal solutions. A highly successful category of these algo-

rithms is Neural Networks (NNs) [127, 169, 82] and Deep Neural Networks [81, 49] (DNNs),

which excel even in the most difficult tasks. DNNs are constructed by stacking multiple

and simpler Neural Networks (i.e., layers) that sequentially transform the input data. The

final representation of the data encodes the information crucial for achieving the DNN’s

intended goal.

When it comes to computer vision, Convolutional Neural Networks (CNNs) [82,

75, 54] (see Fig. 1.3) are the most common Neural Network architectures. These networks

are specifically designed to transform data with grid-like structures in one (e.g., audio

samples) [157], two (e.g., images) [54], or multiple dimensions (e.g., videos) [66]. The core

element of CNNs is the convolutional layer, which processes the input data by applying

the so-called filters or kernels, that slide over the input features computing new output

values at each step. Additionally, CNNs often incorporate Pooling layers that reduce the

dimensionality of the input data, making use a more efficient use of computational resources.

Although convolutions are a simple yet effective operation, they only capture short-range

dependencies. Therefore, many convolutional layers must be sequentially stacked to learn

wider spatial or temporal contexts.

Figure 1.3: Scheme of a Convolutional Neural Network (LeNet-5 [83]). Convolutional filters

slide over the input features generating a new data representation. Pooling layers reduce

(subsample) the data dimensionality. Fully connected layers are used in the example to get

the final prediction.

When it comes to the processing of data that has a temporal dimension, such as video

data, Recurrent Neural Networks (RNNs) (see Fig. 1.4) are models of special rele-

https://velodynelidar.com/
https://velodynelidar.com/
 http://rst.gsfc.nasa.gov/


4 Chapter 1. Introduction

vance. Although there are many flavors of RNNs, including GRUs [29], LSTMs [56] and

ConvLSTM [144], all of them share the feature of maintaining an internal state, also known

as memory, that is utilized in the processing of input data at each time step and is modified

to encode meaningful temporal information. This step can be repeated as many times as

needed, allowing these models to theoretically handle data of any temporal length. How-

ever, due to their sequential structure, where the internal state is continually updated,

RNNs find it difficult to capture long-term dependencies. Moreover, the learning phase

is prone to suffer from exploding or vanishing gradients [12, 116] and, since the data pro-

cessing is not parallelizable, they are slow to train. Despite these limitations, RNNs are a

frequent choice for language [78, 152], audio [16, 176], or video data [156, 103] processing.

Figure 1.4: Scheme of a Recurrent Layer (LSTM). Layer output ht at time t not only

depends on the layer input xt, but also on the context given from the previous time step.

(Source: http://colah.github.io/)

Another significant architecture in computer vision is the attention-based models or

Transformers. These models (see Fig. 1.5a) break down the input data, of arbitrary

length, into smaller tokens that are then transformed with attention mechanisms. This

attention, Multi-Head Self Attention, is able to capture both short and long-range depen-

dencies (see Fig. 1.5b) among the input tokens, which allows giving different importance

to different parts of the input data. Different from CNNs, Transformers do not have an

inductive bias, so they make use of positional information to provide the input tokens

with additional information, such as spatial or temporal information. Although they were

initially designed to process temporal information such as language data [160, 70], in re-

cent years they have gained a lot of popularity in other areas such as visual perception

[22, 36, 96, 97], audio processing [119, 86], or multi-modal learning [118, 3, 2]. Despite

their high performance, base Transformer implementations imply a high computational

cost that hinders their scalability and efficiency in resource-constrained scenarios.

In visual scene understanding, simpler methods often process still images with CNNs of

variable complexity to perform tasks such as object detection [123, 48], semantic segmenta-

tion [53, 4], or pose estimation [20, 107]. However, when it comes to the processing of video

data, deep learning solutions need to make use of one or more of the above-mentioned

models to handle the temporal context, such as LSTMs [156, 180, 110, 100, 156], Con-

vLSTMs [177, 149], attention layers [97, 2, 7], or jointly processing stacked frames with

3D-Convolutions [66, 155]. Despite the capabilities of these methods, they tend to have

complex architectures that require high computational resources, making them unsuitable

for real-time or resource-limited environments. Moreover, these complex architectures of-

http://colah.github.io/
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(a) Transformer architec-

ture [160]

(b) Attention maps from different heads [23]

Figure 1.5: a) Shows the base Transformer architecture, where the input tokens are pro-

cessed with Multi-head Self Attention layers. b) Shows a visualization of different attention

maps, where each head (each color) has learned to recognize different long and short-range

dependencies from the data.

ten require more data to be trained, which can be a challenge for supervised methods that

rely on labeled data. Therefore, there is a need for the creation of models that are more

efficient in terms of computational complexity and training data requirements.

1.2 Efficiency in Deep Learning

With advancements in computer capabilities, deep learning models have become increas-

ingly complex and are being used for more intricate tasks. These complex models require

more and more data and energy up to the point that efficiency, both during training and

when deployed, has become an important factor in research as well as in practice.

The recent trend consists of using vast amounts of unlabeled data scrapped from the

Internet [139, 120] to train large Foundation Models with unsupervised, self-supervised

or weakly-supervised learning [17, 23, 118], to later be used or fine-tuned for different

downstream tasks. All of these top-performing methods grow in the number of parameters

(see Fig. 1.6), which in turn results in longer training times, higher computational

requirements, and higher latency. Although these models achieve better performance

than more efficient solutions, they are not always ideal for certain applications that require

real-time processing or are resource-constrained, such as autonomous driving; or those that

additionally must run on edge devices with limited computational power, such as AR/VR.

As a consequence of the increased computational requirements, an important drawback

of large deep learning models that is becoming increasingly relevant is their ecological

footprint. The training and use of large models require significant energy resources from

the data processing and machine refrigeration which can result, depending on the energy

source, in significant CO2 emissions. As a reference, it is estimated [101] that Foundation
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Figure 1.6: Evolution of the number of parameters of top-performance deep learning models

in different task domains. (Source: https://ourworldindata.org/)

Models such as BLOOM [137] and GPT-3 [17] required 433 MWh and 1, 287 MWh of

energy respectively only for their training, which is equivalent to the electricity consumed

over a year in 36.4 and 108 homes respectively (reference data2 from USA homes in 2019).

Moreover, the increasing demand for computing power means that older technological de-

vices are becoming obsolete, leading to a set of materials that are difficult to recycle or

repurpose.

In addition, these large deep learning models often require extensive and diverse datasets

for their training, which can be challenging to obtain and time-consuming to label accu-

rately. Moreover, once a model has been trained on a specific learning setup, its gener-

alization different data domains may cause a drop in performance [115], making it

challenging to use in real-world applications. For instance, models trained with data from

automovilisttic simulators might have lower performance in real driving scenarios, and ac-

tion recognition models trained with first-person view recordings might have a performance

drop when the action recordings have an external perspective. Additionally, real applica-

tions might require the recognition of elements not seen during training. In these cases,

deep learning models must be able to learn good data representation that eases their later

evaluation or be able to learn from a few data samples or low-scale datasets [147, 148].

In parallel to the model design, using the right data formatting can ease the data

processing to build more efficient deep learning models or to achieve a better generalization.

An example is the case of action recognition, which can be performed by analyzing RGB

video sequences [35, 182], but also by processing human skeleton coordinates [179, 98]. The

latter presents a much lower dimensionality than images and abstracts the person’s appear-

ance, easing the generalization for action recognition in other individuals. Another example

2https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

https://ourworldindata.org/
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
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is the use of event cameras [15, 61], instead of the traditional RGB ones. These sensors

just log sparse changes in the scene, so the latter data processing avoids the processing

of redundant video information, as it happens when RGB frames or skeleton coordinates

barely change in time.

Therefore, it is necessary to explore alternative methods that offer efficient and re-

sponsible use of computational resources, while achieving also high performance. These

methods should be able to run on edge resource-limited devices and provide real-time feed-

back. Moreover, deep learning solutions should be able to generalize to similar scenarios

or domains without requiring extensive effort from end users. This thesis addresses all of

these requirements in order to advance the field of visual scene understanding toward more

practical and ecological solutions.

1.3 Challenges and Contributions

This doctoral thesis studies and develops novel deep learning approaches for scene under-

standing, based on video data processing, and with a strong focus on their efficiency and

applicability to real-world use cases. For this purpose, the presented research is focused on

three main questions or challenges:

Can we develop more efficient solutions?

As previously described, deep learning models often require heavy computations to work,

especially when processing video data, which directly affects the prediction time and energy

consumption. However, real-world scenarios usually require real-time processing but they

are constrained by limited computational capabilities and battery power. Our proposed

research tackles this challenge by developing highly efficient deep learning algorithms that

can provide real-time predictions while maintaining strong performance. By using less com-

putationally intensive techniques, these models are often even able to work in CPU instead

of GPU, enabling their use in a wider range of real-world scenarios.

Can we learn good models with low-size datasets?

Training deep learning models often requires the use of large labeled datasets that are of-

ten not available and whose creation is not always feasible. Additionally, once the models

are trained, they are constrained to predict the same labels they saw during training and

struggle to generalize to different data domains. In order to mitigate these issues, our work

is adapted to learning with low-scale datasets when required, and includes techniques such

as contrastive learning or N-shot prediction, aimed to increase the generalization to unseen

data domains and to predict non-learned labels.

Can we benefit from non-RGB sensors?

RGB cameras are widely used in scene understanding, but other data modalities and record-

ing sensors also provide valuable information for certain tasks. Our proposed research not

only includes RGB data processing but also explores the use of other modalities. In partic-

ular, we use human skeleton coordinates to model human motion, and data recorded with

event cameras for its potential to improve the efficiency in scene understanding and as a

complement to RGB recordings to improve the model performance.
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Among the multiple scene understanding topics, our research covers two essential tasks

in video processing, object detection and action recognition, and analyzes the use of event

cameras, whose efficiency and performance have a direct impact on real use cases. In the

following, we introduce each of these topics, the main methods used to address them, and

their main challenges. Then, we motivate and introduce our proposed methods.

1.3.1 Object Detection

Object detection stands for the problem of recognizing and localizing different objects in

the scene. As observed in Figure 1.7, the object detection output is a set of bounding boxes

defined by their coordinates, a class label, and its confidence score.

Figure 1.7: Object Detection overview

Object detection solutions, depending on their design, can work either in one or two

stages. Two-stage detectors (see Fig. 1.8a) like R-CNN [48] or Mask R-CNN [53] consist

of a first step that generates region proposals that might contain an object, and a second

stage that processes these regions to regress the class label and confidence score. Differently,

one-stage detectors (see Fig. 1.8b) like SSD [95] or YOLO [123] predict bounding boxes

and class scores in a single forward pass. Consequently, one-stage detectors have a higher

efficiency than two-stage ones, being able to perform even in real-time, but they suffer from

a worse performance.

Although object detection research is often simplified to learning from still images, we

find numerous real use cases such as autonomous driving, surveillance, or AR/VR, that

require the processing of video data. Video object detection presents extra challenges since

the data is usually not as clean as when working with still images. Video artifacts like de-

focus, occlusions, motion blur, or uncommon object poses make the elements in the scene

more difficult to recognize. For example, an object that is moving fast in the scene can

present different levels of motion blur or perspectives in consecutive frames, making its

recognition uneven across frames. For this purpose, specific video object detectors tackle

this problem by leveraging the temporal information and analyzing wider spatio-temporal

information. This is performed by sharing or propagating frame features generated at dif-

ferent steps of the video. For this purpose, 3D-DETNet [87] uses 3D-Convolutions, [177]

uses ConvLSTM layers, and [100] uses LSTMs for this purpose. Although these architec-

tures perform better than still image object detectors, their more complex architectures

lead to lower efficiency, hindering their use for real applications.
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(a) Two-stage Object Detector (scheme of Fast RCNN [47])

(b) One-stage Object Detector (scheme of YOLO [123])

Figure 1.8: Different modalities of Object Detection architectures

Different from these solutions, we tackle the problem of video object detection with a

fast post-processing step that can be performed over the detection results of any image or

video object detector [131]. By analyzing location, geometry, appearance, and semantic

information, we are able to link predicted objects across time to refine their class scores

and coordinates with more global information. Refined object detections better match the

objects they refer to, including objects that were not detected in the first instance, objects

that were miss-classified, and those whose predicted bounding box was not properly fitting

the real object. Finally, the use of this post-processing method makes the performance of

efficient image object detectors get closer to more complex video object detectors, but also

boosts the state-of-the-art performance of the most robust video object detectors.

1.3.2 Action Recognition

Action recognition (see Fig. 1.9) is the problem of recognizing the type of activity that a

person is performing, typically from a video sequence. Solutions to this task have numerous

applications such as human-computer interaction, medical rehabilitation tasks, or AR/VR.

However, different from object detection, action recognition datasets available in the

research community are not as large and heterogeneous. Therefore, the set of actions that

can be learned and recognized is very narrow, and generalization from training data to

real environments is difficult. These issues have pushed the research of action recognition

models in two directions: the use of data that abstracts the appearance of a person to focus

solely on its motion, and the recognition of actions non seen during training.

Regarding the data used for the recognition, initial models used the raw RGB video

data [35, 182], which hinders its generalization and applicability to other video scenes.

In order to abstract the motion from the appearance, other methods were based on the
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Figure 1.9: Action Recognition. First-person view actions from the EPIC-KITCHENS-100

dataset [31]

processing of depth maps [113], or body skeletons [179, 98]. The latter one has become a

standard for action recognition due to the development of methods [21, 20] able to extract

skeleton coordinates in real-time (often integrated into camera sensors [183]), and due to

its easier and faster processing.

Regarding the recognition of actions not seen during training, a line of research [91,

92, 51, 65, 102] studies the creation of descriptors that summarize a certain motion. Then,

given the descriptors from one or few reference actions not seen during training (N-shot

prediction), we can recognize them on new video sequences.

This thesis contributes with novel methods for the recognition of actions performed

both with the full body [134] or just with the hands [130]. In both cases, we push the

model generalization to unseen scenes by working with human skeleton data, abstracting

the recording camera viewpoint, and performing N-shot evaluation.

Skeleton-based full-body action recognition. Full-body actions are the ones per-

formed with the whole body, such as jumping, running, or kicking. In our case, we represent

the human body with 3D skeleton coordinates, that are relative to the camera location.

The latter limits the learning and hinders the action recognition performance in setups

with different camera perspectives, and when the recorded person is in a location or moves

towards a location not represented in the training data. In order to overcome these lim-

itations, we engineer a new viewpoint invariant pose representation, based on geometric

features extracted from skeleton coordinates.

Given the video sequences of viewpoint invariant pose representations, we generate hu-

man motion descriptors and, with an N-shot approach, we are able to detect and recognize

actions in other video sequences. Our detection pipeline specifically introduces a set of im-

provements to achieve more accurate action recognition in the most challenging scenarios.

In particular, we evaluate our action recognition framework in a real-use case of therapies

with autistic people. This environment consists of action imitation games with high-level
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artifacts in the patient’s motion, whose analysis provides meaningful qualitative and quan-

titative information to the therapist, essential to evaluate the attention and coordination

of the patient.

Skeleton-based hand action recognition. Hand action recognition aims to recognize

the actions or gestures, such as sliding or grasping gestures, that are only defined by the

movement of the hands. In this case, only the skeleton coordinates related to the hands are

required for the recognition task. However, different from full-body actions, hand gestures

depend on a point of reference for their definition. E.g., by looking just at the hand

coordinates, the gesture of pointing to the left can be recognized as pointing to the right (or

any other direction) depending on the camera viewpoint. Therefore the camera viewpoint

invariance introduced in our previous work is no longer valid.

Our work for hand action recognition looks for a robust generalization to different

camera viewpoints (e.g., training with an egocentric view and evaluating with a frontal

perspective) and action domains (e.g., training with human-robot interaction gestures and

evaluating human-object interaction actions). For this purpose, we use an optimized and

simplified hand pose representation and a Neural Network trained with randomly simulated

camera perspectives. For the evaluation, our framework is able to generalize to any camera

perspective with N-shot evaluation and to recognize actions unseen during training.

1.3.3 Scene Understanding with event cameras

When it comes to scene understanding and computer vision, RGB cameras are the most

commonly used sensors due to their low cost and availability in our daily life, e.g., their pres-

ence in smartphones or home appliances. These sensors can capture very distant informa-

tion and record appearance information such as color and texture with high fidelity. How-

ever, their performance is limited in certain scenarios, such as extreme lighting conditions,

which can result in inaccurate scene representation, or fast-moving objects, which appear

blurred and of low quality. These limitations have significant implications in cutting-edge

applications such as autonomous driving and fast action recognition, where high accuracy

and resolution are essential.

This thesis tackles these issues by using event cameras. Different from traditional

cameras, event cameras (see Fig. 1.10a) just register sparse illumination changes (events),

which in practice correspond to the motion happening in the scene and ignores the static

information that does not provide extra meaningful information. These sensors also have

minimal power consumption and present a high temporal resolution and high dynamic

range, making them very robust to challenging lighting conditions and fast motions. The

characteristics make event cameras suitable for applications such as action recognition

[15, 61], depth estimation [45, 167], or odometry [72, 126], especially in environments with

low computational capabilities.

Although these cameras have a high potential, computer vision solutions that process

their information are not mature yet. On the one hand, we find efficient solutions that model

the events as sparse representations like point clouds [140, 161] or graphs [165, 14, 15, 34]

that can be processed very fast, but do not achieve high performance. On the other hand,

we find solutions that create dense frame representations (as observed in Fig. 1.10b and

1.10c) from events, using different techniques [77, 108, 46, 61], that are processed with
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CNN-based Neural Networks. The latter achieves higher performance but at a higher

computational cost, since it ignores characteristics of these sensors such as their sparsity

and high temporality.

(a) Event Camera (Davis 346) (b) SL-Animals-DVS

Dataset [158]

(c) MVSEC Dataset [187]

Figure 1.10: Event cameras. a) An event camera sensor. b) A sample frame representation

of events from an action recognition dataset that shows a person moving the arm. c) A

sample frame representation of events from a depth estimation dataset. As observed, b)

and c) only register information on the parts of the scene that present some motion or

changes in their texture. Remaining visual information is empty.

The present thesis introduces a different way of processing event information, designed

to have high performance while being efficient[133, 132]. This new framework introduces

a new event representation that benefits from the robustness of dense frame representa-

tions, but also from the event data sparsity by ignoring the parts of these frames that do

not contain relevant information. This new event representation is then processed by an

attention-based Neural Network that naturally tackles the sparsity of this data to perform

efficiently while achieving high performance.

The proposed event processing framework is tested in different public datasets of event-

stream classification, in particular, human action recognition. These sequences include

motion of different complexity and with challenging lighting conditions. Final results sup-

pose a boost of accuracy and efficiency with respect to previous methods, being able to

perform online inference both in GPU and CPU. Moreover, we probe that this new frame-

work can be adapted to other computer vision tasks with event data. In particular, we

adapt it to predict dense labels, i.e., depth maps from driving sequences. Results show how,

even though dense heads do not benefit that much from the event sparsity, our proposed

framework is still able, by using different mechanisms, to achieve high precision and still

be able to perform in real-time.

1.4 Summary of Results

The results of all the work developed during this thesis have been published in different

top international conferences and journals; and the related code, data, and trained models

have been open-sourced in GitHub repositories.

A. Sabater, L. Montesano, A. C. Murillo. Robust and efficient post-processing

for video object detection. Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems. IROS 2020. Repository: ht tp s: // gi th ub .c om /A lb er to

https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection
https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection
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Sa ba te r/ Ro bu st -a nd -e ff ic ie nt -p os t-p ro ce ss in g-f or -v id eo -o bj ec t-d et ec ti

on

A. Sabater, L. Santos, J. Santos-Victor, A. Bernardino, L. Montesano, A. C. Murillo.

One-shot action recognition towards novel assistive therapies. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Learning

from Limited and Imperfect Data. CVPRW 2021. Repository: ht tp s: // gi th ub .c om /A lb

er to Sa ba te r/ Sk el et on -b as ed -O ne -s ho t-A ct io n-R ec og ni ti on

A. Sabater, I. Alonso, L. Montesano, A. C. Murillo. Domain and view-point ag-

nostic hand action recognition. IEEE Robotics and Automation Letters. RA-L 2021.

Presented in IROS 2021Repository: ht tp s: // gi th ub .c om /A lb er to Sa ba te r/ Do ma in -a

nd -V ie w-p oi nt -A gn os ti c-H an d-A ct io n-R ec og ni ti on

A. Sabater, L. Montesano, A. C. Murillo. Event Transformer. A sparse-aware

solution for efficient event data processing. Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition Workshops. Efficient Deep Learning for

Computer Vision. CVPRW 2022. Repository: ht tp s: // gi th ub .c om /A lb er to Sa ba te r/

Ev en tT ra ns fo rm er

A. Sabater, I. Alonso, L. Montesano, A. C. Murillo. Event Transformer+. A multi-

purpose solution for efficient event data processing. Under review. 2022. Reposi-

tory: ht tp s: // gi th ub .c om /A lb er to Sa ba te r/ Ev en tT ra ns fo rm er Pl us

This work has been supported by FEDER/Ministerio de Ciencia, Innovación y Universi-

dades – Agencia Estatal de Investigación projects FILOVI (RTC-2017-6421-7), PGC2018-

098817-A-I00 and PID2021-125514NB-I00, DGA T45 20R/FSE and the Office of Naval

Research Global project ONRG-NICOP-N62909-19-1-2027.

During this thesis, I also had the chance to do two research internships at different

research entities. First, I did a 4-month visit at the VisLab Group, at ISR-Lisboa (Insti-

tuto Superior Tecnico, Lisboa), which resulted in the publication of One-shot action recog-

nition towards novel assistive therapies. Second, I interned for 4 months at Amazon-Berlin

as Applied Scientist, where I researched on multi-modal learning (images and multi-lingual

text) and large-scale Neural Networks.

In this period I also collaborated in the supervision of the Master Thesis Graph

Neural Networks for Corner Detection with Event Cameras of Adrian Schneebeli from the

Master Robotics, Systems, and Control in ETH Zürich (Switzerland). And I collaborated

as Teaching Assistant in the Master in Robotics, Graphics, and Computer Vision from

the University of Zaragoza (15h).

Along with the presented publications, I also collaborated as a reviewer for different

journals and conferences: RA-L (2020, 2021, 2022, 2023), CVPR (2021, 2022, 2023),

ICRA (2020, 2023), IROS (2020, 2021).

Finally, I worked as a volunteer in the Emerging Technologies and Factory Automation

Conference (ETFA 2019) and Iberian Robotics Conference (ROBOT 2022)

https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection
https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection
https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection
https://github.com/AlbertoSabater/Skeleton-based-One-shot-Action-Recognition
https://github.com/AlbertoSabater/Skeleton-based-One-shot-Action-Recognition
https://github.com/AlbertoSabater/Domain-and-View-point-Agnostic-Hand-Action-Recognition
https://github.com/AlbertoSabater/Domain-and-View-point-Agnostic-Hand-Action-Recognition
https://github.com/AlbertoSabater/EventTransformer
https://github.com/AlbertoSabater/EventTransformer
https://github.com/AlbertoSabater/EventTransformerPlus
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https://ethz.ch/en.html
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1.5 Manuscript Organization

The following chapters describe the four main contributions to the field of computer vi-

sion and scene understanding introduced above. Chapter 2 introduces our post-processing

method for video object detection. Chapter 3 presents our skeleton-based action recognition

model robust to challenging motion conditions. Chapter 4 introduces our skeleton-based

hand action recognition model generalizable to variable recording perspectives and hand

gestures. Chapter 5 describes our new approach to efficiently process data recorded from

event cameras. Each one of these chapters includes its own specific related work discussion

as well as the corresponding conclusions. Finally, Chapter 6, summarizes the conclusions

of the presented thesis and develops our vision for future work.



Chapter 2

Efficient post-processing for video

object detection

As mentioned in the introductory Chapter, video data presents unique challenges that

hinder the effectiveness and applicability of the object detection methods originally de-

signed for still image processing. On the other hand, specific video-based solutions tackle

these video artifacts and achieve state-of-the-art performance by leveraging the temporal

consistency of video data. However, they require computationally-intensive deep learning

techniques, not suitable for resource-limited applications. Differently, we demonstrate how

we can also benefit from this temporal consistency, not only in the object detection model

but also by analyzing the temporal consistency of the predicted object detections across

frames. In the following, we present a post-processing method that refines the object de-

tections in an efficient manner to better fit the real objects. The simplicity of this method

makes it robust to different video artifacts, such as fast object motions, and is well-suited

for use in low frame rate videos.1

2.1 Introduction

Many application fields such as robotics, surveillance, or wearable devices require object

detection over their embedded camera video streams and efficient algorithms to process

them. Deep learning-based detection approaches, such as the well-known YOLO [123]

or MaskRCNN [53], have boosted image object detection performance in recent years.

However, there is still a large gap between object detection performance in video and

images, mainly because video data is more challenging due to numerous artifacts and

difficulties such as blur, occlusions, or rare object poses.

Two main strategies have been explored to improve object detection in videos. On one

hand, there are detection models specifically designed to work over video streams [190, 171].

They typically implement feature aggregation from nearby frames and achieve higher ac-

curacy than still image detectors, but they are often slow and require heavy computation.

This makes them not well suited for applications in low-resource environments, like wear-

able devices, or for applications where near real-time computing is a requirement, such as

1Code and learned models available at: https://github.com/AlbertoSabater/Robust-and-efficient

-post-processing-for-video-object-detection
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Figure 2.1: Proposed post-processing pipeline to improve video object detection. A stan-

dard image detector predicts object instances in a sequence of video frames (a). Our

approach links object instances across frames based on the learned similarity evaluation

(b) and uses contextual information to refine the detections (c), both object classification

and location.

robotics or monitoring video analysis. On the other hand, post-processing methods such

as Seq-NMS [52] and Seq-Bbox-Matching [11] have been proposed to process the outputs

of an image object detector evaluated on the video frames to improve the performance.

They are mostly based on linking the predicted objects across frames and using these links

to refine the detection results. This strategy is typically much faster than specific video

object detection methods.

The key to post-processing methods is the way they relate detected objects among

consecutive frames. This linking is usually based on hand-made heuristics, a common

one uses the Intersection over Union (IoU) between object detections. This approach has

several limitations. First, the base detector does not always predict reliable bounding

box coordinates. Second, IoU values strongly depend on displacements due to camera or

object motion. For instance, fast-moving objects may not present enough overlap to get a

reliable linking. Note that the same effect occurs when the frame rate drops (e.g., due to

computational constraints). Finally, the presence of multiple objects simultaneously in the

scene also makes heuristics difficult to design and prone to failure.

This paper presents a novel post-processing pipeline for video object detection (see

Fig. 2.1) that can be used in conjunction with any video or image detector. The main

novelty relies on the way the similarity is evaluated between object detections to link

them across frames. We propose to use a learning-based similarity function that combines
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different descriptors and is designed to be more robust to varying speeds of object motions.

Once all possible object instances are linked across frames, a refinement step is run to

improve both the classification and location of object detections.

We evaluate our method against state-of-the-art post-processing methods for image

detectors on the well-known video dataset ImageNet VID [129], obtaining better results

mainly due to more robust links for fast-moving objects. We also show that our method

improves the performance of specific video object detectors. Interestingly, the increased

robustness to fast-moving objects implies we can process frames more sparsely, and then

allows us to use more computationally demanding object detectors even if time constraints

are high and not all frames can be processed.

2.2 Related Work

Object detection in videos often builds on top of image object detection. The latter is a well-

studied problem with current state-of-the-art methods based on deep learning architectures.

Multi-stage detectors [125, 30] follow R-CNN [48] and split the prediction process into two

stages: candidate selection and candidate classification. Single-shot models, on the other

hand, use a single Neural Network trained end-to-end to perform object detection in a single

step. Many variants exist [95, 123, 80, 186, 185] with different object representations. They

are in general faster but perform worse than multi-stage ones.

There are two types of approaches to extend object detection to video and cope with

its specific challenges (blur, occlusions, rare poses) and to exploit the temporal information

and consistency in video data:

Video Detectors. Video object detectors are designed to exploit the surrounding context

of a frame and usually, the model propagates or shares object features across frames.

FGFA [190] aggregates nearby features along the motion path given by an optical flow

estimation. D&T [40] trains a ConvNet end-to-end both for object detection and tracking

by using correlation across feature maps and re-scores linked detections. SELSA [171]

extracts object proposals from different frames of a video and aggregates their features

depending on their semantic similarities. TSM [89] shifts features along the temporal

dimension to perform object detection with 2D CNNs. TCD [184] conditions the output of

a single image detector by the tracklets calculated in previous steps.

Video object detectors are usually more computationally expensive than detectors work-

ing on still images due to the increased network complexity, their need to process more data,

and often the requirement to calculate additional data such as optical flow.

Post-processing methods to improve video detection. Post-processing methods

incorporate temporal context information into the output predictions of either image or

video object detectors. Applied to per-frame detections, these methods speed up the in-

ference pipeline with respect to specific video detectors while boosting the final detection

performance with respect to their base detector.

Some post-processing methods are based on Kalman Filter variations and use tracking

ideas to make the detections more robust or consistent. These are often applied to specific

domains like person re-identification, where persons have to be detected and tracked in
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videos [106, 24] extracted from cameras usually with a fixed position. Deep SORT [170]

improves the SORT [13] algorithm, based on Kalman Filters and the Hungarian Algorithm,

by adding appearance information to each predicted bounding box.

Other strategies applied in more general settings are based on bounding box propa-

gation or matching across frames. For example, T-CNN [68] uses context information to

suppress false positives and optical flow to propagate detections across frames to reduce

false negatives. Seq-NMS [52] matches high overlapping detections across frames within the

same clip to make detection results more robust. Seq-Bbox-Matching [11] links overlapping

detections from continuous pairs of frames to create and re-score object instances and uses

them to infer missed detections.

Our proposed approach is related to this last group of post-processing techniques. We

perform bounding box linking across frames, but instead of hand-made heuristics, a learned

classifier is used to distinguish whether two detections belong to the same object instance

or not. This model exploits both intermediate features from the base object detector and

additional properties of the bounding box.

2.3 Proposed Framework

Our proposed approach for video object detection runs the three modules summarized in

Fig. 2.1, which are detailed next.

2.3.1 Object detection and description

Our approach works on top of any initial object detector that can provide object bounding

boxes and class confidence score vectors. For each video frame t, we get a set of object

detections, and each object detection oit is described by:

• Location and geometry, i.e., its bounding box information: bbit = {x, y, w, h}.

• Semantic information, i.e., the vector of class confidences ccit provided by the

detector. ccitϵRC , where C is the number of classes within the dataset.

• Appearance, i.e., a L2-normalized embedding, appitϵR256, representing the appear-

ance of the patch. It is learned as detailed next.

Figure 2.2 summarizes how these descriptors are obtained. The first two are directly

provided by the base object detection model. The appearance descriptor is computed from

a set of feature maps generated by an intermediate layer of the base model. We propose

a simple architecture to learn this appearance embedding as shown in the figure. A RoI

Pooling Layer [125] is used to extract the feature map outputs that correspond to each

of the predicted bounding boxes and scale them to fit a pre-defined shape. Since such

intermediate descriptors are generally large, we use a single Fully Connected layer to learn

a mapping to a lower dimensional embedding and limit the memory and computational

resources. This embedding model is trained to minimize the triplet loss proposed in [138]:

N∑
i

[
∥f(xai ) − f(xpi )∥

2
2 − ∥]f(xai ) − f(xni )∥22 + α

]
+
, (2.1)
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Figure 2.2: Object detection and description. Each detection from the base object

detector is represented by the bounding box and vector of class confidences provided by the

base model (a) and by an appearance descriptor. The appearance descriptor is built from

a set of feature maps pooled from the base detector (b) mapped into a lower-dimension

embedding vector (c).

that compares one Anchor sample xai to one Positive sample xpi and one Negative sample

xni . f(x)ϵRd embeds a sample x in a d dimensional space and α is the margin enforced

between positive and negative pairs. The loss minimizes the Euclidean distance between

the Anchor and the Positive samples, while maximizing the euclidean distance between the

Anchor and the Negative sample. Section 2.4.1 describes the essential step of creating the

triplets training set as well as all the other implementation details.

2.3.2 Object detection linking

Our second module links detections into tracks by building a set of tubelets, i.e., sets

of corresponding detections along the video, in a similar manner to [11]. This linking,

summarized in Fig. 2.3, is a sequential process. We start building tubelets from the object

detections between the first pair of frames and extend them as long as corresponding objects

are still found in the next following frames. New tubelets can be initialized at any frame

with those detections not included in existing tubelets.

To link detections between two consecutive frames, we propose a similarity function

based on the following pair-wise features computed for each possible link of detections (oit
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Figure 2.3: Object detection linking. For all possible pairs of detections from consec-

utive frames (t and t + 1), we build a set of features based on their location, geometry,

appearance, and semantics. These features are used to predict a linking (similarity) score.

Links are established between consecutive frames and tubelets are composed of links as

long as possible.

and ojt+1):

floc = {IoU, dcenters},
fgeo = {ratiow, ratioh},
fapp = dapp,

fsem = fa
sem · f b

sem,

where IoU is the Intersection over Union of both detections, dcenters is the relative euclidean

distance between the two bounding box centers, ratiow and ratioh are the width and

height ratio between the two bounding boxes, dapp is the euclidean distance between the

appearance embeddings, and fsem is the dot product of class confidences vectors (cct and

cct+1). The actual link score (LS) between two detections is computed as follows:

LS(oit, o
j
t+1) = fsem X(floc, fgeo, fapp), (2.2)

where X is a logistic regression trained to distinguish whether two detections, given their

pair-wise features, belong to the same object instance (high linking score) or not (low

linking score). More details on how this regression is trained based on triplets information

can be found in Section 2.4.1.
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A score matrix is created with the link scores of every pair of detections between two

frames. We use a greedy approach to match them and extend the tubelet, i.e., the highest

score is picked to be a link, and the corresponding row and column are suppressed from

the matrix, repeating the process until no more links can be set. Although we tried more

complex methods to solve the assignment problem, such as the Hungarian method, we did

not find any improvements to the algorithm described above. For each pair of frames, a

new tubelet is created if an assigned pair did not belong to an already existing tubelet.

Since object detectors do not always make accurate predictions, some instance linkings

are prone to generate false positives when they do not belong to any real object. When

this happens, our algorithm outputs a low linking score. Linking candidates that present

a score under the established threshold are filtered out.

2.3.3 Refinement: re-scoring and re-coordinating

The final step of our method uses the linkings of each tubelet to improve its object classi-

fication and location:

Re-scoring

This step simply averages all class confidence vectors from each tubelet and assigns this

average to all detections within the tubelet. This process is able to correct mislabeled

detections in a subset of frames or disambiguate those with low confidence.

Bounding box coordinates

Object detectors predict highly accurate bounding box coordinates on still images or on

low-motion frames, but this regression tends to be less accurate on objects that present

rare poses, defocus, or fast motions. We treat each coordinate of a linked object over time

as a noisy time series. Note that noisy bounding box detections cannot properly fit the

real object along time. We use smoothing to remove or alleviate this noise. In particular,

we convolve a one-dimensional Gaussian filter along each time series. The smoothed series

are then used as the set of coordinates of the object in the tubelet.

2.4 Experiments

This Section describes our post-processing evaluation on different detectors and data con-

ditions.

2.4.1 Experimental setup

Dataset

The main dataset used is ImageNet VID [129], so far the largest densely annotated dataset

for video object detection. It consists of 3862 and 555 training and validation snippets

densely labeled with multiple bounding boxes belonging to 30 different object classes.

These classes are a subset of the 200 classes from ImageNet DET dataset [129]. Ima-

geNet VID data includes a wide variety of conditions, such as different object movement

types, blur, defocus, or occlusions. There is an average of 1.59 objects per frame, each
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one with groundtruth annotations of their bounding box and track id, both in train and

validation sets.

Evaluation metrics

Mean Average Precision (mAP) is computed to evaluate video object detection performance

in ImageNet VID, as established in the original paper, and to compare our approach with

other methods. To provide deeper insight, we also report the mAP according to three

groups of motion (slow, medium, and fast) as defined in [190].

Triplet dataset used for training our models

Both the embedding model (Sec. 2.3.1) and the link scoring model (Sec. 2.3.2) are trained

with the same dataset organized in triplets. Each triplet is composed of one Anchor (sample

point), one Positive (same object instance), and one Negative (different object instance)

bounding box, all of them according to ImageNet VID data groundtruth. Note that for the

link scoring model each triplet provides a positive and a negative training example.

We compiled a set of 50000 and 8000 triplet samples, for training and validation re-

spectively, built as follows. For each triplet sample, we randomly sample a track id, i.e.,

an object track. The Anchor is obtained from a random frame of the track. The Positive

example is taken from a frame sampled from ± 25 frames away from the Anchor, i.e., within

a one-second window. Note that most videos in the dataset are recorded with a frame rate

between 20 and 30 frames per second. The Negative sample is simply an object with a

different track id. It can be randomly obtained from either the same snippet as the Anchor

or from another video. Negative examples may include objects from the same class but

different instance.

Base detection model

Although our approach works with any object detector on video data, for comparison

purposes we have defined a single baseline, YOLOv3 [124], as our per-frame base object

detector. YOLO is a well-known and broadly used single-shot detection model that uses

a Fully-Convolutional Neural Network architecture to get predictions at different scales,

achieving a great time-accuracy trade-off.

This base model has been trained with data both from ImageNet DET and ImageNet

VID using the same data split as FGFA [190]. We trained the model with data augmenta-

tion techniques: multi-scale input, horizontal flip, cropping, shifting, jitter, and saturation.

For the inference phase, we fix the input image shape to 512x512 pixels and we replace the

usual non-maximum-suppression (NMS) implementation, which works at a class detection

level. Instead, we apply it at a bounding box level taking the maximum class confidence

score for each detection in a frame as one of the inputs of NMS. Our NMS module finally

outputs a set of bounding boxes for each frame along with a class confidence vector for each

bounding box. Finally, we filter out those detections whose maximum class confidence is

under a threshold of 0.005. The predictions obtained in this inference phase are the same

data that we use in all the tests we perform within our ablation study and comparison with

other post-processing techniques. With this configuration, we are able to obtain predictions

at 23 fps with a single NVIDIA GeForce RTX 2080Ti GPU.
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Appearance embedding model configuration

The feature maps used for the appearance embedding correspond to the output of the

Convolutional Layers Block from the base detection model, that downsamples the input

image by a factor of 16. Our RoI Pooling extracts the feature patches from these maps

and scales them to a shape of 5x5x256. These values are set to minimize the loss of

information on the scaling phase while allowing to predict fast appearance embeddings.

The Fully Convolutional layer that learns the final embedding contains 256 neurons and

outputs L2-normalized embeddings of 256 values.

2.4.2 Performance & analysis of other post-processing methods

Table 2.1 shows the object detection performance of our post-processing approach com-

pared to two other well-known approaches on the ImageNetVID dataset. We evaluate the

improvements of the post-processing methods with respect to the predictions obtained from

a common base model (YOLOv3). We measure the mAP for all test videos and detail spe-

cific results for slow, medium, and fast-moving objects. The average processing time per

frame is also shown. Each row corresponds to one of the following approaches:

• Only base detector. Corresponds to the execution of the base model detector,

YOLOv3, with the configuration described in Sec. 2.4.1 with no post-processing.

• Ours. Corresponds to YOLOv3 detections post-processed with our proposed method

configured with the following parameters: linking threshold of 0.7 to suppress low-

scoring detection linkings, and standard deviation of the Gaussian filter in the re-

coordinating module set to 0.6.

• Seq-Bbox-Matching [11]. Corresponds to YOLOv3 detections post-processed with

Seq-Bbox-Matching. Since it does not have a public implementation, we have repli-

cated it from the paper (κ value of 12 for their tubelet linking module, as they

specify).

• Seq-NMS [52]. Corresponds to YOLOv3 detections post-processed with Seq-NMS

using the public implementation by FGFA [190], with the same parameters as in

the original publication [52] but with our own confidence threshold (defined in Sec-

tion 2.4.1).

The results show how post-processing is able to improve the baseline detector. Our method

achieves better performance than the two state-of-the-art methods when applied to the same

base detections as our approach. The computation times of our method are slightly higher

than those of Seq-Bbox, but they are still in the order of milliseconds. Although our method

outperforms all the groups, the difference between the methods is more noticeable for fast-

moving objects, likely because both previous methods rely too much on the IoU between

object detections in consecutive frames, while our approach has additional descriptors and

a learned function that make the linking process more robust to changes in position. Our

method improves 6%, 8%, and 11% w.r.t. the baseline method, while the other methods

improve around 6 − 7% for all classes.
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mAP by object motion
Latency (ms)

All Slow Medium Fast

Only base detector+ 68.59 76.79 66.45 45.79 44

Ours 75.06 82.54 74.29 56.58 46.58 (44 + 2.58)

Seq-NMS [52] 71.51 79.99 70.01 50.95 54.41 (44 + 10.41)

Seq-Bbox-Matching [11] 74.19 81.13 73.22 54.39 44.40 (44 + 0.40)
+All other methods are run as post-processing of this base detector.

Table 2.1: Results of different post-processing approaches for object detection in Ima-

geNetVID validation set. Latency stands for the average processing time (in ms) per frame

(detection + post-processing).

To get more insight into this increased robustness to speed, we simulated a lower pro-

cessing frame rate. This is important in practice when limited computational resources

impede the processing at the acquisition frame rate. This more challenging scenario shows

how the approaches work when objects change more drastically both their location and ap-

pearance. We ran the same object detection task on the ImageNet VID validation set, but

simulating a lower processing frame rate. Since the videos have different sampling rates,

we fixed the time between frames and picked the closest frame for each video. We removed

tracks composed of less than 2 frames, since post-processing methods are not useful there.

The number of videos dropped from 555 to 522 in the smallest data configuration (2000

ms). Note that evaluating different frames and tracks for different sampling rates can lead

the mAP to not decrease as expected when the dropped data belongs to objects that are

difficult to detect (this effect is more noticeable between the frame sampling periods 1000

and 2000). Since linking scores drop their value for long-time-distant detections due to their

lower similarities, for this test we set a linking threshold of 0.05, more suitable to suppress

spurious detections and being able to get long-term linkings. We also remove the tubelet

linking module of Seq-Bbox-Matching and set the parameters of the method according to

the paper recommendations for this type of experiment.

Figure 2.4 shows the mAP for all test videos, including separate plots for different object

motion speeds, for varying values of frame sampling periods. We can observe similar effects

to before. Our method gets comparable results to the others when working with continuous

frames, but it manages to get more robust results when frames are processed more sparsely.

Interestingly, our method is always able to improve over the baseline detector performance,

while the other methods cannot.

2.4.3 Post-processing of video object detection methods

Table 2.2 compares the results of state-of-the-art specific video object detectors with our

post-processing method applied to an image object detector (YOLOv3 [124]) and to two

video object detectors (SELSA [171] and FGFA [190]). The results with YOLOv3 are the

same as in the previous Table 2.1 and are included to ease comparisons. TCD [184] results

can not be fully analyzed, since there is no code available up to our knowledge. We show

their overall result as a reference, as reported in the original paper. SELSA and FGFA

results have been obtained using their official code implementation and parameters. They
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Figure 2.4: Performance of different post-processing methods evaluated with different frame

sampling periods. (a) Shows mAP on all object instances. Following [190] (b), (c), and

(d) show the mAP of the objects according to their motion, slow, medium, or fast. The

dotted line shows the mAP baseline for each motion. All post-processing methods have

been applied to our YOLOv3 baseline predictions. Seq-NMS has been calculated with the

code released by [190]. Seq-Bbox-Matching has been calculated with code replicated from

the paper, since the original one is not available.

use a ResNet-101 as the backbone and train with data augmentation and a mix of ImageNet

VID and DET. Since extracting low-level features from a video object detector architecture

is not trivial, appearance features have not been used in SELSA and FGFA tests.

Table 2.2 shows that post-processing the YOLO single image detections cannot beat the

best more complex detectors that work over multiple frames. But it is interesting to note

that it does achieve slightly better performance than the corresponding much more complex

ResNet-based models when performing per-frame detections. However, when applied to

state-of-the-art video object detectors, our approach is still able to boost the performance

of SELSA and FGFA between 2 and 3%. This gain is mainly due to medium and fast object

movements, where we get a 5% gain. This is not always the case for other post-processing

methods that failed to improve video detectors [171].

Finally, it is worth stressing again that applying our post-processing approach is always

a computationally cheap operation when compared to the detection time. Post-processing

time depends on the number of detections per frame, but even with many detections it is

still in the order of tens of milliseconds. Our results show that simple and efficient post-

processing methods can boost the performance of many state-of-the-art detectors with

minimum computational requirements and, when time constraints are important, can be a

useful approach to trade-off time performance and computational resources.
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base object

detector

(backbone)

mAP

backbone

mAP

ALL

mAP

slow

mAP

medium

mAP

fast
Latency (ms)

FGFA [190]*
R-FCN

(ResNet101)
74.1 77.1 85.9 75.7 56.1 128

TCD [184]
Faster R-CNN

(ResNet101)
74.6 83.5 – – – –

SELSA [171]*
Faster R-CNN

(ResNet101)
73.62 82.69 88.02 81.34 67.17 458

YOLOv3 + Ours
YOLOv3

(Darknet-53)
68.59 75.06 82.54 74.29 56.58 46.58 (44 + 2.58)

FGFA + Ours
R-FCN

(ResNet101)
74.1 80.09 87.42 79.1 61.38 149 (128 + 21)

SELSA + Ours
Faster R-CNN

(ResNet-101)
73.62 84.21 88.72 83.32 71.09 466.6 (458 + 8.6)

∗Inference times are calculated running their official code on an NVIDIA GEFORCE RTX 2080Ti GPU

All models make use of both Imagenet DET and VID data for training (or pretraining).

Table 2.2: Comparison with Video Object Detectors on ImageNetVID validation set.

Latency stands for the average processing time (in ms) per frame (detection + post-

processing).

2.4.4 Qualitative results on EPIC-KITCHEN Dataset

This experiment tests our proposed post-processing pipeline in a more challenging scenario.

We perform a qualitative evaluation on the EPIC-KITCHENS dataset [32]. It is an ego-

centric video dataset where different users perform daily activities in a kitchen. Multiple

objects of different categories appear in the scenes with uncommon perspectives and move-

ments compared to traditional video data. Groundtruth includes user action annotations,

multi-language narrations, and active object detections (note this means not all objects are

annotated in the videos).

In order to prove the generalization ability of our approach, we apply it to predictions

on these egocentric videos. Predictions are obtained with a YOLOv3 model trained only

with the COCO dataset [90], just still images from 80 different categories involved.

Figure 2.5 shows a scene (frames 18812, 18832, 18868 and 18908 from the video P04 24 ;

note that KITCHENS videos are recorded at 60 fps) that involves a fast camera motion,

where objects drastically change their location and get out of focus. The YOLO predictions

(first row) suffer from many misdetections and misclassifications due to the mentioned video

artifacts. The application of our approach (second row) manages to correct many of them.

Partially occluded objects are detected (tracks 14314 and 14364), out of focus objects

are correctly detected (track 14436) and classified (track 13020) and false positives are

suppressed (observe detected knife, mouse, and toothbrush from the base predictions). By

using neighboring frame information, object coordinates show a smoother evolution along

the full video sequence thanks to our re-coordinating module, removing wrong shapes and

flickering.

2Supplementary video available at: https://github.com/AlbertoSabater/Robust-and-efficient-p

ost-processing-for-video-object-detection

https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection
https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection
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Figure 2.5: Object detection on EPIC-KITCHENS data using a YOLOv3 model (top

row) and improvements obtained by applying our post-processing (bottom row). Predicted

bounding boxes are shown along with their track id when our post-processing is applied.

Watch the supplementary video for results on the whole sequence2. Low-scoring detections

have been removed for a better visualization.

2.5 Conclusions

In this work, we present a novel post-processing method for object detection in video. By

using a novel set of detection features we study the similarity between frame detections

from a learning-based approach as a preliminary step to a prediction refinement. With a

light computational overhead, we boost the performance of state-of-the-art video object

detectors. Besides, when our approach is applied to efficient still image object detectors,

we achieve comparable results to more complex models. As demonstrated, our novel post-

processing solution allows to overcome significant challenges of video object detection, such
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as misdetections and misclassifications caused by fast-moving objects, occlusions, or de-

focus. The validation presented also proves the robustness of the presented approach for

videos with low frame rate, as it happens in resource-limited environments.



Chapter 3

Full-body action recognition in

challenging scenarios

Recognizing actions from video data presents several challenges that hinder the effectiveness

of existing approaches in real scenarios. Frequently, action recognition datasets available

to learn from are limited to specific action domains and recording setups. Differently,

real-world applications such as AR/VR or medical therapies might require recognizing

actions that can be created on the fly and that can occur at any location of the recorded

scene, regardless of the camera recording viewpoint. Since collecting and labeling this

kind of heterogeneous data is complex, our goal is to learn a model invariant to these

video conditions so that it can later generalize to different scenarios. The present Chapter

introduces a skeleton-based solution that achieves these high generalization capabilities by

designing a more robust skeleton-based representation and several inference improvements.

The performance of our proposed action recognition model is demonstrated in a practical

medical therapy use case where actions are defined on the fly and whose kinematic presents

many high-level artifacts.1

3.1 Introduction

Human Action Recognition is a challenging problem with high relevance for many appli-

cation fields such as human-computer interaction, AR/VR, or medical therapy analysis.

Certain works use raw appearance information for the action recognition tasks [35, 182],

however, most recent works use skeleton-based representations [179, 98]. These representa-

tions encode the human pose independently of appearance and surroundings and are more

robust to occlusions.

Real-world scenarios often require the capability to recognize new action categories

that cannot be learned, due to their creation on the fly or training data limitations. Action

classifiers that handle this problem [163, 92] of learning from limited data are based on

encoding motion sequences into meaningful descriptors. Then, to recognize a new target

sequence, they evaluate the similarity of the target descriptor with the descriptors from one

(one-shot) or few (few-shot) anchor-labeled actions. Learning discriminative action encod-

1Code, learned models, and supplementary video available at: https://github.com/AlbertoSabater/

Skeleton-based-One-shot-Action-Recognition

29

https://github.com/AlbertoSabater/Skeleton-based-One-shot-Action-Recognition
https://github.com/AlbertoSabater/Skeleton-based-One-shot-Action-Recognition
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Figure 3.1: Overview of the proposed action recognition method. An anchor action is

processed and compared against a target motion sequence. Output results show when the

anchor action has been performed within the target motion sequence.

ings and their application in real scenarios are still open challenges. This is partially due to

variable motion recording setups and unconstrained action execution rules (unsegmented

action sequences, multiple consecutive executions, heterogeneous action executions, etc.).

This work tackles the problem of one-shot action recognition in unconstrained motion

sequences. Our novel skeleton-based solution is summarized in Fig. 3.1. In the proposed

workflow, a stream of skeleton poses is encoded in an online manner, generating a descriptor

at each time step. Comparing the descriptors from a given reference anchor action with

descriptors from a target video, we can detect when the anchor action has been performed

within the target sequence.

The main components of our work are two-fold: 1) a motion encoder, based on geo-

metric information, which is robust to heterogeneous movement kinematics; 2) the actual

one-shot action recognition step, based on evaluating the similarity between an anchor ac-

tion and target motion encodings. We propose a set of improvements to this final action

recognition step designed to achieve a more accurate action recognition in the wild. These

improvements include an extended anchor action representation and a dynamic threshold

that discriminates challenging action sequences. Besides, the proposed action recognition

approach can be easily extended to a few-shot problem, if multiple anchor actions are

available.

The presented approach is validated on a generic and public one-shot action recognition

benchmark, the NTU RGB+D 120 dataset [91], where it outperforms the existing baseline

results. Besides, we exhaustively analyze the performance of our system on data from a real

application, an automatic analysis of therapies with autistic people (based on gesture and

action imitation games). The evaluation shows our proposed improvements to work in the

wild, managing to overcome challenging motion artifacts that are particular for this real

environment. The final outcome provides online and real-time quantitative and qualitative

results, essential to evaluate patient attention and coordination.
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3.2 Related Work

This Section summarizes the most relevant contributions for skeleton-based action recog-

nition, making special emphasis on N-shot action recognition methods.

3.2.1 Skeleton representations for action recognition

Although many skeleton-based action recognition approaches use the raw Cartesian pose

coordinates with no special pre-processing [117, 91], other works research skeleton data

transformations to achieve view-invariant coordinates or compute new geometric features.

The approach in [179] trains a Variational Autoencoder to estimate the most suitable ob-

servation view-points and transforms the skeletons to those view-points. Another approach

applies view-invariant transformations to the skeleton coordinates [150]. Regarding the

computation of new skeleton features, earlier work [25] computes multiple geometric fea-

tures including joint distances and orientation, distances between joints, lines and planes,

velocity, and acceleration. More recent approaches describe a set of geometric features

based on distances between joints and lines [180] or propose to use pair-wise Euclidean

joint distances and two-scale motion speeds [174].

Our approach uses a skeleton representation that combines a view-invariant transfor-

mation of the skeleton Cartesian coordinates with a set of additional geometric features.

3.2.2 Skeleton-based neural networks for action recognition

Recurrent Neural Networks have been widely applied to learn temporal dependencies for

action recognition approaches. [150] uses a Variational Autoencoder with bidirectional

GRU layers for unsupervised training, and work in [93] presents a recurrent attention

mechanism that improves iteratively. Other approaches rely on 1D Convolutional Neural

Networks (CNN), such as [174], which uses a ResNet backbone, and [179] in which a CNN

is combined with LSTM networks. Another common architecture within action recognition

approaches is Graph Convolutional Networks, such as the models proposed in [98] and [28],

which reduce the computational complexity with flexible receptive fields.

In our method, a Temporal Convolutional Network (TCN) ([8, 157]) is chosen to encode

temporal action segments into fixed-length representations. TCNs have already shown a

good action recognition performance, easing the interpretability of their results [71]. TCNs

use one-dimensional dilated convolutions to learn long-term dependencies from variable-

length input sequences. Convolutions allow parallelizing computations allowing fast in-

ference and performing equally or even better than RNNs in sequence modeling tasks by

exhibiting longer memory [8].

3.2.3 N-shot action recognition

N-shot action recognition is still an active area of research. We find earlier methods like [37]

and [73] that use HOF and HOG features for one-shot action recognition in RGB+D videos.

More recently, [91] and [92] use a 2D Spatio-Temporal LSTM Network, the latter with a

bidirectional pass. Other applications join visual and semantic information to perform zero-

shot action recognition, such as [51], which uses hierarchical LSTMs and word2vec [105],
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and [65], that uses a Relation Network, a Spatial Temporal Graph Convolution Network

(ST-GCN) and sent2vec. [114].

Different from these methods, we propose the simple yet effective TCN described above

as a feature extractor for one-shot action recognition. Additionally, we show how a robust

variation of the approach can boost the final recognition performance in challenging real-

world scenarios.

3.3 Proposed Framework

Figure 3.2 summarizes our motion description approach. It first normalizes input streams

of skeleton data (computed using standard techniques [183]) and generates sets of pose

features that are encoded into motion descriptors by a TCN. One-shot action recognition is

performed by evaluating the similarity between motion descriptors from anchor and target

sequences.

Figure 3.2: Motion descriptor generation. Input skeleton coordinates Xn are normalized

X̄n and pose features M are calculated. A TCN processes pose features to generate motion

descriptors z.

3.3.1 Pose normalization

A human movement is defined by a set of N poses X = {X1, .., XN}. Each pose Xn is

defined as a set of J 3D body keypoint coordinates, Xn = {xn1 , ..., xnJ}, xnj ϵR3, composing

what we name a skeleton.

Human actions are frequently recorded in dynamic scenarios that involve different view-

points and people moving and interacting freely. To achieve a better action recognition

generalization, we normalize skeleton data by applying a per-frame coordinate transfor-

mation from the original coordinate system W to a new one H, obtaining new view and

location-invariant coordinate sets. As represented in Fig. 3.3, H is set to have its origin

at the middle point of the vector composed of the two hip keypoints. This hip vector is
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aligned to the new X axis and oriented to always have left and right hip X coordinates neg-

ative and positive values respectively. Similarly, the vector composed by the spine keypoint

and the origin becomes the Y axis, leaving the Z axis to describe the depth information by

being orthogonal to X-Y. The corresponding transformation THW is applied to each 3D

point in a pose Xn to obtain the new set of 3D keypoint coordinates X̂n as:

X̂n = THW
n Xn (3.1)

Regardless of the camera configuration, action sequences can be performed by different

people with heterogeneous heights. To get scale-invariant coordinates X̄n, each skeleton

X̂n is scaled to a predefined size. In particular, since the joints defining the torso usually

present little noise, we scale each skeleton to have a fixed torso length L̄:

X̄n = X̂n ∗ L̄

Ln
(3.2)

where Ln is the length of the corresponding torso and L̄ is set as the average ratio between

the torso length and the height (calculated from the NTU RBG+D 120 Dataset).

Figure 3.3: Skeleton representation. W and H refer to the original and transformed skeleton

coordinates systems respectively. H axis is aligned with the vectors (dashed lines) that cross

the human hip and spine. φ and θ angles refer to the elevation and azimuth calculation in

a bone from the leg.

Figure 3.4 shows original and normalized skeleton coordinates after applying the two

proposed normalization steps.

3.3.2 Pose Features

The presented approach includes as final pose features the normalized coordinates X̄n,

described above, and the following additional geometric features:
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(a) skeletons from jump up action

(b) skeletons from moving heavy objects action

Figure 3.4: Pose normalization. Left plots show original skeleton coordinates of different

actions from the NTU-120 RGB-D dataset. Right plots represent the same skeletons after

applying the proposed pose normalization.

• Pair-wise keypoint distances Pn, calculated as the Euclidean distance between

each possible pair of skeleton joints, encode the pose relative to the J skeleton joints.

This set of features has the size of
(
J
2

)
.

• Bone angles Bn from the original coordinates, calculated as the elevation φ and

azimuth θ (see Fig. 3.3) of each vector composed by two connected joints. These

angles encode the orientation of each bone relative to the world. This set of features

has the size of b× 2, being b the number of bones within the skeleton.

3.3.3 Motion descriptor generation from a TCN

In order to generate motion representations based on the temporal context and not only

static pose features, we use a Temporal Convolutional Network (TCN) [8, 157]. The TCN

processes, as illustrated in Fig. 3.2, streams of pose features M = {X̄, P,B}, and obtains

motion embeddings z (or descriptors). This motion generation works in an online fashion,

creating embeddings zn = TCN(Mn−w:n) that encode, at the time n, all the motion from

the last w frames. This receptive field (memory) w is implicitly defined by the TCN

hyperparameters (details in Section 3.4.1.2).
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3.3.4 One-shot action recognition

We formulate the one-shot action recognition as a simple similarity evaluation between

the anchor embedding za calculated to describe an anchor action and a stream of target

embeddings zT extracted from a full video sequence.

For the anchor action description, we use the embedding associated to the last

frame of the anchor action, i.e., za, assuming it encodes all the relevant previous motion

information. Then, the evaluation distance at time n is given by the distance between

the anchor embedding and the target embedding zT (n) computed at time n:

d1(n) = D(za, zT (n)) (3.3)

For the embedding distance computation D we have explored several options. The
cosine distance (cos) and the Jensen-Shannon divergence (JS) are the two best performing
ones:

Dcos(z1, z2) = 1 − z1 · z2
∥z1∥∥z2∥

, (3.4)

DJS(z1, z2) =

√
KL(z1 || z̄1,2) + KL(z2 || z̄1,2)

2
(3.5)

where z1 and z2 are two motion embeddings, KL is the Kullback-Leibler divergence and

z̄1,2 is the pointwise mean of z1 and z2. Both functions are bounded between 0 and 1, being

this last value the lowest similarity between two movement descriptors.

The final action recognition is performed by thresholding the calculated distance.

If d1(n) is below the acceptance threshold α, we consider that the anchor action has been

detected by frame n. This threshold value is set by evaluating the precision/recall curve

over an evaluation dataset, as detailed in Section 3.4.3.1.

3.3.5 Improving action recognition in the wild

Real action recognition applications (e.g., real medical therapies) involve artifacts that

hinder the motion description and recognition. These issues are intensified in the one-

shot recognition setup, where the available labeled data is limited. In the following, we

describe different improvements for the action recognition described previously, to get better

performance in the wild.

Extended anchor action representation. Anchor actions are not only scarce but

frequently also hard to consistently segment in a video sequence. Therefore, using just the

last embedding generated for them can lead to noisy action descriptions. In order to get a

better anchor action representation, we use a set of descriptors zA = {z1, ..., zm} composed

by the ones generated at their last m frames. The distance between a target embedding

zT (n) and the anchor action is then set as the minimum distance to each element of the

set of anchor embeddings (zA):

dm(n) = min
∀za∈zA

D(za, zT (n)) (3.6)

Few-shot recognition. In case more than one anchor sequence is available, the set of

anchor embeddings zA can be easily augmented with the embeddings generated for the

different anchor sequences.
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Dynamic threshold. Most challenging scenarios can include actions consisting of main-

taining a static pose or performing subtle movements. The descriptors generated from this

type of action are very similar to the descriptors from target idle poses (e.g., when no spe-

cific action is being performed). If the information on idle positions is available, we propose

to use it to set a dynamic threshold that can better discriminate idle poses from actual

actions. The new threshold value is set to be the minimum between the original threshold

α and the 10th percentile P10% of all the distances computed between a given idle target

sub-sequence (identified within the target sequence) and the anchor action representation:

α = min(α, P10%
n=a...b

{d(n)}), (3.7)

where a and b are the initial and final time steps of the idle interval, and d is computed as

in Eq. (3.4) or Eq. (3.6) depending on the anchor representation used.

3.4 Experiments

This Section details the experimental validation of the proposed action recognition ap-

proach, including implementation and training details.

3.4.1 Experimental setup

3.4.1.1 Datasets

The proposed method is designed for one-shot online action recognition in real scenarios.

In particular, our motivation is to automate the analysis of medical therapies. Since the

available data in this setting is scarce, real therapy data is only used for evaluation, while a

large public action dataset (NTU RGB+D 120) is used to learn the action encoding model

as well as to validate the motion representation framework in a public benchmark.

The NTU RGB+D 120 dataset [91] (see Fig. 3.5a) is so far the largest dataset avail-

able for skeleton-based action classification. It contains 114,480 action samples belonging

to 120 different categories with different complexities. Action sequences are recorded at 30

fps with different users, setups, and points of view.

The therapy dataset2 (see Fig. 3.5b) has been acquired in real medical settings and

consists of 57 different imitation games where the patient has to imitate the therapist

[136, 135] actions and gestures. Each imitation game is composed of at least one anchor

action and one patient imitation, but frequently more anchors (up to 3) or imitations

appear in the games. Due to the nature of this data, patient motion is characterized by

strong artifacts such as highly variable length imitations, uncommon resting poses and poor

quality imitations. Due to limited computational resources, sessions are recorded with a

variable low frame rate of 12 fps on average.

3.4.1.2 Implementation and training details

Due to the nature of the therapy dataset, we have specified the memory length w of our

TCN to be 32 frames long by using a convolutional kernel size of 4, stacks of 2 residual

2https://zenodo.org/record/4700564#.ZCq75nZByUk

https://zenodo.org/record/4700564#.ZCq75nZByUk
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(a) NTU RGB+D 120 dataset frames.

(b) Therapy dataset frames.

Figure 3.5: Sample frames from the training (a) dataset (kicking something, handshaking

and shoot at the basket actions) and evaluation (b) datasets (big, give and high gestures).

blocks, and dilations of 1, 2, and 4 for the layers within each convolutional block. We

also use skip connections and 256 filters in each convolutional layer, which finally generates

motion descriptors of size 256.

This TCN is pretrained for a classification task (categorical cross-entropy loss) in the

NTU RGB+D 120 dataset by adding an output classification layer to the TCN backbone

and applying the following random data augmentation to the original coordinates:

• Movement speed variation. Joint coordinates are randomly scaled by interpola-

tion along the time dimension to simulate varying movement speeds.

• Skip frames. Since the training dataset is recorded at more than twice the frame

rate of the evaluation dataset, for each training sample we just use one out of either

two or three frames, discarding the rest.

• Horizontal flip. Coordinates that correspond to the left or right part of the body

are randomly flipped. Vertical and depth dimensions remain as originally.

• Random cropping. Actions longer than the receptive field are randomly cropped

to fit the TCN memory length. Shorter ones are pre-padded with zeros.

Finally, after calculating and stacking all the pose features M the input training data

has a size of 32 × 423.
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After training, the output classification layer is discarded to extract the 256-dimensional

motion descriptors straight from the TCN backbone.

3.4.2 Validation of the system on a generic one-shot action recognition

benchmark

Table 3.1 shows the classification accuracy of our framework for one-shot action recognition

on the NTU-120 one-shot 3D action recognition problem, where we outperform the results

of previous action recognition models [91]. For this benchmark, we use the same implemen-

tation described in Section 3.4.1.2 and the same training procedure, but with the train/test

splits specified in the original paper [91]. Additionally, we also set the frame skipping to

2 both for training and evaluation and we suppress the random horizontal flipping during

training. Descriptors are evaluated with the cosine distance, but other distance functions

such as the Jensen-Shannon divergence report identical or comparable performance. Since

this problem is about classifying action segments and not identifying anchor actions in the

wild, classification is performed by assigning, for each evaluation sample, the class with

the lowest similarity distance among the set of anchor action segments. Note that, unlike

the other action recognition models that work in an offline fashion, our model works in an

online and real-time fashion and only uses half of the available data (alternate frames).

Method Accuracy

ST-LSTM [92] + Average Pooling 42.9%

ST-LSTM [92] + Fully Connected 42.1%

ST-LSTM [92] + Attention 41.0%

APSR[91] 45.3%

Ours (one-shot, m=1) 46.5 %

Table 3.1: NTU RGB+D 120 Dataset One-shot evaluation

3.4.3 Validation and discussion on real therapies data

This experiment evaluates the performance of our action recognition approach on imitation

games from the therapy dataset. Here, the actions from the therapist are taken as anchors

to later detect their imitation at each time step of the patient motion stream.

3.4.3.1 Quantitative results

Metrics. Action recognition is evaluated with common metrics, i.e., precision, recall,

and F1. However, since each target motion descriptor zT (n) does not refer only to a single

time-step n but to the motion from the w previous frames, we have defined the following

terms as follows:

• True Positive (TP). An action is correctly detected when the groundtruth action

is being executed or has been recently executed within the TCN receptive field w. A

groundtruth action referenced by many detections only counts as one TP.
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• False Positive (FP). An action is incorrectly detected when no groundtruth action

has been recently executed. Consecutive detections inside the TCN receptive field w

only count as one FP.

• False Negative (FN). A groundtruth action is missed if it has not been referenced

by any action detection. Each miss-detected action counts as a single FN.

Precision-Recall trade off. The threshold α selected to be used over the distance scores

to perform action recognition is the one that optimizes the trade-off between precision and

recall defined by the F1 metric. In our experiments, we calculate different thresholds to

optimize the results achieved when using one descriptor per anchor (m = 1) and with

extended anchor representations (m = 3). As seen in the precision-recall curves from Fig.

3.6, the best trade-off is achieved at the cost of lowering the precision of the framework,

especially when working with single anchor descriptors.

Figure 3.6: Precision/recall curves for the two evaluation distances used: cosine distance

(cos) and Jensen-Shannon divergence (js). Solid lines refer to regular one-shot evaluations

(m = 1) and dashed lines refer to few-shot recognition with extended anchor representations

(m = 3). Red crosses refer to the optimal F1 values.

Recognition

Modality
m

Dyn.

Thr.

Cosine distance Jensen-Shannon divergence

α P R F1 α P R F1

one-shot 1 0.48 0.655 0.922 0.697 0.50 0.689 0.902 0.714

one-shot 3 0.40 0.773 0.837 0.724 0.48 0.765 0.853 0.728

one-shot 3 ✓ ≤ 0.40 0.803 0.837 0.751 ≤ 0.48 0.779 0.853 0.739

few-shot* 1 0.48 0.784 0.827 0.731 0.50 0.785 0.846 0.744

few-shot* 3 0.40 0.760 0.876 0.753 0.48 0.749 0.892 0.755

few-shot* 3 ✓ ≤ 0.40 0.790 0.876 0.781 ≤ 0.48 0.763 0.892 0.765

∗ few-shot uses 1 to 3 anchor sequences depending on its availability in each test (see Section 3.4.1.1)

Table 3.2: Comparison of the studied variations of our action recognition approach on the

evaluation therapy dataset. Dyn. Thr. stands for Dynamic Threshold. P and R stands for

Precision and Recall.
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Analysis of variations of our approach. The effect of the different variations pro-

posed to make our action recognition more robust is summarized in Table 3.2. First three

rows show the performance of the one-shot version, i.e., using as anchor the last action per-

formed by the therapist in each imitation game. The use of extended anchor representations

(m = 3) allows us to have a more restrictive threshold α, which reduces false positives, in-

creasing the detection precision. The increase in precision is also achieved by making the

threshold dynamic. New threshold values can be set differently in each imitation game by

evaluating the anchor representation and the target motion up to the end of the anchor

execution (period in which the patient is not performing any specific action). The dynamic

threshold avoids false positives related to ”static” anchor actions, at no recall cost. Finally,

as expected, the performance improves when more anchor actions (up to 3 in the exper-

iments) are available to run a few-shot recognition. Regarding the embedding similarity

computation, both the cosine distance and the JS divergence report similar performance

when using extended anchor representations. However, the JS divergence performs better

in simpler setups and the cosine distance excels when using a dynamic threshold.

The results can be further scrutinized in Table 3.3, which compares the recognition

performance by action category. Extended anchor representations (m = 3) and few-shot

recognition significantly overcome the limitations of the simple one-shot recognition for

challenging classes (last 8 rows of the table refer to actions with softer and subtler arm

movements or actions that consist in staying on specific positions). This is further improved

when using a dynamic threshold (DT).

Class

name

One-shot

(m=1)

Few-shot

(m=3)

Few-shot+DT

(m=3)

big 1.00 1.00 (+0.00) 1.00 (+0.00)

high 1.00 1.00 (+0.00) 1.00 (+0.00)

happy 0.96 0.96 (+0.00) 0.96 (+0.00)

waving 0.89 0.95 (+0.06) 0.95 (+0.06)

pointing 0.89 0.89 (+0.00) 0.89 (+0.00)

giving 0.76 0.76 (+0.00) 0.76 (+0.00)

small 0.68 0.89 (+0.21) 0.96 (+0.28)

coming 0.65 0.69 (+0.04) 0.69 (+0.04)

waiting 0.63 0.73 (+0.10) 0.73 (+0.10)

hungry 0.47 0.35 (-0.12) 0.42 (-0.05)

where 0.47 0.61 (+0.14) 0.61 (+0.14)

down 0.45 0.54 (+0.08) 0.54 (+0.08)

me 0.44 0.67 (+0.22) 0.67 (+0.22)

angry 0.31 0.30 (-0.01) 0.50 (+0.19)

Table 3.3: Per-class F1 evaluation comparison of different variations of our action recogni-

tion approach (using the cosine distance).

Influence of different pose feature sets. Table 3.4 reports the influence of differ-

ent pose features proposed in Section 3.3.2. Using only normalized coordinates achieves

lower performance than using just the original body coordinates. Normalized coordinates

gain in invariance, but they lose certain discriminative power. The proposed geometric

feature set achieves good performance on its own. However, the best performance comes
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Coordinates
Normalized

Coordinates

Geometric

Features
F1

✓ 0.711

✓ 0.689

✓ 0.757

✓ ✓ 0.695

✓ ✓ 0.781

Table 3.4: F1 evaluation of different pose features running our top-performing action recog-

nition (few-shot, cosine distance, extended anchor representations, and dynamic threshold).

from the combination of normalized coordinates and geometric features, which suggests

that the geometric features work better along with the invariance provided by normalized

coordinates.

3.4.3.2 Qualitative results

Figure 3.7 shows the timeline of an imitation game sampled from the therapy dataset.

This exercise involves the action of raising and moving the arms, which is performed once

(anchor) by the therapist and repeated twice (target) by the patient. Detection results

from the timeline represent both the location and quality of both action repetitions. The

latter is estimated according to the calculated similarity between anchor and target motion.

The first action imitation is performed quickly (worse quality) and the second one is slower

and more detailed (better quality). For a better understanding, the whole execution of the

experiment is shown in the supplementary video3.

3.4.3.3 Time performance

Temporal Convolutional Networks are frequently lightweight models, making them suitable

for low-resource environments like in the therapies described in Section 3.4.1.1. With the

settings described in Section 3.4.1.2, the action recognition (except the skeleton extraction

from RGB-D data) takes 0.08 ms per time-step using the GPU and 0.1 ms just using the

CPU. Time performance has been calculated with the therapy dataset skeleton sequences.

Note that due to the TCN parallel computing, the longer the motion sequences are, the

faster per-frame processing we can get. Latency has been calculated with an NVIDIA

GeForce RTX 2080 Ti (GPU) and an Intel Core i7-9700K (CPU).

3.5 Conclusions

This work presents a novel skeleton-based framework for one-shot action recognition in the

wild. Our method generates motion descriptors robust to different motion artifacts and

variable kinematics. We achieve accurate action recognition by combining the proposed

set of pose features and an efficient architecture based on a TCN that encodes these pose

features. Besides, we demonstrate the effectiveness of several simple steps included in our

method to boost the action recognition performance in challenging real-world scenarios,

3Supplementary video available at: https://github.com/AlbertoSabater/Skeleton-based-One-sho

t-Action-Recognition

https://github.com/AlbertoSabater/Skeleton-based-One-shot-Action-Recognition
https://github.com/AlbertoSabater/Skeleton-based-One-shot-Action-Recognition
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Figure 3.7: Action recognition on one imitation game from the therapy dataset. Cen-

tral horizontal line represents the execution timeline, with one anchor action (top/purple)

performed by the therapist, followed by two imitations (bottom/blue) performed by the

patient. Dashed line segments indicate the groundtruth action time segmentations. Verti-

cal small solid segments, ranging from green to orange, refer to time steps where the action

has been detected, and the color gives an estimation of the repetition quality.

i.e., with limited reference data and noisy repetitions of the actions to be recognized. Our

base one-shot recognition approach is evaluated on the public NTU RGB+D 120 dataset,

outperforming previous action recognition methods, by using only half of the available data

(alternate frames) for training. We also demonstrate the suitability of our framework to

analyze videos from real therapies with autistic people. These recordings are characterized

by having extreme motion artifacts given by the difficulty of the patients to pay attention

and their limited coordination abilities. Evaluation results provide quantitative and qual-

itative measures of the actions recognized, essential to evaluate and monitor aspects like

the time the patient takes to imitate an action and the number of tries required to do it

with good quality. Moreover, our approach can run online, being able to provide immediate

feedback to the therapist and making the sessions more dynamic.



Chapter 4

Hand action recognition invariant

to domain and viewpoint

As discussed in the previous Chapter, real scenarios require action recognition models to be

robust to work with heterogeneous actions. Our prior work introduced a new way of repre-

senting skeleton data that abstracts the camera recording viewpoint to help achieve these

generalization capabilities for full-body action recognition. However, this representation

format is not applicable to hand-only skeletons since the recording perspective is required

to define certain hand actions. For instance, with no external references, the gesture of

pointing to the right recorded with a first-person view can be misidentified as pointing to

the left if the recording camera is in front of the person. Additionally, generalizing to

unseen hand actions presents additional challenges. When working with hand-only motion

data, there are subtle changes in actions from a specific domain, but significant variations

across different ones (e.g., virtual reality vs. life-logging applications). This makes models

trained on specific domains unable to properly generalize to different ones. This Chapter

addresses these issues by considering the recording perspective in the skeleton data repre-

sentation and in the learning pipeline, and includes an improved model for the final motion

description. The proposed hand action recognition framework not only gets high accuracy

for the regular action recognition on the training motion setup, but we also probe its gen-

eralization capabilities by evaluating it on the recognition of unseen action domains and

recording perspectives.1

4.1 Introduction

Human action recognition is a well-studied problem with many applications such as human-

robot interaction, surveillance, and monitoring [76, 154]. Deep models combined with

skeleton-based representations [107, 173], which efficiently encode human pose and motion,

independently of appearance, surroundings, and occlusions, have become a standard in

robust human action recognition [117, 179].

Hand action recognition is a specific case of human action recognition. It is highly

relevant due to the importance of hand movements in teamwork, assistive technologies,

1Code, learned models, supplementary video, and data splits available at: https://github.com/Alber

toSabater/Domain-and-View-point-Agnostic-Hand-Action-Recognition
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https://github.com/AlbertoSabater/Domain-and-View-point-Agnostic-Hand-Action-Recognition
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communication, or in virtual reality applications [1, 10]. Hand recognition methods com-

bine, as in the full body case, skeleton representations and deep models [174, 181]. These

methods have shown good results typically focusing on the classification of actions from

a specific domain. However, previous works have not studied robust representations that

can generalize across different domains and viewpoints, which are key when working with

limited amounts of labeled data.

Hand actions expose some specific challenges to learning such robust representations.

On one hand, there is a high variability across actions from different domains, e.g., user

interface control vs. life-logging applications. Differently from full-body skeletons, dif-

ferent hand action domains often imply drastic viewpoint changes, e.g., egocentric vs.

third-person view. On the other hand, fine-grained details are essential. Different action

categories are often quite similar and vary only subtly (e.g., pointing to different directions,

sliding gestures, etc.). Moreover, hand skeleton joints present a lower movement range than

other full-body joints, increasing the correlation between skeleton joint motions and similar

actions.

Figure 4.1: Motion representation model. (a) Hand pose modeling: pose features

are extracted from the input hand skeleton stream. (b) Motion representation: a

Temporal Convolutional Network (TCN) generates per-frame motion descriptors from the

pose features. (c) Motion summarization: per-frame motion descriptors are weighted

and summarized to generate the final motion sequence descriptor.

The main contribution of this work is a novel motion representation model, summarized

in Fig. 4.1, designed to be robust to different application domains and viewpoints. It com-

putes representations (motion descriptors) from labeled hand skeletons (motion sequences),

that are later used for the final motion sequence classification. The main components of

our motion representation model are: 1) a set of pose features adapted to hand motion; 2)

a Temporal Convolutional Network (TCN) encoding the stream of hand pose features into

per-frame descriptors; and 3) a summarization module that learns the relevance of each
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per-frame descriptor to describe the input motion sequence. The learned motion descrip-

tors can be directly used to recognize the action categories (labels) they were trained for

(intra-domain) with a simple Linear Classifier. More interestingly, they can also be used to

build N-shot classifiers to recognize new unseen action categories recorded from radically

different points of view (cross-domain) with a K-Nearest Neighbor Classifier.

Our experiments use the front view SHREC-17 dataset [33], the egocentric F-PHAB

dataset [43] and the third-person MSRA [151] dataset, which includes actions and ges-

tures related to computer interaction, life-logging and sign language domains respectively.

Our intra-domain classification results show that our framework gets better or similar per-

formance than current state-of-the-art intra-domain classifiers in well-known benchmarks.

More importantly, our cross-domain classification approach obtains comparable accuracy

to intra-domain methods by being trained just with the SHREC-17 dataset, and then eval-

uated on the F-PHAB and MSRA datasets. This demonstrates that our motion represen-

tation model generalizes well for different action domains and camera viewpoints. Besides,

our approach shows a low latency, which allows its use for online and real-time applications.

4.2 Related Work

This Section summarizes relevant works on the core topics of this work: pose modeling,

skeleton-based action recognition models, and generalization to unseen action categories.

4.2.1 Pose modeling for action recognition

Action recognition was first tackled by directly analyzing RGB videos [39] or depth maps [113].

Current approaches have settled the standard of extracting the intermediate representa-

tion of skeleton poses [181, 174]. This representation has shown great performance since it

encodes human poses regardless of their appearance and surrounding and presents strong

robustness to occlusions.

Certain works directly use the raw coordinates of skeleton joints (position of the joints

in the Euclidean space) as input for full-body action recognition [117, 91] and for hand

action recognition [57, 102, 84]. In order to achieve standardized and generic skeleton pose

descriptions, several full-body action recognition approaches propose different strategies,

such as learning the most suitable viewpoint for each action [179] or transforming all coor-

dinates to a common coordinate system [134, 150]. However, this kind of transformation

cannot be directly applied to hand action recognition, where orientation plays a key role.

In order to get more informative pose representations than the raw joint coordinates,

many approaches propose computing additional geometric (pose) features. Chen et al. [25]

use static features (distance and angles of pairs of joint coordinates) and temporal features

(velocity and acceleration of joint coordinates). Zhang et al. [180] calculate distances

between joints and planes, and Yang et al. [174] use joint distances and their motion

speeds at different scales.

Our approach proposes a simplification of the skeleton representation reducing coordi-

nate redundancy by using just a set of key joints. Then, simplified skeleton coordinates are

standardized by applying scale and location invariant transformations. Specific geometric

features are calculated to encode relevant translation information (lost in the standardiza-

tion) and orientation-aware information.
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4.2.2 Action recognition models

As in many other fields, deep learning has become state-of-the-art in action recognition.

Particularly relevant for this work, Recurrent Neural Networks (RNN) have been widely

used to model temporal dependencies in hand action recognition. Ma et al. [102] use an

LSTM-based Memory Augmented Neural Network to model dynamic hand gestures. Chen

et al. [27] use an LSTM Network to combine skeleton coordinates, global motions, and

finger motion features. Li et al. [84] combine a bidirectional Independently Recurrent

Neural Network with a self-attention-based graph convolutional network.

Other works make use of Convolutional Networks. Liu et al. [94] recognize posture and

action by using 3D convolutions. Yang et al. [174] use 1D convolutions to process and fuse

different hand motion features. Hou [57] proposes to focus on the most informative hand

gesture features by using a ResNet-like 1D convolutional network with attention.

Our method uses a Temporal Convolutional Network (TCN) [8, 157] that implements 1D

dilated convolutions to learn long-term temporal dependencies from variable-length input

sequences, achieving comparable or better results than RNNs [8]. TCNs have demonstrated

good performance on full-body action recognition, both with unsupervised learning [150]

and supervised learning [134, 71].

4.2.3 Generalization to unseen action categories

Learning a model able to classify unseen categories is a challenging task. It is commonly

addressed by encoding every new data sample into a descriptor and using a K-Nearest

Neighbors classifier (KNN) to evaluate and assign labels according to the similarity between

a few new category reference samples and the target samples [166].

Several works [91, 134] address this problem for action recognition by extracting inter-

mediate feature maps from a supervised action recognition model. Koneripalli et al. [74]

train an autoencoder to learn these descriptors in an unsupervised fashion. Ma et al. [102]

learn these descriptors directly in a semi-supervised manner by training an encoder with

metric-learning techniques. Other works use word2vec [51] and sent2vec [65] approaches

for descriptor learning.

Previous works [91, 51, 65] are aimed to recognize unseen full-body action categories

where no drastic camera view-points are found. Up to our knowledge, generalization to

unseen hand viewpoints and domains is still to be studied. The present work uses metric

learning and specific data augmentation to learn meaningful hand sequence descriptors.

Our framework performs accurate action recognition of sequences from unseen categories

and recording viewpoints.

4.3 Hand action recognition framework

The core of the proposed framework is the motion representation model summarized in

Fig. 4.1. First, our approach calculates specific pose features for each skeleton (in our case

already pre-computed and available in public datasets, see Section 4.4.1.1). These features

are fed to a Temporal Convolutional Network to generate a set of motion descriptors.

Additionally, a motion summarization module combines them, according to their relevance,

into the final motion representation. In the following, we describe these steps, as well as
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how to train our motion representation model, both for intra-domain and cross-domain

classification.

4.3.1 Hand pose modeling

Human hand motion sequences are defined by sets of T hand skeleton poses X = {X1, ..., XT },

extracted from video frames. Each hand skeleton Xt is composed of a set of J joint coor-

dinates, Xt = {x1, ..., xJ}, xjϵR3 (i.e., the position of the joints in Euclidean space), which

are logically connected by a set of B bones (see Fig. 4.2).

4.3.1.1 Skeleton standardization

Since motion information has high variability across different action domains, we propose

several steps to standardize the skeleton representation to help generalization of the motion

representation model.

First, hand joints belonging to the same bones (fingers) are highly coupled and can

be represented with a smaller number of degrees of freedom. Based on this assumption,

we propose to use just a subset of 7 joints to define a hand pose (see Fig. 4.2),

corresponding to the wrist, the top of the palm, and the tips of the 5 fingers; which we

connect with a total of 6 hand bones, one for the palm and one more for each one of

the fingers. This simpler skeleton representation makes the learning process easier and less

prone to overfitting.

(a) 20-joint hand skeleton (b) 7-joint hand skeleton

Figure 4.2: Hand skeleton simplification. a) refers to a detailed hand skeleton of 20 joints

(dots) connected by 19 bones (lines). b) refers to our proposed hand skeleton simplification

of 7 joints (dots) and 5 bones (lines).

Secondly, since actions can be performed by different people with heterogeneous hand

sizes and recorded at different scales, we standardize each skeleton pose Xt to achieve

scale-invariant skeleton representations X̂t by applying, to all the hand coordinates, the

transformation that makes the palm of size equal to 1:

X̂n =
Xn

|P |
, (4.1)

where |P | is the euclidean distance between the wrist and the top of the palm (both joints

included in original and simplified 7-joint formats).
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Finally, since actions must be recognized regardless of the position where they are

executed, we compute location-invariant coordinates (relative coordinates) by translating

the top of the palm to the origin of the reference coordinate system. Note that these relative

hand coordinates describe properly the intra-relation of the hand joints, but they are now

missing the information related to the hand motion direction.

4.3.1.2 Hand pose description

Different from full-body motion sequences (e.g., walking) where their movement direction

can be inferred from the relative coordinates of its bones (e.g., legs), hands can be translated

through any direction without any change of their relative coordinates. Since the translation

information is essential in certain actions (e.g., pointing to specific directions), we generate

extra translation and orientation-aware features from the original hand skeletons:

• Difference of coordinates, defined as the difference of each joint coordinate with

itself in the previous time-step. These features describe the translation direction and

speed of each coordinate for each of the 3 axes:

dcoord(t, j) = xj,t − xj,t−1, ∀jϵJ, tϵT (4.2)

• Difference of bone angles, defined as the difference of the elevation φ and azimuth

θ of a bone bϵB with itself in the previous time-step. These features describe the

rotation direction (with respect to the world coordinates) and rotation speed of each

bone:

dφ(t, bφ) = bφ,t − bφ,t−1,∀bϵB, tϵT (4.3)

dθ(t, bθ) = bθ,t − bθ,t−1,∀bϵB, tϵT (4.4)

Our final hand representation is a feature vector of size 54 (Fig. 4.1.a) (7 × 3 relative

hand coordinates, 7 × 3 coordinate difference features, and 6 × 2 bone angle differences).

4.3.2 Motion representation model

The core of our action recognition framework is a model that encodes the skeleton features

from each frame, described in the previous Section, into single motion descriptors with a

Temporal Convolutional Network (TCN) [8, 157]. The TCN processes sequences of skeleton

features, generating a descriptor at each time-step per-frame descriptors) that represents

the motion performed up to that frame, i.e., with no information from the future (see Fig.

4.1.b).

For a given motion sequence, the last descriptor generated by the TCN is frequently

the one used to represent the action [134] since it encodes all the information up to that

point. However, training motion sequences are not frequently segmented in time with high

precision. In these cases, sequence endings contain frames that are not informative for

the action they represent. Consequently, the last descriptor can introduce some noise that

hinders the training.

To alleviate this issue, we learn the relevance of the temporal patterns of the actions.

More precisely, we add a motion summarization module after the TCN (see Fig. 4.1.c),

which combines all the per-frame descriptors generated for the input hand motion, up the
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Figure 4.3: Motion summarization module. Per-frame motion descriptors are simplified

with a 1D Convolutional layer. They are grouped with a single perceptron layer to calculate

their summarization weights. The motion sequence is summarized into a final motion

descriptor by performing a weighted average over the initial per-frame motion descriptors.

TCN memory length, by performing a weighted average over them (details in Fig. 4.3).

These weights represent how important each descriptor is for the final motion representa-

tion. They are learned with a simple Neural Network trained end-to-end along with the

TCN. This network consists of a single 1D Convolutional layer with kernel 1 that reduces

the dimensionality of the per-frame descriptor, and a single Fully Connected layer with

a sigmoid activation layer, that takes as input all the simplified descriptors and outputs

a vector of categorical probabilities (i.e., descriptor weights). These final weights are L1

normalized before performing the final descriptor summarization.

This summarization module efficiently describes hand motion sequences and helps the

TCN to focus just on meaningful data during training. However, there are real use cases

where actions, at test time, present a longer length than our motion representation module

can handle. In these cases, although the summarization module has been trained along with

the TCN, it is better to discard it and classify individually all the per-frame descriptors

generated by the TCN, which still contain meaningful motion representations.

So far, we have shown how to encode a motion sequence X into a robust simple de-

scriptor z = f(X), where the function f represents our motion representation module (Fig.

4.1). In the next two sections, we describe how to optimize these motion representations

to perform intra-domain classification and cross-domain classification.

4.3.3 Intra-domain classification

Intra-domain hand action classification aims to recognize the same action categories (labels)

seen during the learning phase, with no drastic variation in the camera viewpoint. For this

classification, intra-domain class probabilities P = g(z) are predicted by a linear classifier g

trained end-to-end along with our motion representation model f (represented in Fig. 4.1).

Intra-domain classification is learned by the optimization of the categorical cross-entropy
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loss:

CCE = −ΣC
c=1yi,c log (pi,c) , (4.5)

which evaluates the predicted probabilities pi,c that belongs to a class cϵC, given their true

label yi.

Each training iteration includes a mini-batch composed of motion sequences sampled

uniformly for each action category (2 different samples per category in our experiments).

To ensure the generalization to different motion artifacts, which can be hard to achieve

with small datasets, each motion sequence within the mini-batch is included three times

with different data augmentations. This data augmentation is applied to the per-frame

skeletons Xt, before the feature computation from Section 4.3.1, as follows:

• Movement speed variation. Joint coordinates are randomly re-sampled by interpola-

tion over the temporal dimension. This simulates different motion speeds, and thus,

different sequence lengths.

• Frame skipping. Since contiguous video frames contain similar joint information, we

only use one out of every three frames, reducing the data redundancy and making

the learning process easier. Motion sequences are then initialized randomly between

the three first frames.

• Random cropping. When the sampled motion sequence is longer than a defined

maximum length (i.e., TCN memory length), it is randomly cropped.

• Random noise. Gaussian noise is added to the skeleton coordinates to simulate inac-

curate joint estimations.

• Random rotation noise. The whole motion sequence is rotated randomly over the 3D

axes. This rotation is limited to low angles, to simulate just subtle variations in the

recording viewpoint.

4.3.4 Cross-domain classification

Cross-domain hand action classification aims to recognize motion sequences whose action

category and recording camera viewpoint were not present in the training data. To obtain

view-point agnostic motion representations, our motion representation model f is trained,

via contrastive learning, to project motion descriptors in a space where descriptors belong-

ing to the same action category (label) must be close to each other (similar descriptors),

and far away from other category descriptors (dissimilar descriptors). This is achieved by

optimizing the normalized temperature-scaled cross-entropy loss (NT-Xent) [26]:

li,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
, (4.6)

which is computed at each training iteration for each pair of actions i and j that belong

to the same action category. NT-Xent maximizes the cosine similarity sim of both motion

descriptors zi and zj and minimizes their similarity to the descriptors related to different

action categories k. τ is a temperature parameter.
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The training of our motion representation model is performed with the same batch

construction and data augmentation techniques described in Section 4.3.3. Additionally,

we add an extra data augmentation step that rotates randomly all the motion sequences of

the mini-batch over the three axes. This batch augmentation simulates arbitrary camera

recording perspectives, which is crucial to boost the performance achieved with the NT-

Xent loss in different domains and camera viewpoints.

Once this generic motion representation model has been trained on a given source

domain, we use an N-shot approach [166] and generate motion descriptors for a small set of

N reference motion sequences (motion reference set) from a different target domain, with

no specific training on the latter. To perform action classification in this new domain,

we use a simple K-Nearest Neighbors classifier (KNN) to assign a label to new sequences

depending on their descriptor distance to the descriptors from the motion reference set. To

improve the performance of the KNN, we extend our motion reference set by applying the

same data augmentation strategies described in Section 4.3.3, and we compute descriptors

for all the new augmented sequences.

4.4 Experiments

This Section details the datasets used in the evaluation and our implementation details.

Then, we expose the main framework design choices and evaluate its performance for cross-

domain and intra-domain action recognition. Finally, we evaluate the time performance of

the presented approach.

4.4.1 Experimental setup

4.4.1.1 Datasets

The presented approach has been validated on three different datasets (see frame samples

in Fig. 4.4), with different application domains and camera viewpoints.

SHREC-17 [33] contains motion sequences (22-joint hand skeletons) related to human-

machine interaction domains recorded from a frontal third-person view. The data is

categorized with two levels of granularity, presenting 14 and 28 action categories respec-

tively. The dataset contains 1960 motion sequences for training and 840 sequences for

validation. Actions are performed by 28 different users.

F-PHAB [43] contains motion sequences (21-joint hand skeletons) recorded from an

egocentric view related to kitchen, office, and social scenarios, which involve the interac-

tion with different objects. Actions have been performed by 6 different users and labeled

with 45 action categories. The dataset consists of 1175 motion sequences which are split

into training and validation as stated by the authors [43]: 1:3, 1:1, 3:1 splits the mo-

tion sequences on different training:validation ratios (e.g., in the 1:3 split, 33% of the data

is used for training and the remaining 66% is used for validation); cross-person 6-fold

leave-one-out cross-validation, one fold for each user motion sequence. Only the original

cross-subject and 1:1 splits are available, for the other two data partitions we create three

random data folds to perform 3-fold cross-validation.
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MSRA [151] contains motion sequences (17-joint hand skeletons) of 17 different Amer-

ican Sign Language gestures performed by 9 different users. Each gesture sequence has a

length of 500 frames recorded from a third-person view. For the classification of this

data, we use the motion samples from the two first subjects as reference, leaving the re-

maining seven as the target samples, as suggested in [94].

(a) SHREC-17 depth sample frames

(b) F-PHAB RGB sample frames

(c) MSRA depth sample frames with skeleton joints

Figure 4.4: Sample frames from the different evaluated data domains. (a) SHREC-17

dataset. Examples of actions grab, expand, and rotation clockwise. (b) F-PHAB dataset.

Examples of actions clean glasses, handshaking, and pour juice. (c) MSRA dataset. Exam-

ples of the signs IP, RP, and three.

4.4.1.2 Implementation and training details

Hand skeleton Since each dataset used provides a different skeleton joints format, we

use the 20 joints that SHREC-17 and F-PHAB have in common (see Fig. 4.2), and our

proposed 7-joint skeletons representation, described in Section 4.3.1, suitable for the three

datasets considered.

Motion representation architecture our motion representation model backbone is a

TCN with two stacks of residual blocks with dilations of 1, 2, and 4 for the layers within
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each block, and convolutional filters of size 4, making a memory length of 32 frames long.

Since the feature pre-processing filters out 2 out of 3 consecutive frames, this memory

length covers 96 real frames. Our backbone uses 256 filters in each convolutional layer,

generating motion sequence descriptors of size 256. The summarization module reduces

their dimensionality to 64 with a single 1D convolutional layer and then a single perceptron

layer of size 32 generates the final descriptor weights. When the sequence summarization

module is not used, the descriptor generated by the TCN at the last motion time-step is

used for the action representation (Last TCN descriptor). τ from Eq. 4.6 is set as 0.07.

KNN classifier Our KNN classifier weights pairs of target-reference descriptors accord-

ing to the inverse of their distance. We validate the use of different numbers of neighbors,

i.e., 1, 3, 5, 7, 9, 11, and we report the results of the neighbor that optimizes the final clas-

sification accuracy. Additionally, the reference augmentation step increases the reference

descriptors set randomly up to 40 times.

4.4.2 Framework design evaluation

This subsection analyzes and validates the main components of our framework using the

cross-domain approach of Section 4.3.4 since this setup is more demanding in terms of

generalization capabilities. We train our base motion representation model on the front view

SHREC-17 dataset. Then, we evaluate its accuracy on the egocentric F-PHAB validation

splits (described in Section 4.4.1.1).

To analyze the effect of different design choices, we start representing the motion se-

quences with the last descriptor generated by the TCN at the last time steps (no use of

the motion summarization module).

First, we show the benefits of using our proposed hand skeleton simplification. Table

4.1 shows in each column the accuracy obtained in each of the F-PHAB validation splits.

Our proposed simplified 7-joint skeleton format reduces the coordinate redundancy and

facilitates the generalization to other domains by reducing the overfitting on the source

one. From now on, we set the 7-joint skeleton format as default.

Skeleton size 1:3 1:1 3:1 cross-person

20 joints 63.8 69.9 69.8 51.4

7 joints 66.3 71.0 73.8 53.5

Table 4.1: Influence of the number of skeleton joints in the hand representation.

Motion representation model trained on SHREC. Action recognition accuracy validated on

F-PHAB.

Table 4.2 shows the influence of using different classes to discriminate motion sequences

while training the motion representation model. Higher class granularity (28 action cat-

egories) manages to improve the cross-domain performance by learning more informative

motion descriptors. From now on we set this class granularity as default for training.

Results from Table 4.3 show how our summarization module, from now on set as the

default motion representation method, improves the classification accuracy with respect to

the last descriptor of our TCN backbone. The summarization module suppresses noisy and
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SHREC categories 1:3 1:1 3:1 cross-person

14 58.3 65.4 65.9 48.9

28 66.3 71.0 73.8 53.5

Table 4.2: Influence of the training categories. Motion representation model trained

on SHREC with 7-joint skeletons. Action recognition accuracy evaluated on F-PHAB.

non-informative per-frame descriptors, achieving a more informative motion representation.

Interestingly, our motion summarization module learns good motion representations even

when not many reference actions are available (splits 1:3). Another interesting finding is

that augmenting the motion reference set helps to increase the accuracy in all the data

splits by a noticeable margin.

Action descriptor 1:3 1:1 3:1 cross-person

Last TCN descriptor 66.3 71.0 73.8 53.5

Summarization 70.6 75.5 77.7 58.4

Summarization* 76.2 79.7 82.0 62.7
∗ includes an augmented motion reference set

Table 4.3: Influence of the motion sequence summarization technique. Motion

representation model trained on SHREC (7-joint skeletons and 28 labels). Action recog-

nition accuracy evaluated on F-PHAB. Last TCN descriptor : descriptor generated by the

TCN at the last time-step. Summarization: descriptor generated by our summarization

module.

However, we still find an accuracy drop when generalizing to actions of users not present

in the motion reference set (cross-person splits). This is due to the high inter-subject action

variability of the F-PHAB dataset, and because no data from this dataset has been used

to train our representation model.

Figure 4.5 shows the weights learned by our summarization module on the F-PHAB

validation split (1:1). This plot illustrates the intuitive idea that later per-frame descriptors

are more informative than earlier ones for final motion sequence representation. However,

computed weights do not exhibit a continuous growth over time, probably because contigu-

ous time descriptors contain similar information. Although final descriptors may encode

information about the whole action, they may also encode motion not related to the action

itself but with idle poses for example. Therefore, they are not always the most relevant for

the final action representation.

4.4.3 Cross-domain action classification

This experiment evaluates the cross-domain generalization of our framework by classifying

motion sequences from action categories and camera viewpoints not seen in the training

data. For this experiment, we train our motion representation model as defined in Section

4.3.4 only on the front view SHREC-17 dataset (28 labels), and we evaluate it on the

egocentric F-PHAB dataset. Results from our framework correspond to the processing of

7-joint skeletons and the use of our proposed motion summarization module.
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Figure 4.5: Relevance weights generated by the summarization module for each action

sample from the F-PHAB validation split (1:1). Red line on top shows the average of all

generated weights. Frames correspond to the action of pour liquid soap.

Table 4.4 shows the accuracy of the best-performing methods on the F-PHAB dataset,

trained as an intra-domain problem (upper block), and the results of our cross-domain

approach (bottom block). The latter includes the evaluation of DD-Net [174], one of the

best-performing methods on the SHREC-17 classification benchmark. We used the available

public code to train it with the SHREC-17 dataset (20-joint skeletons) as the authors state,

extracting F-PHAB descriptors from its backbone and classifying them with our N-shot

approach. Results from its evaluation show a lack of domain adaptation. Our method

clearly outperforms the rest in this scenario.

Model 1:3 1:1 3:1 cross-person

RGB [39] – 75.3 – –

Depth [113] – 70.61 – –

LSTM [189] 58.75 78.73 84.82 62.06

DD-Net [174] 75.09 81.56 88.26 71.8

Gram Matrix [181] – 85.39 – –

Two-stream NN [84] – 90.26 – –

DD-Net [174] 59.6 63.7 67.5 51.2

Ours 70.6 75.5 77.7 58.4

Ours* 76.2 79.7 82.0 62.7
∗ includes an augmented motion reference set

Table 4.4: F-PHAB accuracy comparison. Upper block: results for methods trained on

the F-PHAB dataset (intra-domain classification). Bottom block: methods trained on

SHREC-17 dataset (cross-domain classification).

The results show that our approach clearly outperforms the RGB [39] and depth-based

[113] models trained on the target domain. It is noticeable that we also get better or

comparable results than a regular LSTM network [189] trained on the target dataset,

especially when not many reference actions are available (1:3 split) or when not all the
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subjects are present in the reference split (cross-person splits). Although our cross-domain

performance is behind the best intra-domain classification model [181], we show later in

Section 4.4.5 that we outperform them when training in the same domain. Remember that

no specific training with the F-PHAB data splits has been performed in our evaluations.

4.4.4 Cross-domain classification of long video sequences

In this experiment, we use the MSRA dataset, with hand motion sequences much longer

than the memory of our representation model. This helps to illustrate two characteristics

of our method. First, the motion summarization module (Fig. 4.1.c) not only helps to

summarize the input motion but also to enforce the TCN to generate informative per-frame

descriptors (Fig. 4.1.b). Second, per-frame descriptors can also be used to describe the

input motion at each time step and perform online and real-time recognition (see Section

4.4.6)

This experiment uses the same model trained in Section 4.4.3. We evaluate its cross-

domain performance in the MSRA dataset. Since sequences are too long for our sum-

marization, we perform the KNN classification of all the motion descriptors generated by

the TCN at each time-step (4.1.b), denoted as online action classification. We report the

average of class probabilities of the frames within a video sequence for comparison with

previous works, denoted as video classification. For computational reasons, we randomly

select just 8000 reference descriptors for the KNN evaluation.

Table 4.5 shows that, even though MSRA motion sequences do not correspond to the

kind of motion seen in the training data, our approach achieves a high online per-frame

classification. Moreover, a simple average of the predicted frame probabilities results in a

97.1% accuracy, comparable to current state-of-the-art results specifically trained on the

MSRA dataset. In this case, reference motion data augmentation does not provide an edge,

probably because MSRA motion sequences already contain enough hand pose variations.

Model Online classification Video classification

3D PostureNet [94] – 98.56

Ours 85.8 97.1

Ours* 86.7 97.1
∗ includes an augmented motion reference set

Table 4.5: MSRA accuracy comparison. Batched vs. online predictions. Our results

correspond to our motion representation model trained on SHREC-17 data (cross-domain).

4.4.5 Intra-domain classification and reference actions study

This experiment evaluates our method for intra-domain classification using the linear clas-

sifier from Section 4.3.3.

4.4.5.1 SHREC-17 evaluation

Table 4.6 shows the classification accuracy of our framework trained and evaluated on the

SHREC-17 dataset. Results show that, even though our method was designed for cross-

domain classification, it gets comparable results to the state-of-the-art when trained with
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the target dataset. Note that we are using just 7 out of the 22 original skeleton joints,

which helps generalization to other datasets but it might lose domain-specific information.

Model SHREC 14 SHREC 28

DD-Net [174] 94.6 91.9

Two-stream NN [84] 96.31 94.05

Ours 93.57 91.43

Table 4.6: Intra-domain classification on SHREC-17.

4.4.5.2 F-PHAB evaluation

Table 4.7 shows the classification accuracy of our framework trained and evaluated on each

one of the F-PHAB data splits. DD-net results are obtained by training on the F-PHAB

dataset with the original code and following the original paper [174]. Results show how

we manage to outperform the current state-of-the-art in all the splits. Interestingly, our

method excels even when less training data is available (1:3). This generalization is visible

even on the high inter-subject variability (cross-person) [43].

Model 1:3 1:1 3:1 cross-person

DD-Net [174] 75.09 81.56 88.26 71.8

Two-stream NN [84] – 90.26 – –

Ours 92.90 95.93 96.76 88.70

Table 4.7: Intra-domain classification on F-PHAB.

4.4.6 Time performance

The presented work is a lightweight solution, able to perform online and real-time hand

action recognition (like in Section 4.4.4). Our base motion representation model (4.1.b) gets

per-frame descriptors in 0.8 ms per time-step in GPU (NVIDIA GeForce GTX 1070) and

1 ms in CPU (Intel Core i7-6700). The motion summarization module (Fig. 4.1.c) and the

linear classifier (intra-domain) from Section 4.3.3 can be used at a negligible cost. The KNN

classifier (cross-domain) from Section 4.3.4 has a cost O(k ∗ log(n)) that depends on the

number of neighbors k and the size n of the motion reference set. For instance, the KNN

classification on the 1:1 data split from F-PHAB (575 motion reference sequences), just

takes 0.2 ms per motion descriptor when using 5 neighbors and 0.5 ms when augmenting

the motion reference set 40 times.

4.5 Conclusions

This Chapter introduces a hand action recognition solution, specifically designed to be ro-

bust to different action domains and camera perspectives, and able to perform in online and

real-time domains. Our solution consists of a framework that, given a set of skeleton mo-

tion sequences, extracts sets of pose features adapted to heterogeneous motion kinematics.
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Then, our motion representation model uses a Temporal Convolutional Network to generate

per-frame motion descriptors, and a simple motion summarization module weights them,

according to their relevance, generating the final motion representation. The proposed

motion representation model is trained and validated in the following two problem setups.

For intra-domain classification, we achieve better or similar results than state-of-the-art

methods in well-known benchmarks. More importantly, in cross-domain classification, our

approach is able to generalize to unseen target action domains and camera viewpoints,

achieving comparable results to the state-of-the-art methods trained on the target data

domains.



Chapter 5

Scene Recognition with event

cameras

Previous Chapters were based on the analysis of RGB video data or skeleton coordinates

extracted from it. This Chapter studies the use of event cameras and develops methods

to process the data that these sensors record. Different from traditional cameras, event

sensors are able to efficiently capture just the sparse changes in the scene, ignoring the re-

dundant static information and, similar to skeleton coordinates, abstracting the appearance

of the scene for better generalization. Moreover, event cameras present high robustness to

challenging lighting conditions and high temporal resolution. The starting hypothesis for

our work is that prior event-based work does not sufficiently benefit from the event camera

efficiency properties. This leads to deep learning models that, although achieving good

accuracy, present a level of efficiency not suitable for low-resource environments. In the

following, we analyze the potential of the event cameras and design a framework that ef-

ficiently benefits from the event data properties, while achieving high performance. Our

framework is tested for event stream and dense per-pixel estimation, and includes an exten-

sion to perform multi-modal learning, demonstrated with an application that learns jointly

from event data and grayscale images.1

5.1 Introduction

Event cameras are bio-inspired sensors that register, with minimal power consumption,

changes in intensity at each pixel of the sensor array. Contrary to traditional cameras,

they work in a sparse and asynchronous manner, with an increased high dynamic range and

high temporal resolution (in the order of microseconds). These characteristics have pushed

the research of many event-based perception tasks such as action recognition [15, 61], body

[18, 128] and gaze tracking [6], depth estimation, [45, 167] or odometry [72, 126], interesting

for many applications that involve low-resource environments and challenging motion and

lighting conditions, such as AR/VR or autonomous driving.

Processing information from event-based cameras is still an open research problem.

Top-performing approaches transform event streams into frame-like representations, ignor-

1Code, trained models, and supplementary video available at: https://github.com/AlbertoSabater/

EventTransformer and https://github.com/AlbertoSabater/EventTransformerPlus
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Figure 5.1: Event Transformer and Event Transformer+ overview. Areas (activated

patches) from event streams with sufficient event information are extracted from event

frame representations and processed by the EvT orEvT+ backbone to update a set of

latent memory vectors. The latest version of this memory is used for a final event stream

classification.

ing their inherent sparsity, and using standard heavy processing algorithms such as Con-

volutional Neural Networks [5, 61, 9, 19] and/or Recurrent Layers [61, 19]. Other methods

that better exploit this sparsity, such as PointNet-like Neural Networks [165], Graph Neu-

ral Networks [15, 34] or Spike Neural Networks [67, 145], are more efficient but do not

reach the same accuracy. As a result, there is a need for methods that put to good use

all the potential of event-based cameras for efficiency and low energy consumption while

maintaining high performance.

This Chapter introduces two models, Event Transformer (EvT ) and its extension Event

Transformer+ (EvT+), designed to tackle the event data sparsity and be highly efficient

while obtaining top-accuracy results. Both methods are based on two new proposed ideas

(summarized in Fig. 5.1): 1) the use of a sparse patch-based event data representation that

only accounts for the areas of event streams with registered information, and 2) a compact

transformer-like backbone based on attention mechanisms [160] that naturally works with

this patched information. The proposed transformer-based backbone, in contrast to pre-

vious frame-based methods, requires minimal computational resources and makes use of a

set of latent memory vectors to reduce the computational complexity, but also to encode

the seen spatio-temporal event information.

Although both methods share these principles, EvT+ extends EvT in three ways.

First, it uses a finer patch-based event data representation with richer spatio-temporal

information, while still benefiting from its sparsity. Second, it improves the Event Trans-

former backbone with a more robust data processing, which we adapt to jointly use infor-
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mation from different data modalities (e.g., event data and grayscale images). In addition

to this, we also show how Event Transformer+ can be combined with different output heads

to perform either event stream predictions, i.e., classification, or per-pixel predictions, i.e.,

depth estimation.

We have evaluated EvT and EvT+ in different real event data benchmarks for action and

gesture recognition. We have also evaluated EvT+ for dense depth estimation, including

a use-case of a multi-modal setup where event data is processed jointly with grayscale

images. In all of these tasks, the presented methods achieve better or comparable results

to the state-of-the-art, and we show how the improvements from EvT+ outperform EvT for

event stream classification. Moreover, we include a thorough analysis of the efficiency and

computational complexity of these methods, where we show that both of them are able to

work with minimal latency both in GPU and CPU, improving prior work efficiency.

5.2 Related work

This Section summarizes the most common approaches for event data representation as

well as event-based Neural Network architectures that process them. It also includes a

brief summary of available event-based datasets.

5.2.1 Event data representation

Different from traditional RGB cameras, event cameras log the captured visual information

in a sparse and asynchronous manner. Each time an intensity change is detected, the camera

triggers an event e = {x, y, t, p} defined by its location (x, y) within the space of the sensor

grid (H ×W ), the timestamp t of the event (in the order of µs) and its polarity p (either

positive or negative change).

In order to process the event data, it is first transformed into a representation F . This

event representation aggregates the event data ε = {e1, e2, e3, ...} | eitϵ∆t generated during

a time-window ∆t that covers a time-span from ti to te. These representations can be

created differently and, depending on their nature, we divide them into two categories:

event-level representations usually treat the event data as graphs [165, 14, 15, 34] or

point-clouds [140, 161], taking advantage of the event sparsity to achieve better efficiency.

Differently, frame-based representations group incoming events into dense frame-like

arrays, ignoring the event data sparsity but easing a later learning process to achieve

better performance. Our work is built on the top of frame-based representations, where

we find plenty of variations in the literature. The time-surfaces [77] build frames encoding

the last generated event for each pixel. SP-LSTM [111] builds frames where each pixel

contains a value related to the existence of an event in a time-window and its polarity. The

Surfaces of Active Events [108] builds frames where each pixel contains a measurement

of the time between the last observed event and the beginning of the accumulation time.

Motion-compensated [122, 162] generate frames by aligning events according to the camera

ego-motion. [46] binarizes frame representations in the temporal dimension, achieving a

better time resolution. TBR [61] aggregates binarized frame representations into single-bin

frames. M-LSTM [19] uses a grid of LSTMs that processes incoming events at each pixel

to create a final 2D representation. TORE [9] uses FIFOs to retain the last events for each

pixel.



62 Chapter 5. Scene Recognition with event cameras

In our solutions (see Fig. 5.1), similarly to previous work [15, 61, 5, 165, 9], we create a

frame representation for each time-window. But contrary to prior work, instead of process-

ing the whole frame, we propose to use a patch-based event data representation that

extracts only the patches (tokens T ) of intermediate frame representations with sufficient

logged event information. The proposed hybrid solution benefits from both the event-level

representations for a later more efficient event data processing since we, to a certain ex-

tent, tackle the sparsity of the event data. But we also benefit from the robustness of the

frame-based representations to achieve better performance.

5.2.2 Neural Network architectures for event data

Deep Learning-based techniques have shown promising results working with event camera

data. This Section discusses the main existing architectures to process different types of

event representations, as well as to aggregate the processed information from several time-

windows, both for event stream classification and dense predictions. Besides, we provide

a short overview of Visual Transformers, since they are actually one of the pillars of the

architecture proposed in this work to process events.

Event stream classification has been addressed in different ways in the literature.

First, we find some efficient architectures that process sparse event representations such

as Spike Neural Networks [67, 145, 172], PointNet-style Networks [165] or Graph neural

Networks [14, 15, 34]. Most commonly, others rely on CNNs to process event-frame rep-

resentations [5, 61, 9, 19]. These methods process whole frames, even if no events are

triggered in large parts of them. Despite usually achieving higher accuracy than event-

level representations, this unnecessary processing makes frame-based approaches consume

more computational resources than needed. For long event stream processing, they are

split into shorter time-windows that are frequently processed independently, and then ag-

gregated with Recurrent Networks [61, 168], CNNs [5, 61], temporal buffers [9, 34], or

voting between the intermediate results [61].

Depending on the aggregation strategy, we consider that an event-processing algorithm

is able to perform online inference if it can evaluate the information within each time-

window incrementally, as it is generated, and then perform the final visual recognition with

minimal latency, as opposed to the processing of all the captured information in a large

batch. Our approach performs online inference by updating incrementally a set of latent

memory vectors with simple addition operations and processing the resulting vectors with

a simple classifier.

Event stream dense estimation is mostly addressed in the literature with dense

event-frame representations and CNNs to process them. LMDDE [55] uses fully convolu-

tional networks to process the event data and ConvLSTMs to handle their temporality.

ULODE [188] trains a CNN to deblur event representations and predict optical flow, ego-

motion, and depth. ECN [175] uses an Evenly-Cascaded Convolutional Network to predict

optical flow, egomotion, and depth. DTL [164] use CNNs to translate events to images

for semantic segmentation and depth estimation. RAM-Net [45] uses CNNs to encode

both grayscale and event frames and ConvGRUs to update a hidden state with the tem-

poral information, used later to perform multi-modal depth estimation. LMDDE [55] and

RAM-Net [45] propose synthetic datasets to be used as pre-training.

Differently, we complement our sparse patches (i.e., Transformer tokens T ), already
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processed by our backbone, with dummy tokens to create a dense representation that is

then updated with the information from our latent memory vectors. Then, similar to RGB

solutions, [121] we use skip connections between the self-attention blocks in the encoder

and the dense output head to generate the final dense output.

Visual Transformers, initially introduced for Natural Language Processing [160],

have recently gained popularity for Visual Recognition tasks. Different from other archi-

tectures, they are able to ingest lists of tokens of variable length and process them with

attention mechanisms. In other words, contrary to convolutions, attention mechanisms

focus on the whole input data (structuring it as a Query (Q), Key (K), and Value (V )) to

capture both local and long-range token dependencies:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (5.1)

Although these models have barely been studied with event data, when it comes to RGB

data they can be applied to the features generated by CNNs [22] or, more commonly, to

patches (i.e., tokens) extracted from the input images [36, 96]. When working on video data,

some methods [7, 97] process patches from different video frames together or aggregate the

temporal information with LSTM layers [60]. Of special relevance for this work is Perceiver

[64, 63], a transformer that uses latent vectors to process the input data and bound the

quadratic complexity of transformers.

In our case, as the patches T (whose length varies on the event data sparsity) from new

time-windows are being generated, they are processed by an attention-based backbone.

This model includes a set of M latent memory vectors that help in this processing, but

also these vectors are incrementally updated to encode the information seen so far. The

final processing of the latent vectors allows for performing tasks such as event stream

classification or dense per-pixel estimations.

5.2.3 Event dataset recordings

Despite their promising applicability, there are still not many large-scale public datasets

recorded with these cameras in real scenarios. Therefore, some methods seek the translation

of RGB datasets to their event-based counterpart. Earlier event-based solutions [112, 143,

85, 15, 58] display RGB data in an LCD monitor that they record with an event camera.

More recent works introduce the use of learning-based emulators [109, 59, 44] to generate

event data. Still, these translated datasets cannot fully mimic the event data nature and

introduce certain artifacts, especially on their sparsity and latency. This happens because

events are triggered by unrealistic lightning conditions and are frequently dependent on

the fixed low frame rate of a monitor or the movement of a camera over static images. In

order to have a more reliable evaluation setup, we focus our experimentation on datasets

recorded with event cameras on real scenarios.

In the case of event stream classification, we use two datasets composed of long se-

quences of between 1 and 6 seconds that contain repetitions of shorter human gestures.

The DVS128 Gesture Dataset [5] is composed of 1342 event streams capturing 10

different human gestures (plus an optional extra category for random movements) and

recorded with 29 different subjects under three different illumination conditions. The SL-

Animals-DVS Dataset [158] is composed of 1121 event streams capturing 19 different
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sign language gestures, executed by 58 different subjects, under different illumination con-

ditions. Additionally, we use the ASL-DVS Dataset [14] which is composed of shorter

gesture sequences of about 100 ms. It contains 100,800 event streams capturing 24 letter

signs from the American Sign Language, performed by 5 different subjects. As proposed

by the authors, we randomly split the dataset with 80% of the data for training and the

remaining 20% for testing.

In the case of dense estimation, we use the MVSEC Dataset [187] for evaluation.

This dataset includes stereo automovilistic recordings with event data, grayscale images,

and depth maps recorded by a LiDAR, captured by day (2 recordings) and at night (3

recordings). For our evaluation, we use the depth maps as supervision to perform dense

depth estimation and, similar to previous work, we use the outdoor day 2 sequence for

training and the remaining 4 sequences for testing. Due to the corruption of different

sequences, we limit the training and validation to the data recorded from the left sensors.

Depth maps are always recorded at 20 Hz, but grayscale images are recorded at 45 Hz by

day and 10 Hz by night, therefore, they are not synced with the depth maps.

When it comes to the evaluation of the model efficiency, since there are no statis-

tics published from prior work on real event stream benchmarks, we use the simulated

dataset N-Caltech-101 [112]. This dataset is the event counterpart of the RGB images

from Caltech-101 [38]. Therefore, it is intended for classification and contains short event

recordings of the RGB images displayed on an LCD monitor.

5.3 Event Transformer

This Section describes the EvT framework, presented as an efficient solution for event data

processing. In the following, we describe its novelties in terms of event data representation

and backbone architecture.

5.3.1 Patch-based event data representation

Similar to previous frame-based methods [61, 5, 9], we transform the events within time-

windows ∆t into frame representations FH×W×B×2 where each location (x, y) | yϵH, xϵW

in F contains two histogram-like vectors of B bins, one for each polarity pϵ{0, 1}. Each

histogram discretizes ∆t in each bin and counts the number of positive or negative events

occurring in the corresponding period ∆t/B. Final representations are transformed as

F ′ = log(F + 1) to smooth extremely high values in highly activated areas.

Frame representations are then split into non-overlapping patches of size P × P . Then

we set each patch as activated if it contains at least m percent of non-zero elements, i.e.,

if at least a m percent of the pixels (x, y) within the patch have registered events. Acti-

vated patches are kept for further processing by EvT, while the non-activated patches are

discarded, reducing significantly the following computation cost and implicitly the ambient

noise. If the amount of activated patches is below a threshold n, i.e., there is not enough

visual information to be processed, we expand the time-window ∆t and increase the event

set ε with the new incoming events, recompute the frame representation and extract the

activated patches. This last step is repeated until we get at least n activated patches. As

a final step, we flatten the T activated patches to create tokens of size (P 2 ×B × 2), input

of the transformer backbone detailed in the next Section.
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(a) Backbone overview (b) Classification

architecture

Figure 5.2: Event Transformer (EvT) overview. (a) For each new event frame built from

an input event stream, Activated Patches are detected and pre-processed to build patch

tokens. These tokens are processed by our backbone, and the resulting output is used to

update a set of latent vectors. These latent vectors encode all the information received

so far. (b) The final version of latent vectors is used to perform the final event stream

classification.

5.3.2 Architecture

These activated patches are then processed, as detailed in Figure 5.2, following these steps:

1. Patch pre-processing. Each one of the T input activated patches is mapped to

a vector of dimensionality D. This vector length D is constant along the network. This

transformation (FF1 ) consists of an initial single-layer Feed Forward Network (FF), the

concatenation of 2D-aware positional embeddings, and a last single-layer FF Network. The

use of positional embeddings to augment the patch information is required since Trans-

formers, unlike CNNs, cannot implicitly know the locality of the input data. Before being

processed by the core of the backbone, transformed patches, i.e., patch tokens, undergo

another transformation (FF2 ) composed of a double-layer Feed-Forward Network and a

skip-connection to achieve a finer representation while preserving the information about its

locality.

2. Backbone processing. The core of the backbone is composed of a single Cross-

Attention and N Self-Attention modules that share the same architecture (detailed in Fig.

5.3). Similar to previous transformer-related works [160, 64, 7], it is composed of a Multi-

Head Attention layer [160], normalization layers, skip connections and Feed Forward layers.

The backbone first processes the latent memory vectors (as Q) on the basis of the patch

token information (as K − V ) (Cross-Attention) and resulting vectors are then refined (as

Q−K − V ) with no external information (Self-Attention).

3. Memory update. Once the patch tokens T and latent vectors have been pro-

cessed by the backbone, the resulting latent vectors in this iteration are combined with the

existing memory latent vectors with a simple sum operation. This augmented version of

latent vectors encodes a broader spatio-temporal information and will be used to process
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Figure 5.3: Architecture shared by the Cross and Self-Attention modules.

the activated patches from the following time-window.

4. Classification output. The final output of the proposed framework is obtained by

processing the latest version of the latent memory vectors, which contain the key spatio-

temporal information of the event stream seen so far. In our case, we perform a multi-class

classification by simply processing the latent vectors with two Feed Forward Layers and

Global Average Pooling (GAP), as detailed in Fig. 5.2b.

5.3.3 Optimization

Event Transformer is optimized for the event stream classification task with the Negative

Log-Likelihood loss:

LNLL = −
n∑
i

(YilogŶi + (1 − Yi)log(1 − Ŷi) (5.2)

between the predicted labels Ŷi and the groundtruth labels Yi. Besides that, we use label

smoothing [178] for regularization.

5.4 Event Transformer+

This Section describes the EvT+ framework, built as an extension of Event Transformer.

In the following, we describe its improvements in terms of event data representation and

backbone architecture.

5.4.1 Patch-based event data representation

Similar to TORE [9], in EvT+ we model the event information with queues FIFO(x, y, p, k)

(see Fig. 5.4a) that retain kϵK events for each pixel (yϵH, xϵW ) within the sensor array

and polarity (pϵ{0, 1}). But differently, for each pixel, we do not retain the last K events

but the last K events that are separated by at least a minimum time of Tm = ∆t
K . This

threshold is intended to avoid the over-representation of the information provided by the
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events that happen consecutively in time. Additionally, when no events are registered

in this time-window span for a certain pixel, we account for the ones triggered up to a

maximum time TM (TM ≫ ∆t and TM ≪ ti).

(a) Event accumulation using FIFOs of size K = 3

(b) Sample frame-like representation for different values of K

(c) Activated patches for different values of K

Figure 5.4: Patch-based event data representation. (a) For each pixel, we retain the last

K events taking into account sufficient sparsity in time. (b) Frame-like representations are

built with the timestamps of the queued events. (c) Frame representations are split into

patches, keeping only the activated patches, i.e., with enough event information.

Once the events are queued for a given time-window, we build the intermediate frame

representation FH×W×K×2 with their timestamps (see Fig. 5.4b). We normalize the pixels

to have a value in the range from 0 to TM and then scale their values to a 0− 1 range (Eq.

5.3):

F = F − (te − TM ), F = F/TM (5.3)

Therefore, the events queued at the end of the time-window will have values close to 1 and

the ones close to TM will have a value close to 0.

Then, similar to EvT, we split the generated frame-representations into non-overlapping

patches of size P × P (see Fig. 5.4c), and we set each patch as activated if it contains a

minimum m percent of pixels that have information of events triggered between ti and

te. Note that events triggered between TM and ti are not involved in the patch activation
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Figure 5.5: Event Transformer+ (EvT+) overview. The set of patch tokens T related to the

events within a time-window (or any other data modality such as images) is processed to

update a set of latent memory vectors. The latter accumulates the seen information and is

used to perform the final downstream task, i.e., in our framework event stream classification

or dense per-pixel estimation.

decision, since they have been considered in previous time-windows, but they complement

the patch information to ease later their processing. Activated patches are finally flattened

to create tokens T of size (P 2 ·K · 2), input of the transformer backbone detailed in the

next subsection.

5.4.2 Architecture

These activated patches are then processed, as detailed in Figure 5.5, following these steps:

1. Patch pre-processing Each one of the T input activated patches is mapped to a

vector of dimensionality D, constant along the network. This transformation (FF1 ) consists

of an initial Feed Forward layer (FF), the concatenation of 2D-aware positional embeddings,

and a last FF layer. An initial set of N1 Self-Attention blocks is then used to analyze long

and short-range spatial dependencies between tokens. In the case of multi-modal data pro-

cessing, a different patch pre-processing branch is used for each data modality.

2. Backbone processing. This backbone uses the pre-processed token information

(as K − V ) to process the latent memory vectors M (as Q) with a single Cross-Attention

Module. The resulting M ′ vectors are then refined with N2 Self-Attention layers.

3. Memory update. The latent memory vectors M are updated given the newly

generated vectors M ′ with a simple sum operation and normalization:

M = ∥M + M ′∥ (5.4)

This augmented version of the latent vectors encodes longer spatio-temporal information

and is used to perform the final downstream task, for which we have implemented the

following two options.
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4.a. Classification head. Event stream classification is performed by processing the

refined latent memory vectors, that contain the key spatio-temporal information of the

event stream seen so far. This processing consists of N3 Self-Attention modules and then,

similar to EvT, processing the resulting vectors with two Feed Forward layers and Global

Average Pooling (GAP).

4.b. Dense estimation head. Given the sparse set of tokens processed at step 1 and

their initial location in the input frame representation, we convert them back to a dense

representation by adding dummy tokens (initialized with zeroes) that complement the ones

lost due to the event data sparsity. We then add positional embedding information to this

dense representation and update it with the information contained in the latent memory

vectors (used as K − V ) with a Cross-Attention layer. The resulting final set of tokens

is then refined with N1 Self-Attention layers, which have skip-connections from the N1

Self-Attention layers of the patch pre-processing step.

In the case of multi-modal data processing, the skip connections propagate the informa-

tion jointly for each data modality, whose tokens are merged with a simple addition and

normalization operation.

Attention modules. All the Cross and Self-Attention modules from EvT+ share

the same architecture, similar to EvT and previous transformer-related works [160, 64, 7],

composed of a Multi-Head Attention layer [160], normalization layers, skip connections and

Feed Forward layers.

5.4.3 Optimization

Event Transformer+ is optimized differently for the different downstream tasks. In the

case of event stream classification, we optimize EvT+ in the same way as EvT (see Section

5.3.3) with the Negative Log-Likelihood loss (equation 5.2).

In the case of monocular dense estimation, we train EvT+ in the sparse depth labels

measured by a LiDAR sensor. These groundtruth depth maps Y , similar to other methods

[45, 55], are clipped to a range [Dm −DM ] captured by the sensor ([2 − 80] in our case of

MVSEC Dataset) and we train EvT+ to predict its normalized log depth representation

Ȳ ϵ[0 − 1]:

Ȳ =
log(Y ) − log(Dm)

log(DM ) − log(Dm)
. (5.5)

We optimize EvT+as in [45] with a scale-invariant loss

Lsi =
1

n

n∑
i

(Ri)
2 − 1

n2
(

n∑
i

Ri)
2, (5.6)

and a multi-scale invariant loss

Lmsi =
1

n

4∑
k

n∑
i

(|▽xR
k
i || + ||▽yR

k
i ||), (5.7)

where n are the valid depth groundtruth points, Ri is the log-depth difference map ∥Ȳi−Ŷi∥
at the point i between the groundtruth Ȳi and the predicted Ŷi log-normalized depth,

Rk
i is the log-depth difference map at the scale kϵ[0 − 4]. Both losses are combined as

L = Lsi + λLmsi, with λ = 0.25.
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5.5 Experiments

Following Sections include the evaluation results of the two presented frameworks for event

stream classification and dense estimation. Next, we analyze the efficiency of the presented

models and detail their implementation and training details, as well as the set of ablation

experiments performed to take those design choices.

5.5.1 Event stream classification evaluation

The evaluation for event stream classification, i.e., action and gesture recognition, is per-

formed in two different kinds of datasets. First kind contains long sequences that present

longer and more complex temporal contexts. Second kind contains shorter sequences with

much simpler motion and temporal complexity.

The evaluation for long event stream classification includes two different datasets,

DVS128 Gesture Dataset [5] and SL-Animals-DVS Dataset [158] (details in Section 5.2.3).

To fit our computing resource restrictions, sequences from these datasets are cropped tem-

porally (details in Section 5.5.4) and split into time-windows ∆t of 24 and 48 ms for the

DVS128 and SL-Animals-DVS datasets respectively.

Table 5.1 shows the accuracy of top-performing models in the DVS128 Dataset, with

and without including the extra additional distractor class of random movements (11 and

10 classes respectively). The column Online highlights the ability of each model to perform

online inference, i.e., incremental processing of the event data and classification with low

latency. Similarly, Table 5.2 shows the accuracy of top-performing methods evaluated on

the SL-Animals-DVS Dataset, a more demanding benchmark with lower state-of-the-art

accuracy. 3 Sets results exclude the samples recorded indoors with artificial lighting from

a neon light source since they include noise related to the reflection of clothing and the

flickering of the fluorescent lamps. 4 Sets evaluates all the samples within the dataset.

Model 10 Classes 11 Classes Online

RG-CNN [15] N/A 97.2 x

3D-CNN + Voting [61] 99.58 99.62 x

CNN [5] 96.49 94.59 ✓

Space-time clouds [165] 97.08 95.32 ✓

CNN + LSTM [61] 97.5 97.53 ✓

TORE [9] N/A 96.2 ✓

EvT 98.46 96.20 ✓

EvT+ 99.24 97.57 ✓

Table 5.1: Classification Accuracy in DVS128 Gesture Dataset. N/A = Not Available at

the source reference.

Results from Table 5.1 show how EvT obtains comparable results to the state-of-the-

art and EvT+ manages to outperform prior work on both data setups. Only [61] is more

accurate than EvT+ but it uses offline inference and 3D-CNNs, which are computationally

expensive but have a good inductive bias, useful when training with small datasets like

DVS128 and with random movements (as it is the case of 11 Classes). As for the more

challenging SL-Animals Dataset, both EvT and EvT+ manages to outperform prior work.

Interestingly, our solutions present higher robustness to the different lighting conditions
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Model 3 Sets 4 Sets

SLAYER [159] 78.03 60.09

STBP [159] 71.45 56.20

DECOLLE [67] 77.6 70.6

TORE [9] N/A 85.1

EvT 87.45 88.12

EvT+ 92.34 94.39

Table 5.2: Classification Accuracy in SL-Animals-DVS. N/A = Not Available at the source

reference.

of the 4 Sets, being able to take advantage of larger training set to achieve better accu-

racy. Moreover, the improvements introduced in EvT+ help to outperform the results from

EvT in both datasets by a large margin.

In the case of short event stream classification, we evaluate EvT in the ASL-

DVS Dataset (details in Section 5.2.3). As many other methods that tackle this problem

[14, 19, 34, 9], we treat it as a simple instance classification problem where a single event

representation (from a single time-window ∆t) is built from the whole event stream.

Model Accuracy

RG-CNN [14] 90.1

EV-VGCNN [34] 98.3

M-LSTM [19] 99.73

TORE [9] 99.6

EvT 99.93

Table 5.3: Classification Accuracy in ASL-DVS (short event streams).

To perform this short event stream classification, we represent each event stream with

a single frame representation that encodes 100ms of the sample (∆t = 100ms,B = 2 for

EvT). Then, the final classification is performed by processing the generated activated

patches with the EvT backbone and computing the logits from the output latent vectors,

with no need to perform any memory update. Table 5.3 shows that EvT is able to get

excellent performance. Note that, since this experiment does not present a high complexity,

we do not evaluate EvT+ for short-event stream classification.

5.5.2 Dense estimation evaluation

Since EvT does not have a dense estimation head, this experiment is only intended to

evaluate EvT+. In particular, we evaluate monocular depth estimation on the MVSEC

Dataset [187] (details in Section 5.2.3). Although the recorded sequences are very long,

due to computational restrictions, we just consider (both for training and validation) the

512 ms of information for the depth map estimation. The event information from these

sequences is split in time-windows ∆t of 50 ms that are synced with the depth maps and

is complemented with a grayscale image generated at least ∆t/2 ms away from the end

of each time-window. Therefore, all time steps contain event data but might not contain

grayscale image information. This issue is more frequent in the night sequences, where the

grayscale image frequency is lower. When there is no grayscale information, only the event
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tokens update the memory and are used for the later dense depth estimation.

Table 5.4 shows the average depth error of different models at different cut-off depths,

i.e., pixels whose groundtruth depth information is under the specified threshold (10, 20,

or 30 meters). As observed, EvT+ is able to largely outperform previous methods in most

of the setups, with no specific pre-training. More importantly, when including image data

EvT+ improves its accuracy to achieve higher robustness even in the most challenging

scenarios.

Model
outdoor day 1 outdoor night 1 outdoor night 2 outdoor night 3

10 20 30 10 20 30 10 20 30 10 20 30

Event data processing

ULODE [188] 2.72 3.84 4.40 3.13 4.02 4.89 2.19 3.15 3.92 2.86 4.46 5.05

LMDDE [55] 2.70 3.46 3.84 5.36 5.32 5.40 2.80 3.28 3.74 2.39 2.88 3.39

LMDDE [55]∗ 1.85 2.64 3.13 3.38 3.82 4.46 1.67 2.63 3.58 1.42 2.33 3.18

EvT+(Ours) 1.29 2.04 2.46 1.68 2.21 2.82 1.63 2.00 2.95 1.53 2.20 2.79

Multi-modal (events + images) processing

RAM Net [45]† 1.39 2.17 2.76 2.50 3.19 3.82 1.21 2.31 3.28 1.01 2.34 3.43

EvT+(Ours) 1.22 1.85 2.26 1.52 2.04 2.77 1.50 2.15 2.88 1.30 2.04 2.76
∗ Pre-training on DENSE[55] dataset. † Pre-training on EventScape[45] dataset.

Table 5.4: Evaluation on the MVSEC Dataset. Average absolute depth error in meters

(lower is better) at different cut-off depth distances in meters (10, 20, 30). First block

shows models trained just on event data. Second block shows models trained jointly with

event and image (grayscale) data.

5.5.3 Efficiency analysis

We now provide a deeper analysis of the computational cost of the presented frameworks,

and how they benefit from the event data sparsity. The computational cost of EvT is

determined by the Cross-Attention Layer, which has O(|T |× |M |), where |T | stands for the

amount of activated patches and |M | for the amount of latent memory vectors. Therefore,

the fewer activated patches there are, the fewer resources EvT needs. But also, in the

worst case, when many activated patches are found (|T | ≫ |M |), the latent vectors prevent

EvT from incurring a quadratic cost. Note that the Self-Attention layers have then a

reduced cost of O(M2) instead of O(|T |2). Differently, the computational cost of EvT+,

in the case of event stream classification, depends on the initial self-attention pre-processing

(O(|T |2)). This means that, similar to EvT, the cost lowers as the input data is more sparse,

but it is not bounded by |M |. In the case of depth estimation, the existence of a dense

output head that does not work with sparse information increases the computational cost

to O(H∗W
P∗P

2
). Still, the rest of the Neural Network benefits from the data sparsity by

suppressing non-activated patches. This is also true for the ones generated from grayscale

images, when pixels are black, especially in the night sequences.

Unfortunately, there are no model efficiency statistics published from prior work on

real event stream benchmarks. Therefore, we use the simulated dataset N-Caltech-101 [112]

(details in Section 5.2.3) to compare the efficiency of EvT with prior work (Table 5.5), and

then we calculate and compare the efficiency statistics of EvT and EvT+ in the rest of

datasets evaluated in this Chapter (Table 5.6).
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Table 5.5 shows the model complexity (measured in FLOPs and number of model

parameters, which is directly related to energy consumption) required by different meth-

ods evaluated on the N-Caltech-101 dataset. As observed, EvT presents much lower re-

quirements than frame-based methods, that run heavy computations. More importantly,

EvT also presents lower computational requirements than point-based methods, which are

also designed to tackle the sparsity of the event data but achieve less computational savings

than our approach.

Model Type (G)FLOPs #Params.

RG-CNN [14] Point-based 0.79 N/A

EV-VGCNN [34] Point-based 0.70 0.84 M

M-LSTM [19] Frame-based 4.82 21.43 M

EvT Patch-based 0.20 0.48 M

Table 5.5: Average FLOPs for all validation samples in N-Caltech-101 and number of

parameters per model. N/A = Not Available at the source reference

Table 5.6 shows more detailed efficiency statistics of EvT and EvT+ in the rest of

the datasets evaluated in this Chapter. As observed, for short event stream datasets (N-

Caltech-101 and ASL), EvT generate many patches (T ≫ M) since they are recorded with

a bigger sensor (240×180 pixels) and, in the case of N-Caltech-101, because of its synthetic

nature. Otherwise, long event stream datasets (Sl-Animals and DVS128) generate fewer

patches (T < M) per time-window since they use a smaller sensor (128 × 128 pixels) and

shorter time-windows and, in the case of EvT+, also because of using a bigger patch size P .

Although the amount of activated patches |T| of the first group has an order of magnitude

more than the second, we do not observe this trend in its computational cost (both in time

and FLOPs), which grows smoothly with |T|. Moreover, although the computational cost of

EvT+ is theoretically higher than the one of EvT, different implementation improvements

such as bigger patch sizes P and less latent vectors M , make EvT+ even more efficient

(FLOPs and latency) than EvT for event stream classification.

Model Sensor size Dataset |T| ∆t ms
Latency

(GPU/CPU)
FLOPs #Params.

EvT 240× 180 N-Caltech-101 532 100 4 / 16 ms 0.20 G 0.48 M

EvT 240× 180 ASL 263 100 4 / 9 ms 0.13 G 0.48 M

EvT 128× 128 SL-Animals 80 48 3 / 5 ms 0.09 G 0.48 M

EvT 128× 128 DVS128 45 24 2 / 4 ms 0.08 G 0.48 M

EvT+ 128× 128 SL-Animals 32 48 2 / 4 ms 0.04 G 0.66 M

EvT+ 128× 128 DVS128 18 24 3 / 3 ms 0.03 G 0.66 M

EvT+ 346× 260 MVSEC 318 50 10 / 25 ms 2.94 G 1.98 M

EvT+

(multi-modal)
346× 260× 2 MVSEC 318 + 319 50 15 / 37 ms 3.68 G 2.50 M

|T|: Amount of patch tokens ∆t: time-window length

GPU: NVIDIA GeForce RTX 2080 Ti CPU: Intel Core i7-9700K

Table 5.6: EvT+ efficiency analysis: execution time and FLOPs per ∆t. Average results

for all validation samples in each dataset.

When it comes to dense estimation, since the computational cost of EvT+ is quadratic
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and the evaluation dataset uses a bigger sensor size that generates more activated patches,

EvT+ has a higher cost (FLOPs and parameters) than for event stream classification. In

particular, as observed in Table 5.7, the most costly part of the network is the output head,

which does not benefit from the event data sparsity.

EvT+ Step FLOPs

Sparse token pre-processing 0.61

Backbone processing and Latent Vectors update 0.06

Dense output head 2.27

Table 5.7: Average FLOPs required to process a single time-window ∆t and generate a

dense output for depth estimation.

It is important to remark that, since our networks are very shallow, in all cases both

EvT and EvT+ processes the activated patches in a significantly shorter time span (see

Table 5.6) than the corresponding time-window ∆t, both in GPU and CPU. This highlights

the ability of our methods to do inference with minimal latency, being capable of processing

the event data before the following batch (i.e., time-window data) is generated, therefore

facilitating an online inference, even in low-resource environments.

Although we do not have efficiency statistics of prior work evaluated in non-simulated

event datasets, we can observe that they are mostly based on heavy computation algorithms.

Both for event stream classification and dense estimation, we find that the best-performing

methods are dense models based on CNNs [5, 61, 9, 188, 55, 45] that process frame-event

representations and include complex aggregation architectures such as Recurrent Layers

[61, 19, 55, 45] or CNNs [15] to process intermediate time-window results. Differently, our

approaches process event representations with minimal cost benefiting from their sparsity

(see Table 5.5 for a similar comparison in the next dataset), and incrementally aggregate

intermediate results on the latent vectors used for the final classification with negligible

cost. Given this, both EvT and EvT+ are able to perform online inference, while being

significantly more resource-efficient than the related methods.

5.5.4 Event Transformer implementation details and ablation

This subsection first resumes the implementation and training details of EvT, and then

analyzes and justifies these design choices with detailed ablation experiments on both the

DVS128 Gesture (10 classes) and the SL-Animals-DVS (4 sets) datasets.

Implementation details. For the patch-based event representation we set a com-

mon patch size of 6×6 pixels, but specific values for time-window ∆t and number of bins B

are specific for each dataset and defined in the following. For all cases, to consider a patch

as activated we set m = 7.5, i.e., we require a 7.5% of the pixels within the patch to log

events. Besides, we set n = 16, i.e., an event frame must have at least 16 active patches to

continue the processing. As previously detailed, if the frame does not have enough (≥ n)

active patches we increase the time-window covered by the frame and repeat the search for

active patches.

As for the backbone hyperparameters, the dimensionality D of the latent vectors

and the pre-processed patch tokens is set to 128. The latent memory is composed of 96
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latent vectors randomly initialized at the beginning of the training with a Normal distribu-

tion of mean 0.0 and deviation 0.2. Similarly, the positional encodings are initialized with

16 bands of 2D Fourier Features [153] (dimensionality of H
P × W

P × 64, being H and W

the specific sensor height and width from each dataset). Both the latent vectors and posi-

tional encodings are learned as the rest of the parameters of the network during training.

Patch tokens are processed by a single Multi-Head Cross-Attention layer and 2 Multi-Head

Self-Attention layers, all of them using 4 attention heads.

Training details. The whole framework is optimized with a Negative Log Likelihood

and AdamW [99] optimizer, in a single NVIDIA Tesla V100. The initial learning rate is

set as 1e − 3, and we use Stochastic Weight Averaging [62] and gradient clipping. Due

to computation resource constraints, we perform the ablation experiments with a batch

size of 64 and we reduce the learning rate by a factor of 0.5 after 10 epochs with no loss

reduction. Differently, the benchmark results are obtained using a batch size of 128 and

a 1cycle learning rate policy [146] for 240 epochs. As for the data augmentation, we use

spatial and temporal random cropping, dropout, drop token, and we repeat each sample

within the training batch twice with different augmentations.

Ablation of event representation hyperparameters. The key components of our

event representation are the time-window ∆t used to aggregate events into patch represen-

tations, and the number of bins B used to improve their time resolution. Figure 5.6a shows

the EvT accuracy using different time-window lengths ∆t (and bins B = 2). As observed,

the best ∆t value is dependent on the evaluated dataset, requiring longer time-windows

for SL-Animals-DVS (48 ms) than for DVS128 (24 ms); these time-window values are now

set as default for these datasets. Intuitively, shorter time-windows are required to model

motions that are executed at higher speeds, and longer ones fit better slower motions that

register less event information. Figure 5.6b shows that using more bins B (3) is beneficial

when using longer time-windows (SL-Animals-DVS) and using fewer bins B (2) helps with

shorter time-windows (DVS128); these bins values are set now as default for these datasets.

As observed, the use of more bins helps us to use finer time resolutions and therefore im-

prove the final classification accuracy. However, too many bins represent very short time

intervals that do not contain representative event information.

(a) Time-window ∆t (ms) (b) Bins B

Figure 5.6: EvT accuracy with different time-windows ∆t and bins B for the DVS128

Dataset - 10 classes (top blue line) and SL-Animals-Dataset - 4 Sets (bottom green line).
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Regarding the generation of active patches from event representations, the patch size

P is the most relevant hyperparameter, defining the granularity of the information we are

working with. As observed in Figure 5.7, smaller patch sizes generate more active patches,

making EvT process more information, while bigger patches speed up the EvT inference,

but provide less spatial information.

Figure 5.7: EvT accuracy with different patch size value for the DVS128 Dataset - 10

classes (top blue line) and for the SL-Animals-Dataset - 4 Sets (bottom green line).

Besides the patch size, the generation of active patches also depends on the mini-

mum amount of pixels m with logged events needed to activate a patch, and the minimum

amount of patches n required to start the EvT backbone processing. Table 5.8 shows how

filtering out patches with less event information improves the final accuracy, mainly because

it removes the patches that contain noisy event information, not related to the motion in

the scene itself. Additionally, setting a minimum amount of activated patches helps to

avoid the processing of time intervals with no motion and therefore with few activated

patches.

n

m
5% 7.5% 10%

8 97.6

84.6

97.9

83.9

96.6

83.3

16 96.9

85.9

98.1

86.1

98.0

84.3

24 97.2

84.3

97.2

82.4

96.9

82.0

Table 5.8: EvT accuracy with different combinations of m: min. pixels per patch and n:

min. patches per ∆t. Top cell value: DVS128 (10 classes). Bottom cell value: SL-Animals

(4 Sets).

Ablation of Transformer hyperparameters. The number of latent vectors is key for

a good generalization. Figure 5.8a shows that using too few or too many vectors causes

under or overfitting, leading to suboptimal results. The latent vectors dimensionality (same

dimension as the patch tokens) also affects the results. As observed in Fig. 5.8b, too short

lengths lead to underfitting results, and too long lengths lead to unstable learning that

ends with inaccurate results.
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As for the attention hyperparameters, Figure 5.8c shows how the Self-Attention allows

better processing of the patch tokens up to a limit where the accuracy is no longer improved.

Similarly, Fig. 5.8d shows how more attention heads allow to have finer processing of the

input patch tokens, but it can lead to unstable learning and over-fitting.

(a) Number of Latent Vectors (b) Embedding dimension

(c) Number of Self-attention Layers (d) Number of Attention Heads

Figure 5.8: EvT accuracy for different architecture variations using the DVS128 Dataset -

10 classes (top blue line) and the SL-Animals-Dataset - 4 Sets (bottom green line).

Explainability. The analysis of the attention scores generated at the Multi-Head Atten-

tion layers allows to understand which data features (patch tokens) lead to classification

decisions. Figure 5.9 shows these attention scores calculated from samples of different

datasets. See the supplementary video2 for more detailed visualization of the attention

scores.

5.5.5 Event Transformer+ implementation details and ablation

This subsection first resumes the implementation and training details of EvT+, and then

analyzes and justifies the main design choices with detailed ablation experiments on both

the DVS128 Gesture (10 classes) and the SL-Animals-DVS (4 sets) datasets. It also dis-

cusses the hyperparameters that are key to achieving better results for monocular depth

estimation. For the latter study, we use the multimodal version of EvT+.

2Supplementary video available at: https://github.com/AlbertoSabater/EventTransformer

https://github.com/AlbertoSabater/EventTransformer
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(a) DVS128 Dataset (b) SL-Animals-Dataset (c) ASL-DVS Dataset

Figure 5.9: Attention scores calculated in one of the heads of the Cross-Attention layer

from EvT when processing a sample event stream of each dataset. Greener patches have

a higher influence than bluer ones for the final classification decision. Black patches are

ignored in the sequence processing.

Implementation details. For the patch-based event representation we set a patch

size of 10 × 10 for event stream classification and 12 × 12 for the depth estimation task,

which has larger frame representations. In all cases the number of events in the FIFO, K,

is set to 3, MT is set to 256 ms, and the threshold m for the patch activation is set as in

EvT (7.5%). Dataset-specific hyperparameters are discussed in the following.

As for the backbone hyperparameters, the latent vectors and the vector dimension-

ality D are set to 160. The latent memory is composed of 32 latent vectors. The positional

encodings are initialized with 6 bands of 2D Fourier Features [153] (HP × W
P × 24, being H

and W the specific sensor height and width from each dataset). Both the latent vectors

and positional encodings are learned as the rest of the parameters of the network during

training. The number of Attention layers N1, N2, and N3 are set to 1, but in the case of

depth estimation, N1 is set to 2. All the Multi-Head Attention layers use 8 heads, but in

the case of depth estimation that has a bigger input size, we use only 4 in the pre-processing

and decoding steps to increase their efficiency.

Training details. The whole framework is optimized with the AdamW optimizer [99] in a

single NVIDIA Tesla V100, with the learning rate set to 1e−3 and using gradient clipping.

The batch size is 128 for event stream classification and 24 for depth estimation. Data

augmentation used consists of spatial and temporal random cropping, dropout, drop token,

and repetition of each sample within the training batch twice with different augmentations.

Ablation of event representation hyperparameters. The key components of our

event representation are the patch size (P ) used to split the event frame representations,

the number of events K queued for each FIFO, and the maximum sequence length used

to represent each event stream sequence. As observed in Fig. 5.10b, a higher patch size

reduces the floating point operations required to process a single time-window, but from

some point, it also reduces the model accuracy. Differently, a higher value of the parameter

K (Fig. 5.10c), used to split the event information for a certain time-window, also increases

the required FLOPs without a significant increment of the model accuracy. In both cases,

we select, as observed in the Figures, the value that presents a good trade-off between com-
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putational cost and accuracy. Finally, we observe in Fig. 5.10a that, in general terms, the

accuracy increases with the sequence length used to describe an event stream. It is impor-

tant to notice that this length converges to maximum accuracy since the sequences found

in the datasets are made out of the repetition of shorter action movements. Also, larger

event stream sequence lengths could not be tested because of GPU memory restrictions.

(a) Sequence Length

(b) Patch Size (P ) (c) K

Figure 5.10: EvT+accuracy with different data hyperparameters for the DVS128 Dataset

- 10 classes (blue) and for the SL-Animals-Dataset - 4 Sets (green). Dashed lines: average

FLOPs required to process a single time-window. Stars: the selected hyperparameter value.

Ablation of backbone hyperparameters. The most relevant backbone hyperparame-

ter for the computational cost is the amount of self-attention layers applied over the input

patch tokens. As observed in Fig. 5.11a, its use increases the model accuracy, but the

application of many of these layers also increases the model complexity, without a benefit

over its accuracy. This is probably due to an increase in model instability during training.

As observed in Fig. 5.11b, the use of self-attention after the cross-attention layers (Fig.

5.11c) does not benefit EvT+, both in accuracy and model complexity. Differently, using

self-attention in the classification decoder (Fig. 5.11d) helps the classification accuracy with

minimal overhead. Finally, we note that different from EvT, using more latent vectors does

not help the training accuracy.

Ablation of backbone hyperparameters for dense estimation. For multi-modal

dense estimation where the sensor used to record the sequences have a bigger size, we find

that increasing the patch size (Fig. 5.12a) not only reduces the FLOPs but also increments

the model performance (lower mean error). Moreover, since this data presents higher
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(a) Pre-proc. Self-Attention Blocks (N1) (b) Backbone Self-Attention Blocks (N2)

(c) Decoder Self-Attention Blocks (N3) (d) Latent Vectors (M)

Figure 5.11: EvT+accuracy with different model hyperparameters for the DVS128 Dataset

- 10 classes (blue line) and for the SL-Animals-Dataset - 4 Sets (green line). Dashed lines:

average FLOPs operations required. Stars: the selected hyperparameter value.

complexity, we find that a more complex network is required to achieve better results. In

particular, we find that the amount of pre-processing and backbone Self-Attention blocks

(Fig. 5.12b and 5.12c) significantly affects the model performance, but at the cost of

augmenting the computational requirements.

(a) Patch Size P (b) Pre-proc. Self-Attention

Blocks (N1)

(c) Backbone Self-Attention

Blocks (N2)

Figure 5.12: EvT+average depth error (20m crop rate) and FLOPs required to process

a single time-window of the outdoor day 1 (blue) and outdoor night 2 (green) MVSEC

sequences. Lower is better. Stars: selected hyperparameter value.
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5.6 Conclusions

This Chapter introduces two novel frameworks for event data processing, Event Trans-

former and its updated version, Event Transformer+. These two works effectively manage

to take advantage of event data properties to minimize its computation and resource re-

quirements, while achieving top-performing results. This is achieved with our proposed

patch-based event representation that only accounts for parts of the streams with suffi-

cient logged information, and an efficient and compact transformer-like architecture that

naturally processes it. The proposed work achieves state-of-the-art results for action and

gesture recognition and, in the case of EvT+, which is adapted to also perform dense esti-

mation and multi-modal learning, we also achieve top performance results for multi-modal

depth estimation. But most importantly, our solutions are able to work in all cases with

minimal latency both on GPU and CPU, facilitating its use on low-consumption hardware

and real-time applications.

Based on the presented results, we believe that patch-based representations and trans-

formers are a promising line of research for efficient event data processing. This framework

also offers promising benefits to other event-based perception tasks, such as body tracking

or object detection, and to different kinds of sparse data, like LiDAR data.
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Chapter 6

Conclusions

Visual scene understanding is a very broad and complex problem that has applications in

many fields such as autonomous driving, medical data processing, and augmented or virtual

reality. These visual scene understanding applications encompasses many tasks, including

object detection, action recognition, and depth estimation, which frequently involve or can

be enhanced with the processing of video data rather than still images. In this thesis, we

have seen how, although existing deep learning techniques achieve state-of-the-art perfor-

mance in many of these tasks, their applicability in real-world scenarios is still limited due

to various reasons. These deep learning solutions, and in particular the ones designed for

video data processing, imply the construction of very complex models that demand large

computational resources and often incur high latencies. Moreover, these models require

large datasets and long training procedures to learn, and still, they are often prone to

suffer from generalization problems when evaluated on data domains different from the

training one. As a consequence of these issues, complex deep learning models also imply a

high energy cost for their learning and deployment, which has become a growing concern

as they are increasingly being integrated into our daily lives.

The present thesis addresses some of these challenges in designing deep learning models

for video data processing that make a more responsible use of computational resources.

Our proposed solutions include models that run efficiently, learn with minimal data and

generalize to variable data domains when required, and still achieve high performance when

compared to more complex solutions. We specifically focus on two scene understanding

tasks that are essential for many applications, video object detection and action recognition.

Moreover, we study how the use of non-traditional sensors can help in achieving deep

learning efficiency. In particular, we work with event cameras due to their ability to capture

only the dynamic information of the scene and their robustness to certain video conditions.

In the following, we summarize our contributions to each one of the scene understanding

topics addressed.

Object Detection

The first part of this thesis (Chapter 2) studies the state of object detection with video data.

As described, state-of-the-art solutions [47, 53] achieve high performance on still images

by sacrificing efficiency, and more efficient solutions [123, 95] do not achieve the same

performance. This problem is increased when processing video data, where more complex
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solutions [171, 190], focused on analyzing a broader temporal context, are designed to

overcome challenging video conditions.

Instead of building intricate solutions to better process video data, we propose a post-

processing method [131] to analyze the relationship of the predicted bounding boxes. By

doing so, we are then able to link object detections across frames and use their global

information to refine their bounding box coordinates and class scores at each frame. These

refined detections better fit the recorded objects. The performance of this proposed post-

processing method is demonstrated with the predictions of two kinds of object detectors,

an efficient detector that works on still frames [124] and a few complex and effective ones

that benefit from the video data temporality [171, 190]. In both cases, we are able to

improve the detection performance of the base object detectors, and we also outperform

other post-processing methods [52, 11] of similar kind. But, most importantly, the use of

our post-processing method supposes a minimal computational overhead. As a result, we

are able to increase the efficacy of efficient object detectors to make them closer to more

complex solutions, and still, when computational resources are not a limitation, these more

complex video detection solutions can also benefit from this post-processing.

Action Recognition

The second part of this thesis (Chapters 3 and 4) studies the state of action recognition.

As described, different from using raw RGB frames, using skeleton coordinates to represent

human poses allows a more efficient processing since it presents a much lower dimensionality.

However, when it comes to the applicability of action recognition to real use cases, we find

several limitations. Commonly, we find applications where new action categories that must

be detected are created on the fly, as is the case of rehabilitation or AR/VR, so we cannot

build specific models to learn them. Additionally, available datasets to learn from are

usually restricted to specific camera recording perspectives, so the generalization to other

ones is limited, and the creation of more generalist datasets demands a lot of human work.

In order to overcome these issues, this thesis presents two novel action recognition

solutions able to generalize and handle variable data domains, heterogeneous recording

viewpoints, scales, translation directions, and motion artifacts. These two action recogni-

tion methods are specifically designed for two different scenarios. The first scenario involves

the recognition of full-body actions [134] and, in particular, is evaluated in scenarios of

therapies with autistic people, whose motion presents high variability due to specific and

challenging artifacts. The second scenario involves the recognition of hand actions [130]

and, in particular, the learning from very constrained recording perspectives and action

domains, for a later generalization to a different recording viewpoint (e.g., egocentric view

vs. third-person view) and action domain (e.g., sign language gestures vs. object interac-

tion actions). In both cases, the proposed models are able to overcome these generalization

challenges, achieving high effectiveness while also being highly efficient. This enables their

use in real applications where computational resources are a limitation.
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Scene understanding with event cameras

The last part of the present thesis (Chapter 5) studies how we can benefit from non-RGB

sensors to improve the efficiency and efficacy of visual scene understanding. In particular,

we focus on the processing of data from event cameras for several reasons. These sensors

capture only sparse changes in the scene and ignore static and redundant information, mak-

ing their processing able to ignore non-relevant parts of the scene to improve processing

efficiency. Logged information is also independent of textures, which helps the later gener-

alization; and presents high temporal resolution, which helps to capture fast motions in the

scene. Moreover, these sensors are able to work in very challenging conditions. Although

these characteristics promise potential benefits in many applications, prior works do not

efficiently benefit from them.

This thesis presents a novel way to process this event information [133, 132] that effec-

tively benefits from these properties, particularly the event data sparsity, to achieve high

efficiency while maintaining high performance. For this purpose, we propose a new way

of pre-processing event data that is highly descriptive but also presents certain sparsity;

and a new attention-based backbone that benefits from this sparsity to improve its effi-

ciency while maintaining high efficacy. This new processing methodology is evaluated in

two tasks, action recognition and dense depth estimation. In both cases, we achieve state-

of-the-art results both in performance and efficiency, probing the suitability of this novel

processing method for event data. Moreover, we also probe that our event-based solution

is easily adaptable to effectively perform multi-modal learning, which we probe by jointly

processing both events and grayscale images.

6.1 Limitations and future work

Deep learning has set a new paradigm for visual scene recognition and, as we have seen

in this thesis, there is still room for improvement in its application to real-world scenar-

ios. Although our proposed solutions for different tasks advance video-based deep learning

methods towards more efficient solutions, we still identify some limitations, but also differ-

ent ways to further extend our work.

For instance, our video object detection post-processing method from Chapter

2 works by linking object detections by analyzing their location and geometry, appearance,

and semantic information. However, the main limitation is that Neural Networks tend

to be overconfident [50], so this process can lead to unexpected results. To improve the

reliability of our method, we propose calculating and adding uncertainty information [69,

79, 141] of the object detection predictions. This enhancement will ensure that the linking

process trusts only the most reliable information. Additionally, our proposed solution

currently works offline, as it requires object detections to be calculated both for past and

future video frames. But, similar to [11], our approach can be easily adapted for online

settings, just by refining object detections with only past information and not future one.

Furthermore, the idea of linking per-frame Neural Network results for its refinement with

minimal computational cost can be extended to other tasks. For instance, a similar method

can be built to improve semantic or panoptic segmentations by refining both their shape

and class information.
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In the case of our action recognition models from Chapters 3 and 4, the main lim-

itation is the scarcity of labeled and diverse datasets, which constrains the amount of

available data to learn from. However, there is plenty of motion information that could

be extracted from sources such as YouTube, Netflix, and other video platforms. Although

this information would not be hand-labeled, it can serve as a solid base for Neural Net-

work models to learn with self-supervised techniques [23, 142, 41], along with the skele-

ton motion representations and data augmentation we have proposed. Developing such

foundation models would ease a later fine-tuning for downstream tasks and enhance the

N-shot evaluation performance. Moreover, incorporating narrations to video data, as in

the case of the EPIC-KITCHENS Dataset [31], could inspire new CLIP-like methods [118]

for weakly-supervised learning, ultimately enabling zero-shot language-based action recog-

nition. While some studies [104, 88, 42] have already explored some of these ideas, they

have primarily relied on RGB information rather than human skeleton coordinates which,

as seen in previous Chapters, limits the generalization to different action and recording

domains, and lead to more complex and computationally expensive models.

Regarding our proposed methods for event data processing (Chapter 5), the main

limitation we face is the scarcity of available data for training. Unlike RGB cameras, these

sensors are not as common and accessible, making it difficult to find open data to learn

from. While some works propose simulation environments [109, 59, 44] to automatically

generate event data or record RGB data displayed on a monitor [112, 143, 85, 15, 58] with

an event camera, they often struggle to mimic the unique properties of event data, such as

sparsity and time resolution. Despite these challenges, our event data processing framework

has demonstrated its efficacy and efficiency in a few visual scene understanding tasks, and

we believe it has the potential to be extended to other visual tasks like object detection

and semantic segmentation. Moreover, our proposed patch-based event representation can

be adapted to represent other sparse data sources, such as LiDAR recordings or point

clouds, and then benefit as well from our sparse attention-based processing. Additionally,

our proposed idea of leveraging latent vectors to serve as memory can also help in the

processing of other temporal data sources in applications that demands online and real-

time processing, such as RGB video data or audio. These latent vectors would replace more

complex alternatives like Recurrent Neural Networks or attention models with expensive

computational costs.



Chapter 7

Conclusiones

La comprensión visual de escenas es un problema muy amplio y complejo que tiene apli-

caciones en muchos campos, como la conducción autónoma, el procesamiento de datos

médicos y la realidad aumentada o virtual. Estas aplicaciones de comprensión visual de

escenas abarcan muchas tareas, como la detección de objetos, el reconocimiento de ac-

ciones y la estimación de la profundidad, que con frecuencia implican o pueden mejorarse

con el procesamiento de datos de v́ıdeo en lugar de imágenes fijas. En esta tesis, hemos

visto cómo, a pesar de que las técnicas de aprendizaje profundo existentes alcanzan un

rendimiento puntero en muchas de estas tareas, su aplicabilidad en escenarios del mundo

real sigue siendo limitada debido a diversas razones. Estas soluciones de aprendizaje pro-

fundo, y en particular las diseñadas para el procesamiento de datos de v́ıdeo, implican la

construcción de modelos muy complejos que demandan grandes recursos computacionales y

a menudo incurren en altas latencias. Además, estos modelos requieren grandes conjuntos

de datos y largos procesos de entrenamiento para aprender, y aún aśı, a menudo son propen-

sos a sufrir problemas de generalización cuando se evalúan en dominios de datos diferentes

al de entrenamiento. Como consecuencia de estos problemas, los modelos complejos de

aprendizaje profundo también implican un alto coste energético para su aprendizaje y de-

spliegue, lo que se ha convertido en una preocupación creciente a medida que se integran

cada vez más en nuestra vida cotidiana.

Esta tesis aborda algunos de estos retos en el diseño de modelos de aprendizaje profundo

para el procesamiento de datos de v́ıdeo que hagan un uso más responsable de los recursos

computacionales. Nuestras soluciones propuestas incluyen modelos que se ejecutan de

manera eficiente, aprenden con datos mı́nimos y generalizan a dominios de datos variables

cuando es necesario, y aún aśı logran un alto rendimiento en comparación con soluciones

más complejas. Nos centramos espećıficamente en dos tareas de comprensión de escenas que

son esenciales para muchas aplicaciones, la detección de objetos en v́ıdeo y el reconocimiento

de acciones. Además, estudiamos cómo el uso de sensores no tradicionales puede ayudar

a lograr la eficiencia del aprendizaje profundo. En particular, trabajamos con cámaras de

eventos debido a su capacidad para capturar únicamente la información dinámica de la

escena y su robustez ante determinadas condiciones de v́ıdeo. A continuación, resumimos

nuestras contribuciones en cada uno de los temas de comprensión de escenas abordados.

87



88 Chapter 7. Conclusiones

Detección de objetos

La primera parte de esta tesis (Caṕıtulo 2) estudia el estado de la detección de objetos con

datos de v́ıdeo. Como se ha descrito anteriormente, las soluciones del estado del arte [47, 53]

consiguen un alto rendimiento en imágenes fijas sacrificando eficiencia, y las soluciones más

eficientes [123, 95] no consiguen el mismo rendimiento. Este problema aumenta al procesar

datos de v́ıdeo, donde se diseñan soluciones más complejas [171, 190], centradas en analizar

un contexto temporal más amplio, para superar las artefactos presentes en v́ıdeo.

En lugar de construir soluciones complejas para procesar mejor los datos de v́ıdeo, pro-

ponemos un método de post-procesamiento [131] para analizar las detecciones predichas.

De este modo, podemos vincular las detecciones de objetos entre fotogramas y utilizar su

información global para refinar las coordenadas de sus cuadros delimitadores y las proba-

bilidades por clase en cada fotograma. Estas detecciones refinadas se ajustan mejor a los

objetos reales. El rendimiento de este método de post-procesamiento propuesto se evalua

con las predicciones de dos tipos de detectores de objetos, un detector eficiente que funciona

en imágenes fijas [124] y dos complejos y eficaces que se benefician de la temporalidad de

los datos de v́ıdeo [171, 190]. En ambos casos, somos capaces de mejorar el rendimiento

de detección de los detectores de objetos base, y también superamos a otros métodos de

post-procesamiento [52, 11] similares. Pero lo que es más importante, el uso de nuestro

método de post-procesamiento supone una sobrecarga computacional mı́nima. Como re-

sultado, somos capaces de aumentar la eficacia de los detectores de objetos eficientes para

acercarlos a soluciones más complejas, y aún aśı, cuando los recursos computacionales no

son una limitación, estas soluciones de detección de v́ıdeo más complejas también pueden

beneficiarse de este post-procesamiento.

Reconocimiento de Acciones

La segunda parte de esta tesis (Caṕıtulos 3 y 4) estudia el estado del reconocimiento de

acciones. Como se ha descrito anteriormente, a diferencia del procesamiento de imágenes

RGB, el uso de coordenadas de esqueletos para representar poses humanas permite un

procesamiento más eficiente ya que presenta una dimensionalidad mucho menor. Sin em-

bargo, cuando se trata de la aplicabilidad del reconocimiento de acciones a casos de uso

reales, encontramos varias limitaciones. Frecuentemente, nos encontramos con aplicaciones

en las que las nuevas categoŕıas de acciones que deben ser detectadas se crean sobre la

marcha, como es el caso de la rehabilitación o la RA/RV, por lo que no podemos con-

struir modelos espećıficos para aprenderlas. Además, los conjuntos de datos disponibles

para aprender suelen estar restringidos a perspectivas de grabación de cámara espećıficas,

por lo que la generalización a otras es limitada, y la creación de conjuntos de datos más

generalistas exige mucho trabajo humano.

Para superar estos problemas, esta tesis presenta dos nuevas soluciones de reconocimiento

de acciones capaces de generalizar y manejar dominios de datos variables, puntos de vista

de grabación heterogéneos, escalas, direcciones de traslación y artefactos de movimiento.

Estos dos métodos de reconocimiento de acciones se han diseñado espećıficamente para

dos escenarios diferentes. El primero consiste en el reconocimiento de acciones de cuerpo

entero. [134] y, en particular, se evalúa en escenarios de terapias con personas autistas,
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cuyo movimiento presenta una alta variabilidad debido a artefactos espećıficos. El segundo

escenario implica el reconocimiento de acciones de la mano [130] y, en particular, el

aprendizaje a partir de perspectivas de grabación y dominios de acción muy restringidos,

para una posterior generalización a un punto de vista de grabación diferente (por ejem-

plo, vista en primera persona frente a vista en tercera persona) y dominio de acción (por

ejemplo, gestos de lengua de signos frente a acciones de interacción con objetos). En am-

bos casos, los modelos propuestos son capaces de superar estos retos de generalización,

logrando una alta efectividad a la vez que son altamente eficientes. Esto permite su uso en

aplicaciones reales donde los recursos computacionales son una limitación.

Comprensión de escenas con cámaras de eventos

La última parte de esta tesis (Caṕıtulo 5) estudia cómo podemos beneficiarnos de los

sensores no RGB para mejorar la eficiencia y eficacia en la comprensión visual de escenas.

En concreto, nos centramos en el procesamiento de datos procedentes de cámaras de eventos

por varias razones. Estos sensores captan sólo cambios dispersos en la escena e ignoran

la información estática y redundante, lo que hace que su procesamiento pueda ignorar

partes no relevantes de la escena para mejorar su eficiencia. La información registrada

también es independiente de las texturas, lo que ayuda a la posterior generalización; y

presenta una alta resolución temporal, lo que ayuda a capturar movimientos rápidos en

la escena. Además, estos sensores son capaces de trabajar en condiciones muy dif́ıciles.

Aunque estas caracteŕısticas prometen beneficios potenciales en muchas aplicaciones, los

trabajos anteriores no las aprovechan eficientemente.

Esta tesis presenta una novedosa forma de procesar esta información de eventos [133,

132] que se beneficia eficazmente de estas propiedades, en particular de la dispersión de

datos de eventos, para lograr una alta eficiencia manteniendo un alto rendimiento. Para

ello, proponemos una nueva forma de pre-procesar los datos de eventos que es altamente

descriptiva pero que también presenta cierta dispersión; y un nuevo modelo basado en la

métodos de atención que se beneficia de esta dispersión para mejorar su eficiencia mante-

niendo una alta eficacia. Esta nueva metodoloǵıa de procesamiento se evalúa en dos tareas,

reconocimiento de acciones y estimación de profundidad. En ambos casos, se obtienen re-

sultados punteros tanto en rendimiento como en eficiencia, lo que demuestra la idoneidad

de este nuevo método de procesamiento para los datos de eventos. Además, también com-

probamos que nuestra solución basada en eventos es fácilmente adaptable para llevar a cabo

un aprendizaje multimodal eficaz, que comprobamos procesando conjuntamente eventos e

imágenes en escala de grises.

7.1 Limitaciones y trabajo futuro

El aprendizaje profundo ha establecido un nuevo paradigma para el reconocimiento visual

de escenas y, como hemos visto en esta tesis, todav́ıa hay margen de mejora en su aplicación

a escenarios del mundo real. Aunque nuestras soluciones propuestas para diferentes tareas

hacen avanzar los métodos de aprendizaje profundo basados en v́ıdeo hacia soluciones más

eficientes, seguimos identificando algunas limitaciones, pero también diferentes formas de

seguir ampliando nuestro trabajo.
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Por ejemplo, nuestro método de post-procesamiento de detección de objetos

en v́ıdeo del Caṕıtulo 2 funciona enlazando detecciones de objetos mediante el análisis de

su ubicación y geometŕıa, apariencia e información semántica. Sin embargo, la principal

limitación es que las Redes Neuronales tienden a ser demasiado confiadas [50], por lo que

este proceso puede conducir a resultados inesperados. Para mejorar la fiabilidad de nuestro

método, proponemos calcular y añadir información de incertidumbre [69, 79, 141] de las

predicciones de detección de objetos. Esta mejora garantizará que el proceso de vinculación

conf́ıe únicamente en la información más fiable. Además, nuestra solución propuesta fun-

ciona actualmente offline, ya que requiere que las detecciones de objetos se calculen tanto

para los fotogramas de v́ıdeo pasados como para los futuros. Pero, al igual que ocurre con

[11], nuestro enfoque puede adaptarse fácilmente a entornos online, simplemente refinando

las detecciones de objetos con información pasada y no futura. Además, la idea de enlazar

los resultados de la red neuronal por fotograma para su refinamiento con un coste com-

putacional mı́nimo puede extenderse a otras tareas. Por ejemplo, se puede construir un

método similar para mejorar las segmentaciones semánticas o panópticas refinando tanto

su información de forma como de clase.

En el caso de nuestros modelos de reconocimiento de acciones de los Caṕıtulos

3 y 4, la principal limitación es la escasez de conjuntos de datos etiquetados y diversos,

lo que limita la cantidad de datos disponibles de los que aprender. Sin embargo, hay

mucha información de movimiento que podŕıa extraerse de fuentes como YouTube, Netflix

y otras plataformas de v́ıdeo. Aunque esta información no estaŕıa etiquetada a mano,

puede servir de base sólida para que los modelos de redes neuronales aprendan con técnicas

autosupervisadas [23, 142, 41], junto con las representaciones de movimiento de esqueleto

y el aumento de datos que hemos propuesto. El desarrollo de estos modelos facilitaŕıa

un ajuste posterior para otras tareas y mejoraŕıa el rendimiento de la evaluación de N-

shot. Además, la incorporación de narraciones a los datos de v́ıdeo, como en el caso

del conjunto de datos EPIC-KITCHENS [31], podŕıa inspirar nuevos métodos similares a

CLIP [118] para el aprendizaje débilmente supervisado, permitiendo en última instancia el

reconocimiento de acciones basado en el lenguaje en cero tomas. Aunque algunos estudios

[104, 88, 42] ya han explorado algunas de estas ideas, se han basado principalmente en

la información RGB en lugar de en las coordenadas del esqueleto humano que, como se

ha visto en Caṕıtulos anteriores, limita la generalización a diferentes dominios de acción y

grabación, y conduce a modelos más complejos y costosos computacionalmente.

En lo que respecta a nuestros métodos propuestos para el procesamiento de datos de

eventos (Caṕıtulo 5), la principal limitación a la que nos enfrentamos es la escasez de datos

disponibles para el entrenamiento. A diferencia de las cámaras RGB, estos sensores no son

tan comunes y accesibles, por lo que resulta dif́ıcil encontrar datos abiertos con los que

aprender. Mientras que algunos trabajos proponen entornos de simulación [109, 59, 44]

para generar automáticamente datos de eventos o grabar datos RGB mostrados en un

monitor [112, 143, 85, 15, 58] con una cámara de eventos, a menudo fallan al imitar las

propiedades únicas de los datos de eventos, como la dispersión y la resolución temporal. A

pesar de estos retos, nuestros modelos de procesamiento de datos de eventos ha demostrado

su eficacia y eficiencia en algunas tareas de comprensión de escenas visuales, y creemos que

tiene potencial para extenderse a otras tareas visuales como la detección de objetos y la

segmentación semántica. Además, nuestra propuesta de representación de eventos basada
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en parches puede adaptarse para representar otras fuentes de datos dispersos, como graba-

ciones LiDAR o nubes de puntos, y beneficiarse también de nuestro procesamiento basado

en la atención dispersa. Además, nuestra idea propuesta de aprovechar los vectores latentes

para que sirvan de memoria también puede ayudar en el procesamiento de otras fuentes

de datos temporales en aplicaciones que exigen un procesamiento online y en tiempo real,

como los datos de v́ıdeo RGB o audio. Estos vectores latentes sustituiŕıan a alternativas

más complejas, como las redes neuronales recurrentes o los modelos de atención con costes

computacionales elevados.
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[4] Iñigo Alonso, Alberto Sabater, David Ferstl, Luis Montesano, and Ana C. Murillo.

Semi-supervised semantic segmentation with pixel-level contrastive learning from a

class-wise memory bank. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 8219–8228, 2021.

[5] Arnon Amir et al. A low power, fully event-based gesture recognition system. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 7243–7252, 2017.

[6] Anastasios N Angelopoulos, Julien NP Martel, Amit P Kohli, Jorg Conradt, and

Gordon Wetzstein. Event-based near-eye gaze tracking beyond 10,000 hz. IEEE

Transactions on Visualization & Computer Graphics, 27(05):2577–2586, 2021.

[7] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and
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janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-

formers. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 9650–9660, 2021.
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[83] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 1998.

[84] Chuankun Li, Shuai Li, Yanbo Gao, Xiang Zhang, and Wanqing Li. A two-stream

neural network for pose-based hand gesture recognition. IEEE Transactions on

Cognitive and Developmental Systems, 14(4):1594–1603, 2021.

[85] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an

event-stream dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

[86] Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming Liu. Neural speech

synthesis with transformer network. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 6706–6713, 2019.

[87] Suichan Li and Feng Chen. 3d-detnet: a single stage video-based vehicle detector. In

Third International Workshop on Pattern Recognition, volume 10828, pages 60–66.

SPIE, 2018.

[88] Chung-Ching Lin, Kevin Lin, Lijuan Wang, Zicheng Liu, and Linjie Li. Cross-

modal representation learning for zero-shot action recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19978–

19988, 2022.

[89] Ji Lin, Chuang Gan, and Song Han. TSM: Temporal shift module for efficient

video understanding. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 7083–7093, 2019.



100 Bibliography

[90] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. In Proceedings of the European Conference on Computer Vision, pages

740–755. Springer, 2014.

[91] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C

Kot. Ntu rgb+ d 120: A large-scale benchmark for 3d human activity understanding.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10):2684–2701,

2019.

[92] Jun Liu, Amir Shahroudy, Dong Xu, Alex C Kot, and Gang Wang. Skeleton-

based action recognition using spatio-temporal lstm network with trust gates. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 40(12):3007–3021, 2017.

[93] Jun Liu, Gang Wang, Ping Hu, Ling-Yu Duan, and Alex C Kot. Global context-

aware attention lstm networks for 3d action recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1647–1656, 2017.

[94] Jianbo Liu, Ying Wang, Yongcheng Liu, Shiming Xiang, and Chunhong Pan. 3d

posturenet: A unified framework for skeleton-based posture recognition. Pattern

Recognition Letters, 140:143–149, 2020.

[95] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-

Yang Fu, and Alexander C Berg. SSD: Single shot multibox detector. In Proceedings

of the European Conference on Computer Vision, pages 21–37. Springer, 2016.

[96] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,

and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted

windows. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 10012–10022, 2021.

[97] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu.

Video swin transformer. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 3202–3211, 2022.

[98] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang.

Disentangling and unifying graph convolutions for skeleton-based action recogni-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 143–152, 2020.

[99] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017.

[100] Yongyi Lu, Cewu Lu, and Chi-Keung Tang. Online video object detection using

association lstm. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2344–2352, 2017.

[101] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating

the carbon footprint of bloom, a 176b parameter language model. arXiv preprint

arXiv:2211.02001, 2022.

[102] Chunyong Ma, Shengsheng Zhang, Anni Wang, Yongyang Qi, and Ge Chen. Skeleton-

based dynamic hand gesture recognition using an enhanced network with one-shot

learning. Applied Sciences, 10(11):3680, 2020.



Bibliography 101

[103] Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video sum-

marization with adversarial lstm networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 202–211, 2017.

[104] Devraj Mandal, Sanath Narayan, Sai Kumar Dwivedi, Vikram Gupta, Shuaib Ahmed,

Fahad Shahbaz Khan, and Ling Shao. Out-of-distribution detection for general-

ized zero-shot action recognition. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 9985–9993, 2019.

[105] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. Advances in Neural

Information Processing Systems, 26, 2013.
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preprint arXiv:1904.07850, 2019.

[186] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl. Bottom-up object detection

by grouping extreme and center points. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 850–859, 2019.

[187] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd Pfrommer, Vijay Kumar, and

Kostas Daniilidis. The multivehicle stereo event camera dataset: An event camera

dataset for 3d perception. IEEE Robotics and Automation Letters, 3(3):2032–2039,

2018.

[188] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Unsuper-

vised event-based learning of optical flow, depth, and egomotion. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

989–997, 2019.

[189] Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li, Li Shen, and

Xiaohui Xie. Co-occurrence feature learning for skeleton based action recognition

using regularized deep lstm networks. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 30, 2016.

[190] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature

aggregation for video object detection. In Proceedings of the IEEE International

Conference on Computer Vision, pages 408–417, 2017.


	TUZ_2529_Sabater_efficient.pdf
	2529_Sabater Bailon TESIS
	Index
	Introduction
	Deep Learning for Scene Understanding
	Efficiency in Deep Learning
	Challenges and Contributions
	Object Detection
	Action Recognition
	Scene Understanding with event cameras

	Summary of Results
	Manuscript Organization

	Efficient post-processing for video object detection
	Introduction
	Related Work
	Proposed Framework
	Object detection and description
	Object detection linking
	Refinement: re-scoring and re-coordinating

	Experiments
	Experimental setup
	Performance & analysis of other post-processing methods
	Post-processing of video object detection methods
	Qualitative results on EPIC-KITCHEN Dataset

	Conclusions

	Full-body action recognition in challenging scenarios
	Introduction
	Related Work
	Skeleton representations for action recognition
	Skeleton-based neural networks for action recognition
	N-shot action recognition

	Proposed Framework
	Pose normalization
	Pose Features
	Motion descriptor generation from a TCN
	One-shot action recognition
	Improving action recognition in the wild

	Experiments
	Experimental setup
	Validation of the system on a generic one-shot action recognition benchmark
	Validation and discussion on real therapies data

	Conclusions

	Hand action recognition invariant to domain and viewpoint
	Introduction
	Related Work
	Pose modeling for action recognition
	Action recognition models
	Generalization to unseen action categories

	Hand action recognition framework
	Hand pose modeling
	Motion representation model
	Intra-domain classification
	Cross-domain classification

	Experiments
	Experimental setup
	Framework design evaluation
	Cross-domain action classification
	Cross-domain classification of long video sequences
	Intra-domain classification and reference actions study
	Time performance

	Conclusions

	Scene Recognition with event cameras
	Introduction
	Related work
	Event data representation
	Neural Network architectures for event data
	Event dataset recordings

	Event Transformer
	Patch-based event data representation
	Architecture
	Optimization

	Event Transformer+
	Patch-based event data representation
	Architecture
	Optimization

	Experiments
	Event stream classification evaluation
	Dense estimation evaluation
	Efficiency analysis
	Event Transformer implementation details and ablation
	Event Transformer+ implementation details and ablation

	Conclusions

	Conclusions
	Limitations and future work

	Conclusiones
	Limitaciones y trabajo futuro



