Neurogastroenterology and Motility

OXIDIZED PHOSPHOLIPIDS AFFECT SMALL INTESTINE NEUROMUSCULAR TRANSMISSION AND SEROTONERGIC PATHWAYS IN JUVENILE MICE

Journal:	Neurogastroenterology and Motility
Manuscript ID	NMO-00271-2020.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	14-Oct-2020
Complete List of Authors:	Marsilio, Ilaria; University of Padua, Dept. Pharmaceutical and Pharmacological Sciences Caputi, Valentina; University of Padua, Dept. Pharmaceutical and Pharmacological Sciences; University College Cork APC Microbiome Institute Latorre, Eva; University of Zaragoza, Departamento de Bioquímica y Biología Molecular y Celular CERANTOLA, SILVIA; University of Padua, Dept. Pharmaceutical and Pharmacological Sciences Paquola, Andrea; Department of Pharmaceutical and Pharmacological Sciences Alcalde, Ana Isabel; University of Zaragoza, Pharmacology and Physiology Mesonero, José Emilio; University of Zaragoza, Pharmacology and Physiology O'Mahony, Siobhain; University College Cork, Department of Anatomy and Neuroscience and APC Microbiome Ireland Bertazzo, Antonella; University of Padua, Dept. Pharmaceutical and Pharmacological Sciences GIARONI, CRISTINA; University of Insubria, Medicine and Surgery Giron, Maria Cecilia; University of Padua, Pharmaceutical and Pharmacological Sciences
Key Words:	oxidized phospholipids, enteric nervous system, small intestine neuromuscular contractility, Toll-like receptors, serotonine

Marsilio et al. 1

2 3	1	OXIDIZED PHOSPHOLIPIDS AFFECT SMALL INTESTINE NEUROMUSCULAR
4 5 6	2	TRANSMISSION AND SEROTONERGIC PATHWAYS IN JUVENILE MICE
7 8	3	
9 10 11	4	Running title: Oxidized phospholipids alters gut function
12 13	5	
14 15 16	6	Ilaria Marsilio ^{1#} , Valentina Caputi ^{1,2#} , Eva Latorre ^{3,4} , Silvia Cerantola ^{1,5} , Andrea Paquola ¹ ,
17 18	7	Ana I. Alcalde ^{3,4†} , José E. Mesonero ^{3,4} , Siobhain M. O'Mahony ² , Antonella Bertazzo ¹ ,
19 20	8	Cristina Giaroni ^{6#} , Maria Cecilia Giron ^{1#}
21 22 22	9	
23 24 25	10	[#] Authors contributed equally to this study.
26 27	11	
28 29	12	¹ Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova,
30 31 32	13	Italy
33 34	14	² Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College
35 36 37	15	Cork, Cork, Ireland
38 39	16	³ Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación
40 41 42	17	Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
43 44	18	⁴ Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza,
45 46	19	Spain
47 48 49	20	⁵ San Camillo Hospital, Treviso, Italy
50 51	21	⁶ Department of Medicine and Surgery, University of Insubria, Varese, Italy
52 53 54	22	
55 56	23	Corresponding Author with complete address and email address:
57 58 59	24	Maria Cecilia Giron
60	25	Pharmacology Building

1		
2 3 4	26	Department of Pharmaceutical and Pharmacological Sciences
5 6	27	University of Padova
7 8	28	Largo Meneghetti, 2 – 35121 Padova, Italy
9 10 11	29	Tel. +39-049-827-5091 Fax. +39-049-827-5093
12 13	30	email: cecilia.giron@unipd.it
14 15	31	
16 17 18	32	
19 20	33	Abbreviations: ENS, enteric nervous system; 5-HT, serotonin; IBS, irritable bowel
21 22	34	syndrome; TLRs, toll-like receptors; OxPLs, oxidized phospholipids; carbachol, CCh; EFS
23 24 25	35	electric field stimulation
26 27 28	36	
29 30 31		
32 33 34		
35 36 37		
38 39		
40 41		
42 43 44		
45 46		
47 48 49		
50 51		
52 53		
54 55 56		
57 58		
59 60		

KEY POINTS

• OxPAPC alters the structure of the enteric neuroglial network.

OxPAPC causes dysmotility of the juvenile small intestine associated with altered
 cholinergic and nitrergic neurotransmission.

OxPAPC determines higher functional response to 5-HT, together with a marked
 decrease of 5-HT levels, shifting tryptophan metabolism towards kynurenine production.

44 ABSTRACT

Background. Oxidized phospholipid derivatives (OxPAPCs) bacterial act as lipopolysaccharide (LPS)-like damage-associated molecular patterns. OxPAPCs dose-dependently exert pro- or anti-inflammatory effects by interacting with several cellular receptors, mainly Toll-like receptor 2 and 4. It is currently unknown whether OxPAPCs may affect enteric nervous system (ENS) functional and structural integrity.

50 Methods. Juvenile (3 weeks old) male C57Bl/6 mice were treated intraperitoneally with 51 OxPAPCs, twice daily for three days. Changes in small intestinal contractility were evaluated 52 by isometric neuromuscular responses to receptor and non-receptor-mediated stimuli. 53 Alterations in ENS integrity and serotonergic pathways were assessed by real-time PCR and 54 confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-55 mount preparations (LMMPs). Tissue levels of serotonin (5-HT), tryptophan and kynurenine 56 were measured by HPLC coupled to UV/fluorescent detection.

Key Results. OxPAPCs treatment induced enteric gliosis, loss of myenteric plexus neurons, 58 excitatory hypercontractility and reduced nitrergic neurotransmission with no changes in 59 nNOS⁺ neurons. Interestingly, these changes were associated with a higher functional 60 response to 5-HT, altered immunoreactivity of 5-HT receptors and serotonin transporter 61 (SERT) together with a marked decrease of 5-HT levels, shifting tryptophan metabolism

towards kynurenine production.

Conclusions & Inferences. OxPAPCs treatment disrupted structural and functional integrity of the ENS, affecting serotoninergic tone and 5-HT tissue levels towards a higher kynurenine content during adolescence, suggesting that changes in intestinal lipid metabolism toward oxidation can affect serotoninergic pathways, potentially increasing the risk of developing functional gastrointestinal disorders during critical stages of development.

Keywords: oxidized phospholipids, Toll-like receptor, serotonin, enteric nervous system,

small intestine neuromuscular contractility, confocal microscopy

Irritable bowel syndrome (IBS) is a multifactorial functional gastrointestinal disorder affecting about 10-44% of EU citizens.^{1,2} IBS is diagnosed by a characteristic symptom profile (abdominal pain/discomfort, bloating/distension, alterations in defecatory function) in the absence of a definite organic disease of the gastrointestinal system.³ Several preclinical and clinical studies have proposed a variety of genetic, environmental, and psychological factors, including gut dysbiosis, obesity, food intolerances, sleep habits, stress, inflammation and surgery, as possible triggers of IBS.⁴ Higher levels of circulating pro-inflammatory polyunsaturated fatty acids⁵ and cytokines^{6,7} have been reported in IBS patients together with a low-grade immune activation.^{8,9} However, these altered immune responses, observed in IBS patients, still lack of clear mechanistic insights.

During oxidative stress, endogenous phospholipids (PLs), such as 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), are easily peroxidized to a mixture of reaction products, termed as OxPAPCs, and include oxidized chain-shortened phospholipids and oxygenated phospholipids. In physiological conditions, submicromolar to micromolar levels of OxPAPCs are circulating in human and rodent plasma, potentially exerting anti-LPS activity.¹⁰ At low concentrations OxPAPCs block both Toll-like receptors (TLRs) 2 and 4 signaling by competitively interfering with extracellular accessory proteins such as CD14, LPS-binding protein (LBP), and MD2.11,12 Thus, oxidized phospholipids (OxPLs) might be useful tools for studying the role of TLRs signaling during homeostasis.¹³ TLRs are recognized as first-line sentinels of innate and adaptive immunity that sense a distinctive repertoire of diverse molecules, released by microbes, referred to as microbial-associated molecular patterns (PAMPs), or derived from mammal cells, termed as danger-associated molecular patterns (DAMPs).¹⁴ In the gastrointestinal tract, TLRs are expressed on

immune cells, and epithelial cells as well as in neurons, glia and smooth muscle cells,¹⁵

Marsilio et al. 6

highlighting their key role in ensuring gut homeostasis, including enteric nervous system (ENS) integrity.^{15,16} Juvenile mice deficient for TLR2 show morpho-functional alterations of the ENS,¹⁷ similar to that observed in mice following antibiotic-induced dysbiosis of gut microbiota.¹⁸ TLR4, the most studied pathogen-recognition receptor, participates in the control of nitrergic/purinergic pathways within enteric neuronal-glial networks, influencing gut motility.^{15,19} Germ-free, antibiotic-treated mice and TLR4 deficient mice display similar gastrointestinal dysmotility and fewer nNOS⁺ neurons.^{15,18,19} Recent reports have highlighted that changes in TLR2 and/or TLR4 signaling in mouse small intestine influence the pattern of expression of serotonin (5-HT) receptors as well as motor responses to 5-HT, thus suggesting an interactive communication between TLRs and the intestinal serotonergic system.^{15,20-22} Alteration of 5-HT homeostasis is a major feature in IBS patients and may account for dysmotility. Indeed, changes in the whole serotonergic neurotransmitter machinery, including synthesis, reuptake mechanisms and receptors have been observed in IBS patients.²³ Administration of 5-HT₃ receptor antagonists to IBS patients has been shown to ameliorate motor dysfunction and visceral hypersensitivity.^{23,24} In the gut, 5-HT is produced from the metabolism of the essential amino acid tryptophan (TRP) which may give origin to several other compounds, such as kynurenines (KYN), tryptamine and indolic compounds, participating to the microbiota-gut-brain communication in health and disease states.²⁵⁻²⁷ Under normal conditions, approximately 3% of the assumed TRP is metabolized into 5-HT. whereas about 90% is catabolized into KYN, through the KYN pathway, and the remaining is degraded by the gut microbiota in order to produce indole and its derivatives.²⁸ Decreased 5-HT and increased KYN plasma concentrations as well as an elevation in the KYN/TRP ratio, possibly involving TLR activation, have been shown in IBS patients.^{6,23} These findings highlight the potential regulatory activity for TRP and its metabolites on the secretory, motor and sensory gut functions in health and disease conditions. The effects of TRP metabolites

are, however, not only confined to the regulation of cell homeostasis within the enteric microenvironment, but may also extend to the CNS, influencing mood and cognitive functions. ^{23,29,30} This latter observation lends itself to the possibility of studying the involvement of tryptophan metabolites in the generation of microbiota-gut-brain axis signaling underlying psychiatric disturbances associated with IBS.^{23,30} Based on this evidence, we aimed to evaluate the impact of OxPAPCs on functional and structural integrity of the ENS as well as on enteric serotonergic neurotransmission and tryptophan metabolism in male to per perez juvenile mice.

131 2. MATERIALS AND METHODS

132 2.1 Animals and in vivo treatment

All animal care and experimental procedures were approved by the Animal Care and Use Ethics Committee of the University of Padova and by the Italian Ministry of Health (authorization number: 1142/2015-PR) and were performed in accordance with national and EU guidelines for the handling and use of experimental animals. Animal studies are reported in compliance with the ARRIVE guidelines.^{31,32}

Juvenile male C57BL/6J mice (3±1 weeks old, body weight 18±1 g; Charles River Laboratories, Italy) were housed in individually ventilated cages (four animals per cage) at the conventional animal facility of the Department of Pharmaceutical and Pharmacological Sciences, University of Padova under controlled environmental conditions (temperature 21±1°C; relative humidity 60–70%) with access to food and water *ad libitum* and maintained at a regular 12/12 h light/dark cycle. Mice were randomized and subjected to intraperitoneal administration of OxPAPCs (Invivogen; 1.5 μ g/g in 0.9% saline; OxPAPC-treated mice)³³ or saline solution (control (CNTR) mice) for 3 days, twice a day. At the end of procedures, animals were killed by cervical dislocation. All the subsequent experimental procedures were conducted blindly.

148 2.2 Immunohistochemistry on ileal whole mount preparations

Distal ileum segments (10 cm) were filled with fixative solution 4% PFA in PBS for 1 hour at room temperature. Using a dissecting microscope, whole-mount preparations of longitudinal muscle with attached the myenteric plexus (LMMPs) were prepared as previously described.^{18,19} LMMPs from CNTR and OxPAPC mice were gently pinned down on a wax support and washed by gentle shaking in PBT (PBS with 0.2% Triton X-100) for 45 minutes. After blocking non-specific-binding sites with 2% bovine serum albumin (BSA) in PBT for 1 hour at room temperature, LMMPs were incubated with primary antibodies (**Supplementary**

Table 1) diluted in PBT/2% BSA overnight at room temperature. LMMPs were then washed in PBT for 45 minutes and incubated at room temperature for 2 hours with the secondary antibodies (Supplementary Table 1) diluted in PBT and BSA 2%.^{34,35} After 15-minutes washes with PBT, LMMPs were mounted on glass slides using a Mowiol Mounting Medium. Negative controls were obtained by incubating sections with isotype-matched control antibodies at the same concentration as primary antibody and/or pre-incubating each antibody with the corresponding control peptide (final concentration as indicated by manufacturer's instructions).

164 2.2.1 Imaging acquisition and analysis

Images were acquired with the Zeiss LSM 800 confocal imaging system (Oberkoken, Germany) equipped with an oil-immersion $63 \times$ objectives (NA 1.4). Z-series images (25) planes) of 1024×1024 pixels were captured and processed as maximum intensity projections. All microscope settings were set to collect images below saturation and were kept constant for all images. The number of HuC/D⁺ or nNOS⁺ neurons gathered was normalized to the total myenteric ganglia area as previously described.^{18,19} Changes in the immunoreactivity for GFAP, S100β, 5-HT_{2A}, 5-HT₃, 5-HT₄, SERT and ChAT were determined by evaluation the density index of labelling per myenteric ganglia area and was reported as mean ± SEM.

³ 173 2.3 In vitro contractility studies

Distal ileum segments (1 cm) were isolated and mounted along the longitudinal axis in organ baths containing 10 ml of oxygenated and heated (37°C) Krebs solution. In vitro contractility experiments were performed as previously described.^{18,19,36} Changes in ileum mechanical activity were recorded by isometric transducers (World Precision Instruments, Berlin, Germany) connected to a quad bridge amplifier and PowerLab 4/30 data acquisition system using LabChart 6 software (ADInstruments, Besozzo, VA, Italy). After 45 min equilibration, ileal segments were stretched passively to an initial tension of 0.5 g and brought to their

optimal point of length-tension relationship using 1 µM CCh.37 Ileal segments were either treated with CCh (0.001-100 µM) to study cholinergic-mediated responses or subjected to electrical field stimulation (EFS, 0-40 Hz; 1-ms pulse duration; 10-s pulse-trains, 40 V) using platinum electrodes connected to an S88 stimulator (Grass Instrument, Quincy, MA, USA) to evaluate neuronally-mediated contractions. To determine the neuronal influence on serotonergic response, cumulative EFS stimulation was performed in presence or absence of ondansetron (0.1 μ M, 5-HT₃ receptor antagonist) or GR113808 (0.1 μ M, 5-HT₄ receptor antagonist). 10 Hz-EFS-mediated NANC responses, obtained by adding 1 μ M guanethidine and 1 µM atropine to Krebs solutions, were recorded in absence or presence of non-selective NOS inhibitor L-NAME, 100 µM (preincubation time=20min) or 30 µM 5-HT in absence or presence of ondansetron (0.1 μ M) or GR113808 (0.1 μ M). Concentration-response curves to 5-HT were constructed in a non-cumulative fashion (0.3–30 μ M) on basal tone.²¹ The effect of 30 µM 5-HT was observed also in the presence of ketanserin (1 µM, 5-HT_{2A} receptor antagonist), or ondansetron (0.1 μ M). The antagonist concentrations used were based on the pKi described in literature and all antagonists were allowed to equilibrate for 20 min before concentration-response curves were repeated.^{38,39} Contractile responses were expressed as gram tension/gram dry tissue weight of ileal segments and ileal relaxation was calculated as AUC and normalized per g dry tissue weight.¹⁸

5 199 2.4 RNA isolation and real-time PCR

The relative abundance of SERT and 5-HT receptors (2A, 3 and 4) mRNA in distal ileum, was evaluated by real-time PCR as previously described.²¹ RNA extractions from LMMPs were carried out with the RNeasy mini kit (Qiagen, Hilden, Germany) and the cDNA was synthesized using the Affinity Script Multiple Temperature cDNA synthesis kit (Stratagene, La Jolla, CA, USA) according to the supplier's protocol. cDNAs obtained were used to measure SERT and 5-HT receptors' mRNA expression levels by SYBR Green and specific

primers (Supplementary Table 2). Reactions were run using the StepOne Plus Real-Time PCR System (Life Technologies, Carlsbad, CA, USA). The reaction mixture (10 µL) comprised 4.5 µL FastStart Universal SYBR Green Master (Roche, Mannheim, Germany), 0.5 µL of each primer 30 µM, 2.5 µL of sterile distilled water, and 2 µL of cDNA template (200 ng). Each sample was run in triplicate, and the mean Ct was determined from the three runs. Relative SERT and 5-HT receptors mRNA expression in each group of animals (CNTR or OxPAPC-treated) was expressed as $\Delta Ct = Ct_{5-HTreceptor} - Ct_{calibrator}$. GAPDH and HPRT housekeeping genes' expressions were used as calibrators after verification of their stability under our experimental conditions. Relative 5-HT receptors' mRNA expression was then calculated as $\Delta\Delta Ct = \Delta Ct_{OXPAPC} - \Delta Ct_{CNTR}$. Finally, the relative gene expression levels were converted and expressed as fold difference (= $2^{-\Delta\Delta Ct}$).

2.5 HPLC analysis of tryptophan metabolites

TRP metabolites were analyzed on ileal homogenates by high-performance liquid chromatography (HPLC) as previously described.⁴⁰⁻⁴²Briefly, freshly isolated ileal segments were immersed in liquid nitrogen, and pulverized in a cooled stainless mortar containing 1N HClO₄ (0.5 mL). The homogenates were then sonicated with Elmasonic S30 sonicator (Elma, Singer, Germany). After centrifugation (13,000 g for 30 minutes at 4°C), the supernatants were stored at -80°C until HPLC analysis whereas the samples pellets were dissolved in 1N NaOH and boiled for 20 minutes at 60°C, and then centrifugate at 15,000 g for 10 minutes at 4°C. The isolated supernatants were used for protein determination.^{37,43} The supernatants were brought to about pH 4-5 with 1 N NaOH and analyzed using a HPLC system (Shimadzu LC-10AD, Kyoto, Japan) equipped with a fluorometric detector (Shimadzu RF-10AXL) set at the excitation and emission wavelengths of 285 and 345 nm, respectively. Briefly, chromatographic separation of tryptophan metabolites was performed using an analytical Apollo EPS C18 100A column (5 μ m; 250 mm × 4.6 mm; Grace, Deerfield, IL, USA) and an

Alltech guard column with stationary phase RP-8 (25-40 μ m Lichroprep, Merck Darmstadt, Germany). Kynurenine analysis was carried out on an analytical Grace Smart RP-18 column (5 μ m; 250 mm × 4.6 mm; Grace) using a UV-VIS (ultraviolet-visible) detector (SPD-10A, Shimadzu), set at 360 nm. The mobile phases were as follows: Phase A, 95% acetonitrile – 5% water, and Phase B, 90% water – 5% methanol (pH 3.8). The analytes elution was performed with an isocratic gradient (5% Phase A and 95% Phase B, v/v) at 1 ml/min flow rate. The concentration of TRP and its metabolites was extrapolated from calibration curves.

238 2.6 Data and statistical analysis

The data and statistical analysis in this study comply with the recommendations on experimental design and analysis in pharmacology.³² Animals were randomly allocated into the different experimental groups. All the experiments were analyzed by investigators blinded to the treatments. All data are expressed as mean \pm SEM. Statistical significance was calculated with the paired or unpaired Student's *t*-test for two-sample comparisons, two-way ANOVA followed by Bonferroni's *post hoc* test for multiple comparison, using GraphPad Prism software version 8.0 (San Diego, CA, USA). The differences between groups were considered significant when P<0.05; 'N' values indicate the number of animals. Post hoc tests were run only if F achieved P<0.05 and there was no significant variance inhomogeneity.

248 2.7 Materials

Unless otherwise specified, chemicals were analytical grade and purchased from Sigma Aldrich (Milan, Italy). Paraformaldehyde (PFA) was purchased from Electron Microscopy Sciences - Società Italiana Chimici (Rome, Italy), and Triton-X-100 was from Applichem (Milan, Italy). All drugs for in vitro experiments were dissolved in Krebs solution, with the exception of ketanserin, which was dissolved in DMSO. Final concentration of DMSO never exceeded 0.01%, and controls were conclusive that this concentration had no effect on in vitro contractility studies.

OxPAPCs (Invivogen; San Diego, CA) was prepared as indicated by manufacturer's instructions. Briefly, suspended in 500 µL chloroform (final concentration 1 mg/mL) and carefully vortexed to obtain a homogeneous solution that was then aliquoted and evaporated under a gentle stream of nitrogen gas. On the day of experiment, saline was added to produce the desired concentration. Since at higher concentrations can induce inflammation,¹⁰ OxPAPCs dosage was chosen based on previous published findings³³ as well as considering the recommended concentration reported on Invivogen datasheet (i.e. ≤30 µg/mL) and controlling animals' general health parameters during the treatment.

3. RESULTS

266 3.1 In vivo administration of OxPAPCs alters the architecture of juvenile mice myenteric
267 plexus

Considering that gut dysbiosis as well as changes in TLRs signaling affects ENS integrity,^{15,17-19,21} we sought to determine the impact of OxPAPC treatment on ENS architecture by confocal immunofluorescence. In the myenteric plexus of OxPAPC-treated mice, the total number of HuC/D⁺ neurons was significantly lower than in CNTR mice (Figure 1A, B). This change was accompanied by a marked increase of the immunoreactivity for the glial markers GFAP (40%; Figure 1A, C) and S100β (17%; Figure 1D, E). Since OxPAPC-induced neuroglia plasticity may be linked to changes in the enteric motor function, ileal excitatory neuromuscular contractility was assessed in isolated small intestine preparation from control and OxPAPC-treated mice. This latter investigation was all the more stringent since mice deficient for TLR2 or TLR4 showed altered gastrointestinal motility.^{15,17,19,21}

3.2 In vivo treatment with OxPAPCs increases excitatory neuromuscular contractility

In vitro neuromuscular responses have been evaluated after in vivo treatment with OxPAPCs, by measuring tension changes in isolated ileal preparations following cumulative addition of the non-selective cholinergic agonist, CCh. Ileal segments from OxPAPC-treated mice showed a significant upward shift of the concentration-response curve to CCh and a consequent increase in maximum response, Emax rising about 50% from the CNTR value (Figure 2A). Since cholinergic response was found to be modified after treatment, we sought to further test the neuromuscular function by analyzing frequency-response curves to EFS. Altered neurotransmission in OxPAPC-treated ileal segments was reflected by increased EFS-elicited contractions (by 80% at 10 Hz; Figure 2B). We previously confirmed that in mouse ileum, EFS-mediated responses to frequencies up to 10 Hz are of neuronal cholinergic origin,

Neurogastroenterology and Motility

Marsilio et al. 15

being sensitive to both tetrodotoxin and atropine.^{17,36,37} However, no changes in ChAT
immunoreactivity was found in ileal whole mount preparations of OxPAPC mice (Figure 2C,
D). A higher excitatory neuromuscular response in the absence of significant changes in
ChAT immunostaining after OxPAPCs treatment, may depend upon the impairment of the
inhibitory neurotransmission.

295 3.3 OxPAPCs in vivo administration affects inhibitory neurotransmission

To evaluate the contribution of inhibitory neurotransmission in the control of intestinal motility in our model, and considering that the increased excitatory contractions could be due, at least in part, to a reduction of the inhibitory component, we tested NO-mediated relaxation responses in the presence of guanethidine and atropine. In OxPAPC mice, EFS NANC-relaxations at 10 Hz were significantly reduced (by -45%) compared to those obtained in CNTR animals (Figure 3A). Pretreatment with L-NAME induced an EFS-mediated relaxation comparable between the two groups. To better characterize the impact of treatment with OxPAPCs on the nitrergic neurotransmission, we analyzed the distribution of nitrergic neurons in the myenteric plexus. However, the number of nNOS⁺ neurons in the ileal myenteric plexus of both groups was not significantly different (Figure 3B, C). Rearrangements in the cholinergic and nitrergic neurotransmissions as well as in the neuroglia network following OxPAPCs suggest that blockade of TLR2 and TLR4 may bear important consequences on the morphology and function of the ENS which we decided to further investigate by evaluating the influence of OxPAPCs on enteric serotonergic pathways, which appear to be modulated by TLR2 and TLR4 signaling.^{21,44} 3.4 In vivo exposure to OxPAPCs influences ileal SERT and 5-HT receptors expression

In order to elucidate if OxPAPCs can impact the enteric serotonergic system, which plays an important role in stimulating ENS and gut function⁴⁵, we analyzed SERT expression in the mouse ileum by evaluating the transporter immunoreactivity and mRNA levels in LMMPs 315 preparations. In LMMPs obtained from OxPAPC-treated animals SERT immunoreactivity
316 was higher than in CNTR, which was reflected by a 1.3-fold increase in mRNA expression
317 (Figure 4A-C).

Secondly, considering that the actions of 5-HT on gastrointestinal motility are transduced by a large family of 5-HT receptor subtypes, real-time PCR and confocal immunofluorescence were performed to characterize the involvement of 5-HT_{2A}, 5-HT₃, 5-HT₄ receptors in OxPAPC-mediated hypercontractility (Figure 5). In OxPAPC-treated LMMPs, the mRNA levels of 5-HT_{2A} and 5-HT₄ receptors increased by 3.4- and 1.8-fold, respectively, with no changes in 5-HT₃ receptor mRNA levels, when compared to CNTR preparations (Figure 4C, F, I). The enhanced expression levels of 5-HT_{2A} receptors by 85% was then confirmed by confocal immunofluorescence and density index analysis in whole mount preparation of LMMPs (Figure 5A-B), together with a significant increase of density index for 5-HT₃ receptor by 62% (Figure 5D, E). Considering that OxPAPCs treatment alters both ileal immunoreactivity and mRNA levels of SERT serotonergic receptors, we have evaluated

 $^{35}_{36}$ 329 whether these alterations could affect serotonergic neuromuscular response.

3.5 OxPAPCs in vivo administration modifies serotonergic neurotransmission

Since 5-HT is described to activate both intrinsic excitatory and inhibitory enteric motor neurons, we analyzed the influence of the *in vivo* treatment with OxPAPC on the contractile response evoked by the non-cumulative addition of exogenous 5-HT in isolated ileal segments. 5-HT evoked a concentration-dependent contractile response that was significantly higher in OxPAPC-treated mice compared to CNTR animals (by 40% Emax; Figure 6A). In both experimental groups, 5-HT-mediated ileal contractions were prevalently of neuronal origin since they were reduced by about 60% after addition of tetrodotoxin (data not shown). To further investigate which 5-HT receptor subtype is responsible for OxPAPC-induced neuromuscular hypercontractility to 5-HT, we first evaluated the effect of ondansetron

1		Marsilio et al. 17
2 3 4	340	(antagonist of 5-HT ₃ receptors) and GR113808 (antagonist of 5-HT ₄ receptors) on frequency-
5 6	341	response curves to EFS. In CNTR mice both antagonists caused a significantly increase of
7 8	342	EFS-induced contractions (+53% at 10 Hz; +65% at 40 Hz; Figure 6B). In OxPAPC mice
9 10 11	343	EFS-mediated enhancement of the contractile response was obtained only at 40 Hz (+38;
12 13	344	Figure 6C). In a successive set of experiments, the inhibition of either 5 -HT _{2A} receptors with
14 15 16	345	ketanserin or 5 -HT ₃ receptors with ondansetron was evaluated on the submaximal contractile
17 18	346	response elicited by 30 μ M 5-HT. Both in presence and absence of OxPAPC treatment, the
19 20	347	incubation with 0.1 μ M ondansentron determined a significant reduction of the contractile
21 22 23	348	response to 5-HT (Figure 6D-F), by about 75% and 85%, respectively, confirming the
23 24 25	349	involvement of 5-HT ₃ receptor in 5-HT-mediated ileal contraction. In ileal segments from
26 27	350	both experimental groups, ketanserin increased the contractile response to 5-HT, by about
28 29 30	351	70% and 73%, respectively, indicating that 5- HT_{2A} receptor are involved in a relaxation
31 32	352	response in the mouse ileum ⁴⁶ (Figure 6E-F). Furthermore, the influence of 30 μ M 5-HT was
33 34	353	investigated on 10 Hz-EFS NANC-mediated relaxation in presence of 5 -HT ₃ or 5 -HT ₄
35 36 37	354	receptor antagonists. As shown in Figure 6G, 30 µM 5-HT caused a significant reduction of
38 39	355	the inhibitory NANC response in CNTR and OxPAPC-treated mice (-32%, -45%,
40 41	356	respectively). In ileal segment from both experimental groups, after incubation with 5 -HT ₃ or
42 43 44	357	5-HT ₄ receptors antagonists, the inhibitory effect of 30 μ M 5-HT was slightly, but not
45 46	358	significantly, reduced with respect to control NANC conditions, highlighting the role of these
47 48 49	359	receptors in the 5-HT-mediated neuromuscular response (Figure 6G). Since serotonergic
49 50 51	360	neurotransmission as well as 5-HT receptors mRNA levels and immunoreactivity resulted
52 53	361	modified by OxPAPC treatment, it is conceivable that tryptophan metabolism might be
54 55 56	362	affected. Thus, we further tested the impact of OxPAPCs in vivo exposure on TRP
50 57 58	363	metabolism in small intestine.
59 60	364	

3.6 OxPAPCs in vivo administration impairs tryptophan metabolism

After OxPAPC treatment, TRP levels in ileal tissue were found to be comparable to CNTR specimens (Figure 7A). However, along the 5-HT pathway of TRP metabolism, after OxPAPC treatment the levels of the metabolite 5-hydroxytryptophan (5-HTP) significantly increased (Figure 7B) and were associated with a reduction of 5-HT levels (by 56%; Figure 7C). Interestingly, we found a significant increase of kynurenine (KYN) levels in ileal tissue of OxPAPC-treated mice (+50%; Figure 7D), suggesting that acute exposure to OxPAPC may shift TRP metabolism from the serotoninergic pathway to the physiologically relevant KYN

arm.46

4. DISCUSSION

Phospholipids are the building blocks of all mammalian membranes, ensuring a permeable barrier as well as endogenous substrates in multiple enzymatic pathways usually involved in the formation of essential signaling mediators (e.g. platelet-activating factor, sphingosine-derived phospholipids, eicosanoids and many others).⁴⁷ However, several pathological conditions, including lung injury, autoimmune diseases, and sepsis, promote oxidative stress with the consequent formation of fatty acid hydroperoxides and further accumulation of full-length and fragmented OxPLs in cell membranes and circulating lipoproteins.⁴⁸ OxPLs elicit a multiplicity of bioactivities by interacting with different pattern-recognition receptors of the innate immune system cellular receptors, including TLRs and scavenger receptors.^{48,49} In contrast to these proinflammatory effects, OxPLs have also been shown to mediate anti-inflammatory responses by negatively influencing the activation of TLRs following exposure to microbial ligands.^{11,33,50,51} OxPAPCs are produced by the spontaneous oxidation of phosphorylcholine-containing lipids that are present in the plasma membrane of cells and are considered LPS-like DAMPs.52,53

Here, for the first time, we show the consequences of a 3-day treatment with OxPAPCs on the morphology and function of juvenile ENS and provide novel insights into the affected pathways. In particular, this study demonstrates that an acute increase of OxPLs during early adulthood has the following outcomes: (i) altered structure of the enteric glial network as well as alterations in cholinergic and nitrergic neurochemical coding; (ii) dysmotility of the small intestine associated with impaired cholinergic and nitrergic neurotransmission; (iii) increased expression of 5-HT_{2A}, 5-HT₃, 5-HT₄ receptors and SERT, further evidenced by altered immunofluorescence density in the neuromuscular layers; (iv) reduced 5-HT levels and higher KYN content together with increased 5-HT-mediated motor response via $5-HT_3$ and $5-HT_4$ receptors.

Marsilio et al. 20

The structural evaluation by means of whole mount immunohistochemistry, performed on ileal LMMPs preparations, indicated anomalies in myenteric ganglia, denoted by a lower number of HuC/D⁺ neurons in OxPAPC-treated mice, associated with a higher immunofluorescence of the glial proteins GFAP and S100^β. The analysis of neuroplasticity is critical for investigating enteric morphological and functional changes that may occur during health and disease.^{19,54-56} Reduced number in HuC/D⁺ neurons together with an increased staining of the glial proteins GFAP and S100^β, indicative of reactive gliosis, have been shown during hypoxia, impaired mitochondrial respiration, mechanical nerve injury⁵⁵ and absence of TLR4 signaling.¹⁹ As a member of the cytoskeletal protein family, GFAP is thought to be important in modulating mature astrocyte motility and shape by providing structural stability to astrocytic processes.^{19,57} A rapid synthesis of GFAP has been shown in inflamed area of biopsies from patients with both ulcerative colitis and Crohn's disease,^{57,58} although this cell marker is reduced during necrotizing enterocolitis and in the non-inflamed mucosa of patients with inflammatory bowel disease.^{57,58} Aberrant distribution and release of the glial functional protein S100β is also associated with the gut inflammatory status, impaired TLR4 signaling and enteric dysbiosis.^{15,18,19,59,60} We here add further findings indicating that OxPAPCs treatment may induce anomalies in both structural and regulatory enteric glial cell proteins, affecting glial homeostasis in the ENS. Okamoto et al. (2014) have shown that colonic serotonergic neurons of the myenteric plexus project their fibers to EGCs.⁶¹ In particular. direct application of exogenous 5-HT to an isolated human EGC induced the onset of a Ca²⁺ wave, to underline the modulatory role of the serotonergic system in neuron-to-glial communication.⁶² The morphological abnormalities observed in the ENS of OxPAPC-treated mice were associated with impaired gut motor function. In juvenile mice exposed to OxPAPCs, the receptor-mediated response to CCh as well as EFS-elicited neuromuscular contractions significantly increased. However, no changes in ChAT immunoreactivity were

2		
2 3 4	424	detected, indicating that alterations of the EFS-induced contractions do not depend upon
5 6 7 8 9 10 11	425	major changes in the cholinergic innervation. However, we cannot exclude the occurrence of
	426	changes of acetylcholine and/or of other excitatory co-transmitters, such as tachykinins or
	427	glutamate, synaptic turnover. ^{35,63} Evidences on smooth muscle cells (SMCs) have shown that
12 13	428	OxPAPCs can induce a SMC inflammatory phenotype by accumulating within lipid-rich
14 15	429	atherosclerotic lesions. ⁶⁴ However, these effects more likely appear to locally and
16 17	430	progressively develop at OxPLs tissue deposition sites. The low OxPAPC concentration used
18 19 20	431	in the present study, mostly exerts an anti-LPS function, protecting from excessive systemic
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	432	response to TLR4 ligands. ^{10,33}
	433	Another hypothesis, which can be put forward, is that the enhancement of the cholinergic
	434	contractile response may homeostatically counterbalance changes in the inhibitory relaxation
	435	in order to sustain peristalsis after OxPAPCs treatment. However, a reduction of EFS-induced
	436	NANC relaxations at 10 Hz, prevalently of nitrergic origin, ^{19,65,66} was observed in ileal
	437	preparations of OxPAPC-treated mice. Derangement of the relaxation response was not
	438	associated with significant changes in nNOS ⁺ neurons in myenteric ganglia. Overall, these
36 37 38	439	data showing neuronal loss, altered neuromuscular function, along with glial activation,
39		
40 41	440	strongly suggest that OxPAPCs treatment favors the development of a neuroplastic phenotype
42 43	441	in the ENS similar to some neuroplastic changes observed both in the central and peripheral
44 45 46 47 48 49	442	nervous system. ⁶⁷ This observation is all the more interesting considering that an increasing
	443	amount of data are now available to sustain the existence of gut-brain disorders underlying
	444	the pathogenesis of peripheral and brain diseases. ⁶⁸
50 51 52	445	From a mechanistic view point, although the correlation between the observed alterations in
53 54	446	the glial proteins S100β and GFAP and neuromuscular dysfunction are still to be elucidated,
55		

447 along with their pathophysiologic relevance, these changes clearly indicate that OxPAPCs

treatment favors development of a gut neuropathy, reminiscent of the structural and functional alterations found in TLR2-deficient mice.¹⁷

Recently, Latorre and colleagues²⁰ have demonstrated that TLR2 could be a negative repressor of SERT and the double knockout mice for TLR2 and 4 receptors (TLR2/4 DKO) express alterations in the pattern of expression of 5-HT receptors as well as their involvement in the modulation of enteric motor responses.^{21,44} Thus, in juvenile mice we evaluated the effect of the acute pharmacological treatment with OxPAPCs on enteric serotonergic pathways. 5-HT is considered a neuromodulator of gastrointestinal motility, secretion and visceral sensitivity by acting on specific receptors, expressed on enteric neurons, although the function of the serotoninergic system in the control gut homeostasis has not yet been clear-cut defined.^{26,46,69} As regards the motor function, for example, it is important to note that depletion of all endogenous 5-HT does not block peristalsis in the large intestine of vertebrates, nor inhibit transit.⁷⁰ In accordance with previous studies,^{21,44} we found that inhibition of both TLR2 and TLR4 signaling affected the pattern of myenteric distribution of 5-HT_{2A} and 5-HT₃ receptors and SERT, while 5-HT₄ receptor distribution and expression was not largely influenced. In a recent study, both the human microbiota and conventional mouse microbiota were found to modulate 5-HT₃-mediated response in germ-free animals, suggesting the involvement of a common effect of commensal microbiota regardless of host species,⁷¹ potentially through TLRs signaling. In the ileum of OxPAPC-treated mice, 5-HT₃-evoked contraction significantly increased, suggesting the presence of an interactive dialogue between TLR2 and TLR4 receptors and the intestinal serotonergic neurotransmission, since both receptors are expressed in a variety of cells within the enteric microenvironment.^{17,72-74} The 5-HT₂₃₄₇ receptors are involved in the modulation of intestinal motor function.^{45,46} In our study, in the isolated ileum of both OxPAPC-treated and CNTR mice the excitatory effect of a submaximal dose of 5-HT was significantly reduced by preincubation with ondansetron,

suggesting the involvement of 5-HT₃ receptors. Interestingly, in IBS patients, 5HT₃ receptor expression is altered and administration of 5-HT₃ receptor antagonists may slow colonic transit, enhance small intestinal absorption and reduce visceral pain by activation of gut-brain pathways.^{23,24} In a recent meta-analysis review of the literature different 5-HT₃ receptor antagonists have emerged as potential valid therapeutic tools to treat IBS with few associated adverse effects.⁷⁵ In the ileum of OxPAPC-treated mice, 5-HT-evoked a contractile response in presence of the 5-HT_{2A} receptor antagonist, significantly higher to that obtained from control preparations, indicating the involvement of 5-HT_{2A} receptors in the relaxation response.⁷⁶ Both preclinical and clinical studies point to 5HT_{2A} receptors as pathogenetically relevant to IBS and as potential targets for treating abdominal pain and discomfort in IBS.⁷⁷ Intriguingly, isolated small intestine of OxPAPC-treated mice showed higher and comparable excitatory responses following EFS in presence of ondansetron or GR113808, suggesting the involvement of 5-HT₃ and 5-HT₄ receptors. These findings were further corroborated by the reduced inhibitory responses of OxPAPC preparations following inhibition of 5-HT₃ and 5- HT_4 receptors. 5-HT₄ receptor agonists are implicated in the regulation of propulsive motility for alleviating constipation as well as relieving pain in IBS. They are known to modulate the release of nitric oxide from inhibitory nitrergic neurons, to counteract contraction, and the production of acetylcholine from myenteric excitatory cholinergic neurons, to ensure smooth muscle contraction, sustaining GI motility.⁴⁶ In the gut, 5-HT is produced from the metabolism of the essential amino acid TRP, which under direct or indirect control of the microbiota, may give origin to several other compounds, such as KYN, tryptamine and indolic compounds, participating to the microbiota-gut-brain communication in health and disease states.²⁵⁻²⁷ OxPAPCs treatment induced a significant increase of 5-HTP and a reduction of 5-HT ileum tissue levels, suggesting that blockade of TLR2 and TLR4 signaling affects TRP metabolism. Under normal conditions, TRP is principally catabolized into KYN,

which therefore represents the main TRP degradation pathway, leading to the formation of a large number of metabolically active compounds.²⁸ Multiple enzymes are involved in the KYN pathway, some of which are tightly regulated by inflammatory mediators.⁷⁸ The main enzyme that catalyzes TRP conversion into KYN is indoelamine 2,3-dyoxigenase (IDO), expressed in the intestine and whose activity can be enhanced by inflammatory mediators, such as IFN- α and IFN- γ , TNF- α and LPS.⁷⁸ In the juvenile mouse ileum, OxPAPC treatment induced a significant increase of KYN levels, suggesting that from a metabolomic viewpoint TLRs may favor a diversion of TRP metabolism from the 5-HT to the KYN pathway. Two of the downstream metabolites of KYN, quinolinic and kynurenic acid are of particular interest for neurogastroenterology due to their excitotoxic and neuroprotective role in the CNS, respectively. Although much research is still needed to elucidate their role in the modulation of the gut homeostasis, especially kynurenic acid appears to be involved in immunoregulation and in regulation of enteric neuron excitability under inflammatory conditions.63,79 Interestingly, studies focusing on the role of TRP in IBS, indicate that the severity of the disease positively correlates with enhanced activation of the KYN arm of TRP metabolism, suggesting that this metabolic pathway may represent a key mediator of the altered immune and neuronal responses associated with the disease.^{6,23,25,28,30} Lipoproteins, the major carrier of OxPLs are implicated in clearing MAMPs (e.g. LPS and lipoteichoic acid), or preventing TLRs signaling and the subsequent release of proinflammatory cytokines.⁸⁰ From a translation point of you, our findings highlight that acute, but not chronic pro-inflammatory, changes in the levels of OxPLs affect the integrity of juvenile ENS in terms of structure, function and TRP metabolism, suggesting a key role of a healthy diet⁸¹ in modelling a dynamic balance between the luminal environment and the physiological response of intestinal neural network to maintain gut homeostasis and health. Furthermore, OxPLs exert pleiotropic biological effects that are dependent on their structure (e.g. full-length OxPLs are barrier protective;

1 2		
- 3 4	523	truncated OxPLs are barrier disruptive), tissue concentrations (e.g. at low levels full-length
5 6	524	OxPLs are protective), and cellular context. ⁴⁸ In this respect, OxPAPCs have been shown to
7 8 9	525	be anti-inflammatory regulators involved in the negative control of the non-canonical
9 10 11	526	inflammasome caspases both in humans and mice, suggesting their possible therapeutic
12 13	527	potential in targeting non-canonical inflammasomes during Gram-negative bacterial
14 15	528	infection. ⁵¹ This is all the more important since during adolescence enteric neurons undergo
16 17 18	529	neuroplastic changes in response to genetic and environmental signals, and any insult
19 20	530	undermining a normal physiologic neurodevelopment may contribute to the onset of
21 22	531	functional intestinal diseases, such as IBS.
23 24 25	532	functional intestinal diseases, such as IBS.
26 27		
28 29		
30 31		
32 33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48 49		
49 50 51		
52 53		
54 55		
56 57		
58 59		
60		

533 ACKNOWLEDGMENTS

534 We thank Francesca Patrese, DMV and Ludovico Scenna, DMV for veterinary assistance,

535 Mauro Berto, Massimo Rizza for technical assistance in animal handling, Dr. Carla Argentini

- 536 and Dr. Federico Cusinato for technical support in experimental procedures, and Dr. Andrea
- 537 Pagetta for technical assistance on confocal microscopy.

538 This work was supported by grants from University of Padova (UNIPD-Assegno di Ricerca

539 2016, UNIPD-DSF-PRID2017, UNIPD-DOR-2018 and 2019 funds) and from San Camillo

540 Hospital, Treviso (Italy) to MCG. The funders had no role in study design, data collection and

541 analysis, decision to publish, or preparation of the manuscript.

543 AUTHOR CONTRIBUTIONS

IM: performed the research, analyzed the data, wrote the original draft and revised the manuscript; VC: performed the research, analyzed the data, wrote the original draft; EL: performed the research, analyzed the data, wrote the original draft; SC: performed the research, analyzed the data, wrote the original draft and revised the manuscript; AP: performed the research, analyzed the data; AIA: designed the research study, analyzed the data; JEM: analyzed the data, contributed essential reagents or tools; SOM: designed the research study, analyzed the data; AB: designed the research study, analyzed the data, wrote the original draft, contributed essential reagents or tools; CG: designed the research study, analyzed the data, wrote the original draft and revised the manuscript, contributed essential reagents or tools; MCG: designed the research study, analyzed the data, wrote the original draft and revised the manuscript, contributed essential reagents or tools, supervised & administered the project. All authors approved the final version of the manuscript.

- 6 556
 - **COMPETING INTERESTS:** The authors have no competing interests.

- **5. REFERENCES**
- 559 1. Quigley EM, Bytzer P, Jones R, Mearin F. Irritable bowel syndrome: the burden and
 unmet needs in Europe. Dig Liver Dis. 2006 Oct;38(10):717-23.
- 561 2. Flik CE, Laan W, Smout AJ, Weusten BL, de Wit NJ. Comparison of medical costs
 562 generated by IBS patients in primary and secondary care in the Netherlands. BMC
 563 Gastroenterol. 2015 Nov 26;15:168.
- 564 3. Drossman DA, Dumitrascu DL. Rome III: New standard for functional gastrointestinal disorders. J Gastrointestin Liver Dis. 2006 Sep;15(3):237-41.
- 566 4. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal
 567 barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012
 568 Jun;24(6):503-12.
- 569 5. Clarke G, Fitzgerald P, Hennessy AA, Cassidy EM, Quigley EM, Ross P, Stanton C,
 570 Cryan JF, Dinan TG. Marked elevations in pro-inflammatory polyunsaturated fatty acid
 571 metabolites in females with irritable bowel syndrome. J Lipid Res. 2010
 572 May;51(5):1186-92.
- 573 6. Clarke G, McKernan DP, Gaszner G, Quigley EM, Cryan JF, Dinan TG. A Distinct
 574 Profile of Tryptophan Metabolism along the Kynurenine Pathway Downstream of Toll575 Like Receptor Activation in Irritable Bowel Syndrome. Front Pharmacol. 2012 May
 576 21;3:90.
- 577 7. Scully P, McKernan DP, Keohane J, Groeger D, Shanahan F, Dinan TG, Quigley EM.
 50
 578 Plasma cytokine profiles in females with irritable bowel syndrome and extra-intestinal
 579 co-morbidity. Am J Gastroenterol. 2010 Oct;105(10):2235-43.
- 580 8. Cremon C, Gargano L, Morselli-Labate AM, Santini D, Cogliandro RF, De Giorgio R,
 57
 580 581 Stanghellini V, Corinaldesi R, Barbara G. Mucosal immune activation in irritable bowel

582 syndrome: gender-dependence and association with digestive symptoms. Am J
583 Gastroenterol. 2009 Feb;104(2):392-400.

- ⁸ 584 9. Ohman L, Lindmark AC, Isaksson S, Posserud I, Strid H, Sjövall H, Simrén M. B-cell
 ¹⁰ 585 activation in patients with irritable bowel syndrome (IBS). Neurogastroenterol Motil.
 ¹² 586 2009 Jun;21(6):644-50, e27.
- 10. Oskolkova OV, Afonyushkin T, Preinerstorfer B, Bicker W, von Schlieffen E, Hainzl E, Demvanets S, Schabbauer G, Lindner W, Tselepis AD, Woita J, Binder BR, Bochkov VN. Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation. J Immunol. 2010 Dec 15;185(12):7706-12.
- 11. Erridge C, Kennedy S, Spickett CM, Webb DJ. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem. 2008 Sep 5;283(36):24748-59.
- 12. Mayerhofer R, Fröhlich EE, Reichmann F, Farzi A, Kogelnik N, Fröhlich E, Sattler W, Holzer P. Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice. Brain Behav Immun. 2017 Feb;60:174-187.
- 43
 44
 45
 46
 600
 13. Mauerhofer C, Philippova M, Oskolkova OV, Bochkov VN. Hormetic and anti45
 46
 47
 48
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49</li
- 601 14. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update
 602 on Toll-like receptors. Nat Immunol. 2010 May;11(5):373-84.
- 15. Caputi V, Marsilio I, Cerantola S, Roozfarakh M, Lante I, Galuppini F, Rugge M, Napoli E, Giulivi C, Orso G, Giron MC. Toll-Like Receptor 4 Modulates Small Intestine Neuromuscular Function through Nitrergic and Purinergic Pathways. Front Pharmacol. 2017b Jun 8;8:350.

Neurogastroenterology and Motility

1			Warshio et al. 29
2 3 4	607	16.	Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and
5 6 7 8 9	608		disease. Trends Neurosci. 2011 May;34(5):269-81.
	609	17.	Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo
10 11	610		AR, Spagnol L, De Caro R, Pizzuti D, Barbieri V, Rosato A, Sturniolo GC, Martines D,
12 13	611		Zaninotto G, Palù G, Castagliuolo I. Toll-like receptor 2 regulates intestinal inflammation
14 15 16	612		by controlling integrity of the enteric nervous system. Gastroenterology. 2013
17 18	613		Dec;145(6):1323-33.
19 20 21	614	18.	Caputi V, Marsilio I, Filpa V, Cerantola S, Orso G, Bistoletti M, Paccagnella N, De
21 22 23	615		Martin S, Montopoli M, Dall'Acqua S, Crema F, Di Gangi IM, Galuppini F, Lante I,
24 25	616		Bogialli S, Rugge M, Debetto P, Giaroni C, Giron MC. Antibiotic-induced dysbiosis of
26 27	617		the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol.
28 29 30	618		2017a Oct;174(20):3623-3639.
31 32	619	19.	Cerantola, S.; Caputi, V.; Marsilio, I.; Ridolfi, M.; Faggin, S.; Bistoletti, M.; Giaroni, C.;
33 34 35	620		Giron, M.C. Involvement of Enteric Glia in Small Intestine Neuromuscular Dysfunction
35 36 37	621		of Toll-Like Receptor 4-Deficient Mice. Cells 2020, 9, 838.
38 39 40	622	20.	Latorre E, Layunta E, Grasa L, Castro M, Pardo J, Gomollón F, Alcalde AI, Mesonero
40 41 42	623		JE. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A
43 44	624		Feedback Modulation. PLoS One. 2016 Dec 29;11(12):e0169303.
45 46	625	21.	Forcén R, Latorre E, Pardo J, Alcalde AI, Murillo MD, Grasa L. Toll-like receptors 2 and
47 48 49 50 51	626		4 modulate the contractile response induced by serotonin in mouse ileum: analysis of the
	627		serotonin receptors involved. Neurogastroenterol Motil. 2015 Sep;27(9):1258-66.
52 53 54	628	22.	Marsilio I, Caputi V, Cerantola S, Latorre E, Paquola A, Pattarello A, Orso G, Mesonero
55 56	629		JE, Bertazzo A, Giron MC. Involvement of the serotonin pathway in ileal neuromotor
57 58	630		dysfunction associated with TLR2 and TLR4 inhibition in juvenile mice.
59 60	631		Neurogastroenterol Motil. 2017;29(S2):12.

1			
2 3 4 5 6 7 8 9	632	23.	Bosi A, Banfi D, Bistoletti M, Giaroni C, Baj A. Tryptophan Metabolites Along the
	633		Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the
	634		Gut in Health and Disease. Int J Tryptophan Res. 2020 Jun 11;13:1178646920928984.
9 10 11	635	24.	Camilleri M, Boeckxstaens G. Dietary and pharmacological treatment of abdominal pain
12 13	636		in IBS. Gut. 2017;66(5):966-974.
14 15 16	637	25.	O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan
17 18	638		metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015 Jan 15;277: 32-
19 20 21	639		48.
22 23	640	26.	Israelyan N, Del Colle A, Li Z, Park Y, Xing A, Jacobsen JPR, Luna RA, Jensen DD,
24 25	641		Madra M, Saurman V, Rahim R, Latorre R, Law K, Carson W, Bunnett NW, Caron MG,
26 27 28	642		Margolis KG. Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on
29 30	643		Gastrointestinal Motility in a Mouse Model of Depression. Gastroenterology. 2019
31 32	644		Aug;157(2):507-521.e4.
33 34 35	645	27.	Spear ET, Mawe GM. Enteric neuroplasticity and dysmotility in inflammatory disease:
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	646		key players and possible therapeutic targets. Am J Physiol Gastrointest Liver Physiol.
	647		2019 Dec 1;317(6):G853-G861.
	648	28.	Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the
	649		microbiota-gut-brain axis. Neuropharmacology. 2017 Jan;112(Pt B):399-412.
	650	29.	Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut feelings. Brain
	651		Behav Immun. 2010 Jan;24(1):9-16.
	652	30.	Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin
	653		Chem. 2020 95:165-218.

Neurogastroenterology and Motility

654 31. McGrath JC, Lilley E. Implementing guidelines on reporting research using animals 655 (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol. 2015 656 Jul;172(13):3189-93.

32. Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, Hoyer D, Insel PA, Izzo AA, Ji Y, MacEwan DJ, Sobey CG, Stanford SC, Teixeira MM, Wonnacott S, Ahluwalia A. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol. 2018 Apr;175(7):987-993.

- 662 33. Nonas S, Birukova AA, Fu P, Xing J, Chatchavalvanich S, Bochkov VN, Leitinger N,
 663 Garcia JG, Birukov KG. Oxidized phospholipids reduce ventilator-induced vascular leak
 664 and inflammation in vivo. Crit Care. 2008;12(1):R27.
- ²⁹ 665 34. Filpa V, Bistoletti M, Caon I, et al. Changes in hyaluronan deposition in the rat myenteric
 ³¹ 666 plexus after experimentally-induced colitis. Sci Rep. 2017;7(1):17644.
- 35. Antonioli L, Pellegrini C, Fornai M, Tirotta E, Gentile D, Benvenuti L, Giron MC, Caputi V, Marsilio I, Orso G, Bernardini N, Segnani C, Ippolito C, Csóka B, Németh ZH, Haskó G, Scarpignato C, Blandizzi C, Colucci R. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A_{2B} adenosine receptors. Purinergic Signal. 2017 Dec;13(4):497-510.
- 36. Brun P, Giron MC, Zoppellaro C, Bin A, Porzionato A, De Caro R, Barbara G, Stanghellini V, Corinaldesi R, Zaninotto G, Palù G, Gaion RM, Tonini M, De Giorgio R, Castagliuolo I. Herpes simplex virus type 1 infection of the rat enteric nervous system small-bowel abnormalities. evokes neuromuscular Gastroenterology. May;138(5):1790-801.

⁵⁷ ⁵⁸ ⁵⁹ <li

- 679 virus type 1 infection of rat enteric nervous system. PLoS One. 2013 Aug
 680 27;8(8):e72648.
- 8 681 38. Briejer MR, Akkermans LM, Lefebvre RA, Schuurkes JA. Novel 5-HT2-like receptor
 9 682 mediates neurogenic relaxation of the guinea-pig proximal colon. Eur J Pharmacol. 1995
 12 13 683 Jun 12;279(2-3):123-33.
- 15 684 39. Tuladhar BR, Womack MD, Naylor RJ. Pharmacological characterization of the 5-HT
 17 685 receptor-mediated contraction in the mouse isolated ileum. Br J Pharmacol. 2000
 19 20 686 Dec;131(8):1716-22.
- 687 40. D'Incà R, Paccagnella M, Cardin R, et al. 5-ASA colonic mucosal concentrations
 688 resulting from different pharmaceutical formulations in ulcerative colitis. World J
 689 Gastroenterol. 2013;19(34):5665-5670.
- 41. Comai S, Bertazzo A, Vachon J, Daigle M, Toupin J, Côté G, Turecki G, Gobbi G. Tryptophan via serotonin/kynurenine pathways abnormalities in a large cohort of aggressive inmates: markers for aggression. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Oct 3;70:8-16.
- 42. Meléndez-Alafort L, Nadali A, Pasut G, Zangoni E, De Caro R, Cariolato L, Giron MC, Castagliuolo I, Veronese FM, Mazzi U. Detection of sites of infection in mice using 99mTc-labeled PN(2)S-PEG conjugated to UBI and 99mTc-UBI: a comparative biodistribution study. Nucl Med Biol. 2009 Jan;36(1):57-64.
- 43. Bin A, Caputi V, Bistoletti M, Montopoli M, Colucci R, Antonioli L, De Martin S, Castagliuolo I, Orso G, Giaroni C, Debetto P, Giron MC. The ecto-enzymes CD73 and adenosine deaminase modulate 5'-AMP-derived adenosine in myofibroblasts of the rat small intestine. Purinergic Signal. 2018 Dec;14(4):409-421.

1			
2 3 4	702	44.	Forcén R, Latorre E, Pardo J, Alcalde AI, Murillo MD, Grasa L. Toll-like receptors 2 and
5 6	703		4 exert opposite effects on the contractile response induced by serotonin in mouse colon:
7 8 9	704		role of serotonin receptors. Exp Physiol. 2016 Aug 1;101(8):1064-74.
10 11	705	45.	Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug
12 13	706		development for functional GI disorders. Gastroenterology. 2007 Jan;132(1):397-414.
14 15 16	707	46.	Mawe GM, Hoffman JM. Serotonin signalling in the gut-functions, dysfunctions and
17 18	708		therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013 Aug;10(8):473-86.
19 20 21	709	47.	O'Donnell VB, Murphy RC. New families of bioactive oxidized phospholipids generated
22 23	710		by immune cells: identification and signaling actions. Blood. 2012 Sep 6;120(10):1985-
24 25	711		92.
26 27 28	712	48.	Karki P, Birukov KG. Oxidized Phospholipids in Healthy and Diseased Lung
29 30	713		Endothelium. Cells. 2020 Apr 15;9(4):981.
31 32 33	714	49.	Freigang S. The regulation of inflammation by oxidized phospholipids. Eur J Immunol.
34 35	715		2016 Aug;46(8):1818-25.
36 37 38	716	50.	Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N. Protective role of
38 39 40	717		phospholipid oxidation products in endotoxin-induced tissue damage. Nature. 2002 Sep
41 42	718		5;419(6902):77-81.
43 44 45	719	51.	Chu LH, Indramohan M, Ratsimandresy RA, Gangopadhyay A, Morris EP, Monack DM,
46 47	720		Dorfleutner A, Stehlik C. The oxidized phospholipid oxPAPC protects from septic shock
48 49	721		by targeting the non-canonical inflammasome in macrophages. Nat Commun. 2018 Mar
50 51 52	722		8;9(1):996.
53 54	723	52.	Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva
55 56 57	724		M, Veldhuizen R, Leung YH, Wang H, Liu H, Sun Y, Pasparakis M, Kopf M, Mech C,
57 58 59	725		Bavari S, Peiris JS, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C,
60			

Binder CJ, Penninger JM. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008 Apr 18;133(2):235-49. 53. Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JC, Vogel SN. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature. 2013 May 23;497(7450):498-502. 54. Thacker M, Rivera LR, Cho HJ, Furness JB. The relationship between glial distortion and neuronal changes following intestinal ischemia and reperfusion. Neurogastroenterol Motil. 2011 Nov;23(11): e500-9. 55. Desmet AS, Cirillo C, Vanden Berghe P. Distinct subcellular localization of the neuronal marker HuC/D reveals hypoxia-induced damage in enteric neurons. Neurogastroenterol Motil. 2014; 26(8):1131-43. 56. Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020 Jun;17(6):338-351. 57. Pochard C. Coquenlorge S. Frevssinet M. Naveilhan P. Bourreille A. Neunlist M. Rolli-Derkinderen M. The multiple faces of inflammatory enteric glial cells: is Crohn's disease a gliopathy? Am J Physiol Gastrointest Liver Physiol. 2018 Jul 1;315(1):G1-G11. 58. von Boyen G, Steinkamp M. The role of enteric glia in gut inflammation. Neuron Glia Biol. 2010 Nov;6(4):231-6. 59. Esposito G, Cirillo C, Sarnelli G, De Filippis D, D'Armiento FP, Rocco A, Nardone G, Petruzzelli R, Grosso M, Izzo P, Iuvone T, Cuomo R. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology. Sep;133(3):918-25.

- 749 60. Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the
 750 gut: the evidence for enteroglial-sustained intestinal inflammation. World J
 751 Gastroenterol. 2011a; 17(10):1261-6.
- 61. Okamoto T, Barton MJ, Hennig GW, Birch GC, Grainger N, Corrigan RD, Koh SD, Sanders KM, Smith TK. Extensive projections of myenteric serotonergic neurons suggest they comprise the central processing unit in the colon. Neurogastroenterol Motil. 2014 Apr;26(4):556-70.
- 62. Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S, Cuomo R, Christofi FL. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases. Inflamm Bowel Dis. 2016 Feb;22(2):433-49.
- 760 63. Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling
 761 along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20(6):1482.
- 762 64. Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA,
 763 Leitinger N, Owens GK. Oxidized phospholipids induce phenotypic switching of
 764 vascular smooth muscle cells in vivo and in vitro. Circ Res. 2007 Oct 12;101(8):792-801.
- 765
 765
 765
 766
 766
 767
 767
 768
 769
 769
 760
 760
 761
 761
 762
 763
 764
 765
 765
 766
 767
 766
 767
 767
 768
 769
 769
 769
 760
 760
 760
 761
 762
 763
 764
 765
 765
 766
 767
 767
 768
 769
 769
 769
 760
 760
 760
 761
 761
 762
 763
 764
 765
 765
 766
 767
 767
 768
 769
 769
 769
 760
 760
 760
 761
 761
 762
 763
 764
 765
 765
 766
 767
 766
 767
 767
 768
 769
 769
 760
 760
 760
 760
 761
 762
 763
 764
 765
 765
 766
 767
 766
 767
 767
 768
 768
 769
 769
 760
 760
 760
 761
 762
 764
 765
 766
 767
 766
 767
 767
 768
 768
 769
 768
 769
 769
 769
 760
 760
 760
- ⁴⁸ 768 66. Giaroni C. Purinergic signalling and development of the autonomic nervous system.
 ⁵⁰ 51 769 Auton Neurosci. 2015;191:67-77.
 - 770 67. Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal
 771 inflammation. Nat Rev Gastroenterol Hepatol. 2014 Oct;11(10):611-27.

- 772 68. Natale G, Pasquali L, Paparelli A, Fornai F. Parallel manifestations of neuropathologies
 773 in the enteric and central nervous systems. Neurogastroenterol Motil. 2011
 78 774 Dec;23(12):1056-65.
- 775 69. Cirillo C, Vanden Berghe P, Tack J. Role of serotonin in gastrointestinal physiology and
 776 pathology. Minerva Endocrinol. 2011b Dec;36(4):311-24.
- 777 70. Spencer NJ. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT
 778 Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric
 779 Neurotransmitter? Front Cell Neurosci. 2015;9:487.
- 71. Bhattarai Y, Schmidt BA, Linden DR, Larson ED, Grover M, Beyder A, Farrugia G, Kashyap PC. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT(3) receptor expression via acetate production. Am J Physiol Gastrointest Liver Physiol. 2017 Jul 1;313(1): G80-G87.
- 784
 784
 72. Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C. Toll-like
 785
 785
 786
 786
 787
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 781
 781
 781
 782
 783
 784
 784
 785
 786
 786
 786
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780
 780</lig
- 787 73. Mendoza C, Matheus N, Iceta R, Mesonero JE, Alcalde AI. Lipopolysaccharide induces
 788 alteration of serotonin transporter in human intestinal epithelial cells. Innate Immun
 789 2009; 15: 243–50.
- 790 74. Mendoza C, Matheus N, Latorre E, Castro M, Mesonero JE, Alcalde AI. Toll-like
 791 receptor 3 activation affects serotonin transporter activity and expression in human
 792 enterocyte-like Caco-2 cells. Cell Physiol Biochem 2012; 30: 187–98.
- ⁵³ 793
 ⁵³ 793
 ⁵⁵ 794
 ⁵⁶ 794
 ⁵⁷ R. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol 2005; 100: 2560–8.

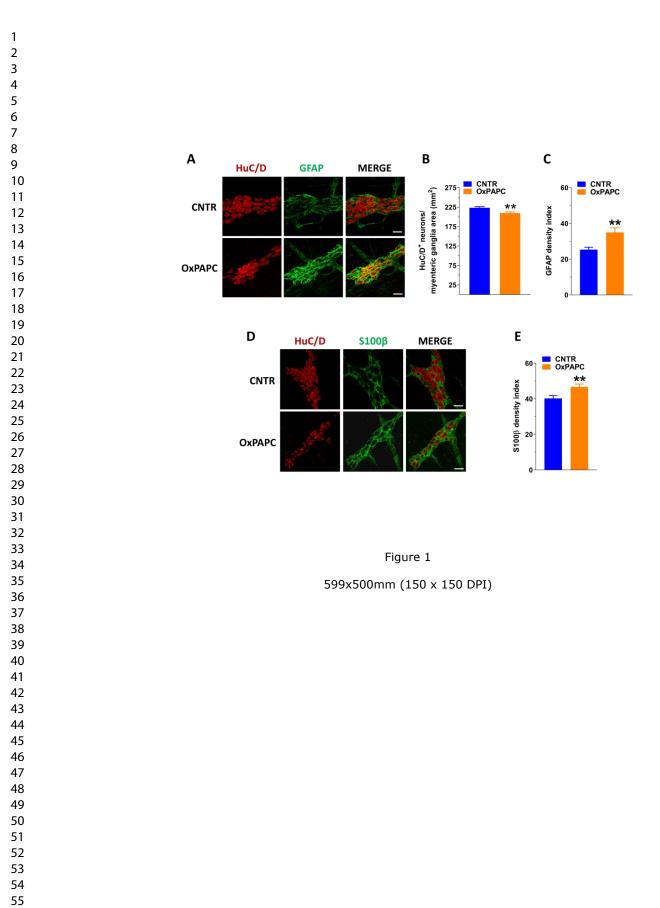
1			
2 3 4	796	76.	Wang Y, Park SY, Oh KH, Min Y, Lee YJ, Lee SY, Sohn UD. Characteristics of 5-
5 6	797		hydroxytryptamine receptors involved in contraction of feline ileal longitudinal smooth
7 8 9	798		muscle. Korean J Physiol Pharmacol. 2011 Oct;15(5):267-72.
10 11	799	77.	Zheng Y, Yu T, Tang Y, et al. Efficacy and safety of 5-hydroxytryptamine 3 receptor
12 13	800		antagonists in irritable bowel syndrome: A systematic review and meta-analysis of
14 15 16	801		randomized controlled trials. PLoS One. 2017;12(3):e0172846.
17 18	802	78.	Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation
19 20 21	803		by inflammatory cytokines. Front Neurosci. 2014 Feb 6; 8:12.
21 22 23	804	79.	Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and
24 25	805		serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009
26 27 28	806		Dec;21(12):1239-49.
29 30	807	80.	van Bergenhenegouwen J, Kraneveld AD, Rutten L, Garssen J, Vos AP, Hartog A.
31 32	808		Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with
33 34 35	809		differences in affinity and kinetics. BMC Immunol. 2016 Oct 28;17(1):42.
36 37	810	81.	Antonioli L, Colucci R, Pellegrini C, Giustarini G, Sacco D, Tirotta E, Caputi V, Marsilio
38 39	811		I, Giron MC, Németh ZH, Blandizzi C, Fornai M. The AMPK enzyme-complex: from the
40 41 42	812		regulation of cellular energy homeostasis to a possible new molecular target in the
43 44	813		management of chronic inflammatory disorders. Expert Opin Ther Targets.
45 46 47 48 49 50 51 52 53 54	814		2016;20(2):179-91.

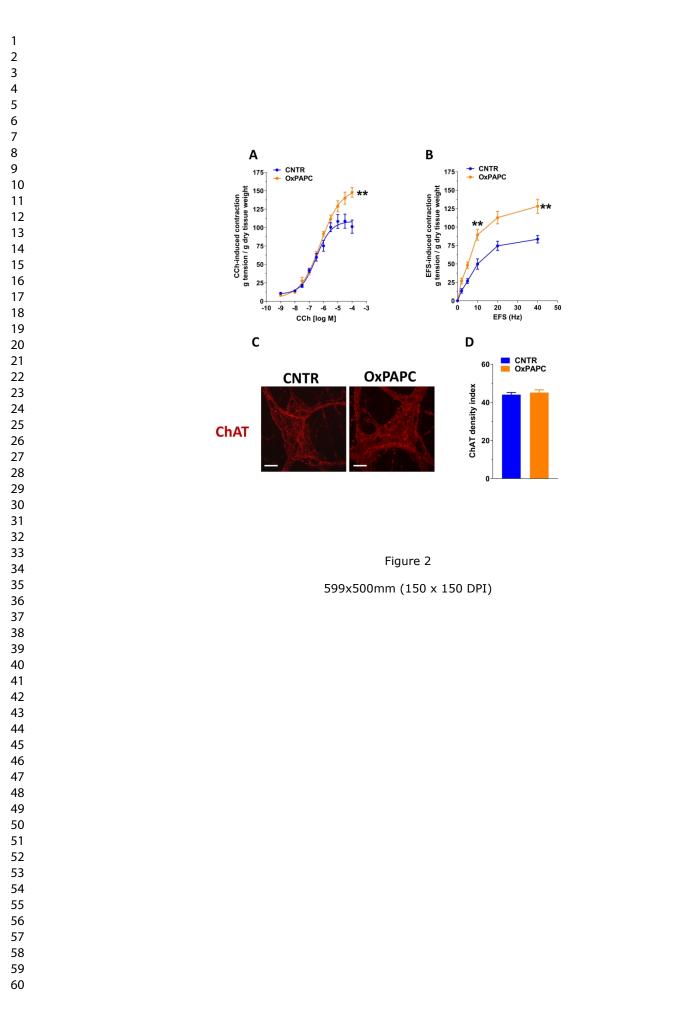
Marsilio et al. 38

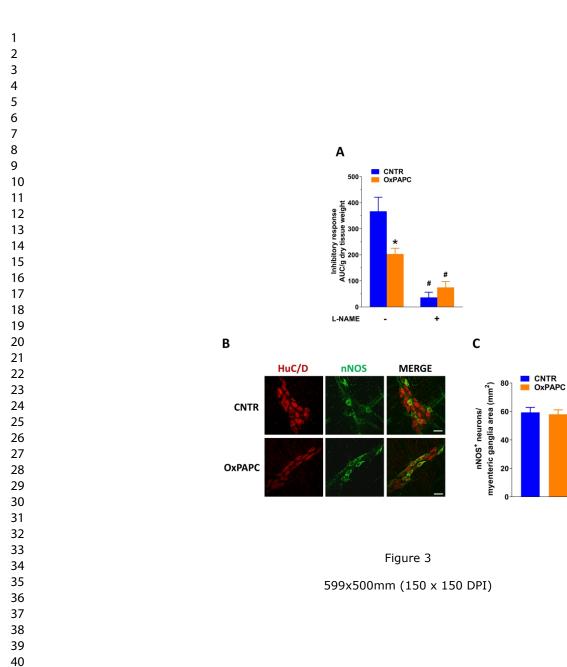
815 Figure Legends

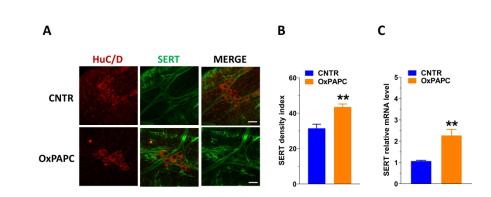
816Figure 1. OxPAPC treatment alters the architecture of the ileal myenteric plexus. (A, D)817Representative confocal microphotographs showing the distribution of GFAP (green; A),818S100β (green; D) and HuC/D (red; A, D) in LMMP preparations from CNTR and OxPAPC-819treated mice (bars = 22 µm). (B) Number of HuC/D⁺ neurons per myenteric ganglia area.820Relative analysis of GFAP (C) and S100β (E) density index. Data are reported as mean ±821SEM (N = 5-6 mice/group). **P < 0.01 vs. CNTR.</td>

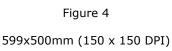
Figure 2. Effect of OxPAPC on ileal neuromuscular contractility and cholinergic neurochemical coding. (A) Concentration-response curve to CCh in isolated ileal segments from CNTR and OxPAPC-treated mice. (B) Excitatory response to electric field stimulation (EFS) in isolated ileal segments from CNTR and OxPAPC-treated mice. Representative confocal microphotographs showing the distribution of ChAT (red; C) in CNTR and OxPAPC-treated LMMP preparations (bars = 22 μ m) and relative analysis of ChAT (**D**) density index. Data are reported as mean \pm SEM (N = 5-6 mice/group). ** P < 0.01 vs. CNTR.


Figure 3. OxPAPCs administration affects nitrergic neurotransmission. (A) 10-Hz-EFS induced NANC relaxation responses in presence or absence of L-NAME in ileal preparations from CNTR and OxPAPC-treated mice. (B) Representative confocal photomicrographs showing the distribution of nNOS (green) and HuC/D (red). (C) Number of nNOS⁺ neurons per myenteric ganglia area in ileal LMMP whole-mount preparations of CNTR and OxPAPCtreated mice (bar = 22 μ m). Data are reported as mean ± SEM (N = 5-6 mice/ group). *P < 0.05 vs. CNTR; #P < 0.05 vs. respective control in absence of L-NAME.


Figure 4. OxPAPC treatment alters serotonin transporter (SERT) expression. (A) Representative confocal microphotographs showing SERT (green) and HuC/D (red) distribution in LMMP preparations from CNTR and OxPAPC-treated mice (bars = 22 μ m).


1		
2 3 4	840	(B) Analysis of SERT density index in ileal LMMP whole-mount preparations of CNTR and
5 6	841	OxPAPC-treated mice. (C) Real-time PCR analysis of SERT mRNA levels in ileal LMMPs
7 8 9 10 11	842	from CNTR and OxPAPC-treated mice. Data are reported as mean \pm SEM (N = 5-6
	843	mice/group). **P < 0.01 vs. CNTR.
12 13	844	Figure 5. OxPAPC treatment affects serotonergic neurochemical coding. Representative
14 15	845	confocal microphotographs showing 5-HT _{2A} (green; A), 5-HT ₃ (green; D) and 5-HT ₄ (green;
16 17 18	846	G) receptors and HuC/D (red) distribution in CNTR and OxPAPC-treated LMMP
19 20	847	preparations (bars = 22 μ m). Analysis of 5-HT _{2A} (B), 5-HT ₃ (E) and 5-HT ₄ (H) receptors
21 22	848	density index in ileal LMMP whole-mount preparations of CNTR and OxPAPC-treated mice.
23 24 25	849	Real-time PCR analysis of 5-HT _{2A} (C), 5-HT ₃ (F) and 5-HT ₄ (I) receptors mRNA expression
25 26 27	850	levels in ileum LMMPs from CNTR and OxPAPC-treated mice. Data are reported as mean ±
28 29	851	SEM (N = 5-6 mice/group). *P < 0.05, **P < 0.01, ***P < 0.001 vs. CNTR.
30 31	852	Figure 6. OxPAPC treatment alters serotonergic response. (A) Concentration-response
32 33 34	853	curves to 5-HT (0.3 – 30 μ M; in isolated ileal preparations from CNTR and OxPAPC-treated
35 36	854	mice. (B and C) Excitatory response to EFS in absence or presence of 0.1 μ M ondansetron or
37 38	855	0.1 µM GR113808 in isolated ileal segments from CNTR and OxPAPC-treated mice. (D)
39 40 41	856	Representative tracings of responses induced by 30 μ M 5-HT in CNTR and OxPAPC
42 43	857	segments in absence or presence of 0.1 μ M ondansetron or 1 μ M ketanserin. (E and F)
44 45	858	Contractile responses induced by 30 μ M 5-HT in absence or presence of 0.1 μ M ondansetron
46 47 48	859	or 1 μ M ketanserin in ileal preparations from CNTR and OxPAPC-treated mice. (G) 10-Hz-
48 49 50	860	EFS induced NANC relaxation responses in absence or presence of 30 μ M 5-HT and 0.1 μ M
51 52	861	ondansetron or 0.1 μ M GR113808 in ileal preparations from CNTR and OxPAPC-treated
53 54	862	mice. Data are reported as mean \pm SEM (N = 5-6 mice/group). ^{oo} P<0.01 vs. CNTR ; *P <
55 56 57	863	0.05, **P < 0.01, ***P < 0.001 vs. respective control in absence of antagonists.
58 59		


Figure 7. OxPAPC treatment affects tryptophan (TRP) metabolism. TRP levels (A), 5hydroxytryptophan (5-HTP) levels (B), serotonin (5-HT) levels (C), kynurenine (KYN) levels (D) and indoleamine 2,3-dioxygenase (IDO) activity (E) in ileal tissue measured by HPLC analysis in ileal specimens from CNTR and OxPAPC-treated mice. Data are reported as mean \pm SEM (N = 6-8 mice/group). IDO activity was measured by assessing the ratio (Kyn/Trp)x10³. *P < 0.05 vs. CNTR.


for per period

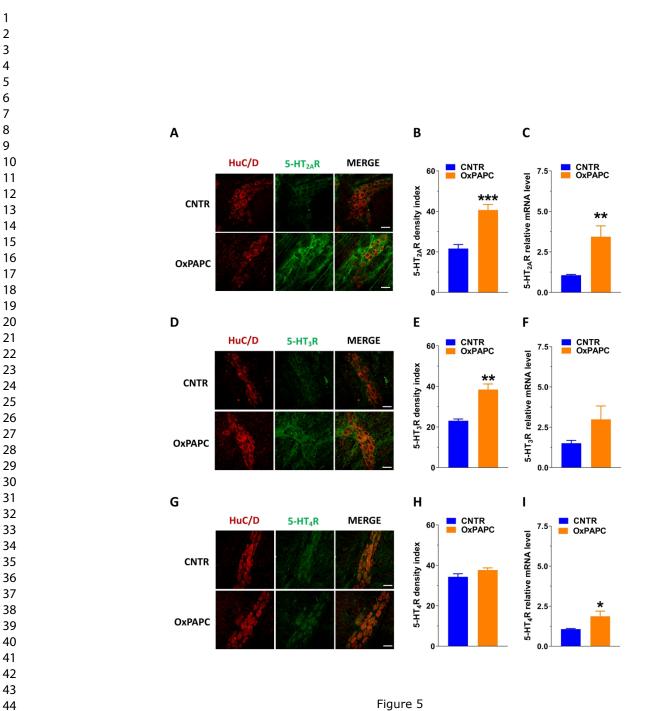
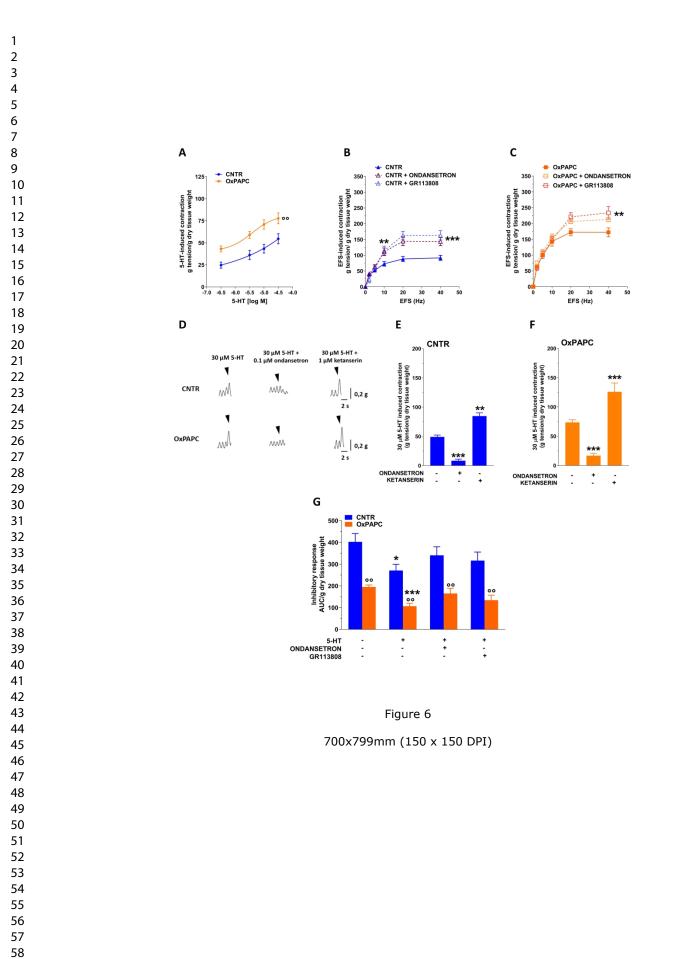
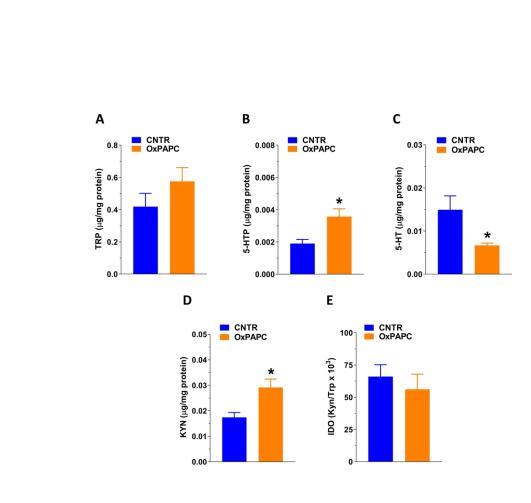
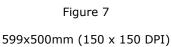





Figure 5 599x700mm (150 x 150 DPI)

- 59
- 60

Antibody	Host Species	Dilution	Catalog Number	Source	
Primary Antisera (Clone)					
HuC/D (16A11)	Mouse biotin- conjugated	1:100	A-21272	Thermo Fisher Scientifi (Monza, Italy)	
nNOS (polyclonal)	Rabbit	1:100	61-700	Thermo Fisher Scientifi	
GFAP (polyclonal)	Rabbit	1:200	AB5804	Sigma-Aldrich (Milan, Italy)	
S100β (EP1576Y)	Rabbit	1:100	04-1054	Sigma-Aldrich	
ChAT (polyclonal)	Goat	1:50	AB144P	Sigma-Aldrich	
SERT (polyclonal)	Rabbit	1:50	AMT-004	Alomone Labs (Jerusalem, Israel)	
5-HT _{2A} (polyclonal)	Rabbit	1:50	ASR-033	Alomone Labs	
5-HT ₃ (polyclonal)	Rabbit	1:50	ASR-031	Alomone Labs	
5-HT ₄ (AG15226)	Rabbit	1:50	21165-1-AP	Proteintech (Manchester, UK)	
Secondary Antisera					
Goat anti-rabbit IgG Alexa 488-conjugated	-	1:1000	A-11008	Thermo Fisher Scientifi	
Donkey anti-goat IgY Alexa 555-conjugated	-	1:500	A-21432	Thermo Fisher Scientif	
Streptavidin Alexa 555- conjugated	-	1:1000	S21381	Thermo Fisher Scientif	

Supplementary Table 1: Primary and secondary antibodies and their respective dilutions used for immunohistochemistry

on ileal whole-mount preparations.

Gene	Sequence 5'-3'	Lenght	
SERT	GGCAACATCTGGCGTTTTCC	138	
	ATTTCGGTGGTACTGGCCCA		
5-HT _{2A}	TGCCGTCTGGATTTACCTGGATGT	169	
	TACGGATATGGCAGTCCACACCAT		
5-HT ₃	TCTTGCTGCCCAGTATCTTCCTCA	248	
	TTATGCACCAGCCGCACAATGAAG		
5-HT ₄	AATGCAAGGCTGGAACAACATCGG	210	
	TGTATCTGCTGGGCATGCTCCTTA		
HPRT	CTGGTGAAAAGGACCTCTCGAA	110	
	CTGAAGTACTCATTATAGTCAAGGGCAT		
GAPDH	AACGACCCCTTCATTGAC	191	
	TCCACGACATACTCAGCAC		

Supplementary Table 2: Sequence of primers used for the real-time PCR analysis of 5-HT receptors

in mouse intestine and relative length of the amplification products.