000130017 001__ 130017
000130017 005__ 20250923084410.0
000130017 0247_ $$2doi$$a10.1109/JSEN.2023.3340296
000130017 0248_ $$2sideral$$a136326
000130017 037__ $$aART-2024-136326
000130017 041__ $$aeng
000130017 100__ $$0(orcid)0000-0002-0310-3203$$aCanudo, Jorge$$uUniversidad de Zaragoza
000130017 245__ $$aOverhead transmission line sag monitoring using a chirped-pulse phase-sensitive OTDR
000130017 260__ $$c2024
000130017 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130017 5203_ $$aThe capacity of overhead transmission lines is fixed and determined by the physical properties of the line, which are estimated based on worst-case weather scenarios. Exceeding the capacity limit can cause the conductor to increase the sag excessively, bringing it too close to the ground and creating a safety risk. Real-time monitoring of the sag value enables dynamic capacity configuration, thereby reducing safety risks and improving the efficiency of the transmission line. Distributed acoustic sensing based on chirped-pulse phase-sensitive optical time-domain reflectometry (CP- Φ OTDR) can be used to measure the vibration induced by wind on the cable line taking advantage of the optical fiber already deployed in the power line. An analysis of the recovered strain in the frequency domain reveals multiple frequency components related to the cable’s current mechanical state. By identifying the fundamental frequency, it becomes possible to quantitatively calculate the sag. Tracking the central frequency of each span allows for the monitoring of the sag for each span of the line using just one single-end interrogator.
000130017 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T20-23R$$9info:eu-repo/grantAgreement/ES/MINECO/DI-17-09169
000130017 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000130017 590__ $$a4.5$$b2024
000130017 592__ $$a1.039$$b2024
000130017 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b16 / 79 = 0.203$$c2024$$dQ1$$eT1
000130017 593__ $$aInstrumentation$$c2024$$dQ1
000130017 591__ $$aPHYSICS, APPLIED$$b53 / 187 = 0.283$$c2024$$dQ2$$eT1
000130017 593__ $$aElectrical and Electronic Engineering$$c2024$$dQ1
000130017 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b98 / 366 = 0.268$$c2024$$dQ2$$eT1
000130017 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130017 700__ $$0(orcid)0000-0002-4094-3826$$aSevillano, Pascual$$uUniversidad de Zaragoza
000130017 700__ $$aIranzo, Andrea
000130017 700__ $$aKwik, Sacha
000130017 700__ $$aPreciado-Garbayo, Javier
000130017 700__ $$0(orcid)0000-0002-2244-170X$$aSubías, Jesús$$uUniversidad de Zaragoza
000130017 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000130017 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000130017 773__ $$g24, 2 (2024), 1988-1995$$pIEEE sens. j.$$tIEEE SENSORS JOURNAL$$x1530-437X
000130017 8564_ $$s3412252$$uhttps://zaguan.unizar.es/record/130017/files/texto_completo.pdf$$yVersión publicada
000130017 8564_ $$s3318593$$uhttps://zaguan.unizar.es/record/130017/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130017 909CO $$ooai:zaguan.unizar.es:130017$$particulos$$pdriver
000130017 951__ $$a2025-09-22-14:29:48
000130017 980__ $$aARTICLE