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Abstract This work proposes the calculation of the 
factor of safety for a strongly jointed rock mass in 
the case of plane failure with a tensile crack whose 
exact position or depth is not known but is expected 
to exist. This calculation is performed by applying the 
non-linear failure criteria of the Focus Procedure of 
Úcar and Hoek–Brown’s and implementing the nec-
essary formulae in a spreadsheet. The aim is to pro-
vide a simple, cost-effective, and easy-to-use proce-
dure that is useful in the early stages of a project or 
as a starting point for more detailed investigations. 
Besides slope geometry and strength parameters, the 
required parameters are the RMR of the rock mass or 
its  mi, depending on the criterion used. The proposed 
procedure allows for the estimation of the factor of 
safety, the position and depth of the tensile crack, 
and the inclination of the failure plane in the most 
unfavorable case, with reasonable accuracy, using an 
iterative process with the conventional tools avail-
able in common spreadsheet programs. An example 

is provided in which an accuracy of 86–96% for the 
factor of safety is obtained.

Keywords Factor of safety · Tension crack · Rock 
failure criteria · Úcar criterion · H–B criterion

1 Introduction

Slopes, and their stability, constitute one of the pri-
mary concerns in any civil and mining engineering 
project (Kirschbaum et al. 2010; Petley 2012; Sasaoka 
et al. 2015; Heidarzadeh et al. 2019; Jing et al. 2023, 
Hou et  al. 2023). This endeavor becomes consider-
ably complex in rock engineering due to the presence 
of discontinuities. An immediate consequence of the 
presence of discontinuities in a rock mass is the for-
mation of discrete rock blocks that vary in size from 
a few cubic millimeters to several cubic meters. Due 
to the low-stress state near these free surfaces, the pri-
mary factors that influence the dynamic stability of 
the blocks are their own weight, possible fluid pres-
sures acting on the massif, static loads or overloads, 
and external dynamic loads, such as those produced 
by earthquakes. The gross stability of blocks is typi-
cally assessed through a factor of safety, denoted as 
FS, and finding the critical slip surface with the mini-
mum factor of safety is a common goal in geotechni-
cal engineering.

One of the first decisions the rock engineer has 
to take is how to consider the rock mass (Alzo’ubi 
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2016). On the one hand, by a discreet analysis of 
kinematics and dynamics taking into account the 
frictional behavior of present joint sets (weather-
ing, roughness JRC values, …) and one of the limit 
equilibrium methods, LEM (De Freitas and Wat-
ters 1973; Goodman and Shi 1985; Abramson et  al. 
2001; Wyllie and Mah 2004; Bar and Barton 2017; 
Azarafza et al. 2021); on the other, the consideration 
of the mass as a continuum whole and use finite ele-
ments modeling (FEM) and similar robust numerical 
approaches with constitutive resistance equations, as 
the Hoek–Brown (H–B) criterion (Jing et  al. 2023). 
Classically, these are two very different approaches 
to studying rock mass failure and, following Jing and 
Hudson (2002), we may call them continuum and dis-
crete -discontinuum- analyses. Continuum (FEM, for 
instance) may make sense, for instance, for Q values 
(Q-System, Barton et  al. 1974) under 0.1 (pseudo 
continuum for Barton 2021, 2022) or over 100. In 
intermediate cases, for middling Q values, discontin-
uum analyses mostly either consider frictional resist-
ance on joint planes, apply distinct element methods 
(Cundall 1971; Cundall and Hart 1985; Shen and 
Abbas 2013; Grindheim et al. 2022; Sun et al. 2022; 
Zhao et  al. 2022), or use block theory models (Shi 
and Goodman 1989).

In heavily jointed rock masses, say with Q < 0.1 or 
RMR < 30, the abundance of discontinuities creates 
uncertainty in the orientation and nature of the criti-
cal surface. This, coupled with the presence of a ten-
sion crack release surface, leads to a complex stability 
configuration (Lin and Sheng 2021; Park 2023) that 
may be better dealt with by considering the resistance 
of the rock mass rather than deterministically charac-
terizing a discrete joint set.

According to Barton (1971), tension cracks result 
from small movements within the rock mass, which, 
although individually small, can accumulate and sig-
nificantly displace the slope surface. His model deter-
mined that the tensile crack generated by tangential 
movements is a relevant indicator of shear failure 
initiation within the rock mass. However, Wyllie and 
Mah (2004) and Wyllie (2017) note that many rock 
slopes with tensile cracks have not yet failed and have 
maintained their stability for decades. Nevertheless, 
the presence of a tensile crack should be considered 
a potential indicator of instability in any case. Ideally, 
we would know the position of the tensile crack, but 
in field surveys, it can be challenging to determine 

the exact depth of the crack, as it is often obstructed 
by rock fragments or sediments. Therefore, it is more 
conservative to analyze the most critical potential 
failure block as a function of the distance from the 
crack to the edge of the slope face. On the other hand, 
FEM methods, while appropriate for pseudo contin-
uum rock masses, experience difficulties when mod-
eling cases with tension cracks, as the crack must be 
included as a boundary condition (Park 2023). More-
over, scarce attention has been paid to rock masses 
with tension cracks, especially when compared to soil 
slopes, and then applying linear approaches (Zhao 
et  al. 2017), or the H–B criterion (Zhu and Yang 
2018; Lee and Pietruszczak 2021).

In such scenarios, it is important to have a failure 
criterion for the rock mass (Hoek and Brown 1980, 
2019; Kulatilake et  al. 2006; Úcar 2021), preferably 
a non-linear one that fits the significant curvature 
(Barton 2016) of the failure envelope at low normal 
stresses (as expected in slope stability cases). While 
Belandria et al. (2021) studied a case where the posi-
tion of the tension crack was known and applied 
the Mohr–Coulomb criterion to estimate its shear 
strength, which was suitable for analyzing well-char-
acterized joint sets, this paper uses a non-linear fail-
ure criterion where the position of the critical tension 
crack is an unknown variable. Additionally, the rock 
mass is considered to behave as a pseudo continuum 
rather than a structurally controlled mass where dis-
placement occurs along well-defined joint sets. In 
these cases, the approach as a continuum model typi-
cally involves time-consuming procedures such as 
finite element, finite difference, and boundary ele-
ment methods, which require special computational 
requirements and training to use effectively (Raghu-
vanshi 2019). Empirical methods based on rock mass 
classifications are often in use in preliminary stages 
of stability assessment (Duran and Douglas 2000; 
Basahel and Mitri 2017).

This paper focuses on the slope stability of a heav-
ily jointed rock mass with tension cracks, where the 
presence of discontinuities at different attitudes can 
result in planar failure and the opening of tension 
cracks upslope. We consider dynamic loads, such as 
earthquakes, and static overload upslope, as well as 
pore pressure acting on the tension crack and sliding 
plane.

The H–B criterion (Hoek and Brown 1980, 2019) 
is the best-known non-linear criterion for rock 
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masses. However, in this paper, we explore the appli-
cation of a novel criterion: Úcar’s Focus procedure, 
extended to the rock mass case (Úcar 2021).

The procedure presented in this paper provides a 
useful addition to preliminary surveys. An easy-to-use 
spreadsheet gives an approximate value of the Factor 
of Safety, which can then be refined further through 
more robust and complex modeling approaches.

2  Úcar’s Focus Procedure: Non‑linear Strength 
Criterium

As mentioned earlier, the application of non-linear 
criteria has long been recognized as a necessity in 
rock engineering. In this paper, we compare the use 
of the well-known H–B criterion (Hoek and Brown 
1980, 2019) with a novel approach called Úcar’s 
Focus procedure, which is less well known. To intro-
duce this new criterion (Úcar 2011, 2021), we pro-
vide a brief overview of its main points.

In this criterion, the relationship between the 
major principal stress ( �1 ) and the minor principal 
stress ( �3 ) is given by Eq. (1):

where �1 =
(
�1∕�c

)
 and �3 =

(
�3∕�c

)
 , the constants 

k1 and k2 are material dependent,  � = (�t∕�c) ; �c is 
the uniaxial strength of the rock, and �t is the uni-
axial tensile strength. This equation is derived from 
the analysis of the Mohr envelope, which represents 
the failure envelopes of a set of curves (i.e., Mohr cir-
cles) in the � − � space obtained by pairs of �1 − �3 in 
failure tests, such as uniaxial compression and triaxial 
tests. The equation obtained by Úcar (2021) describes 
the envelope in canonical form as a parabola. The cri-
terion can also be expressed in terms of normal and 
shear stresses. The normal stress �n acting in the fail-
ure plane can be parametrically expressed as a func-
tion of the dip of the tangent to the envelope ( � ) or 
the instantaneous friction angle ( �i ), which depends 
on the stress level, d��∕d�n = tan � . We refer inter-
ested readers to Úcar (2011, 2021) for full mathemat-
ical development.

On the other hand, considering Eq.  (1) and the 
fact that the family of curves f (�n, �� , �3) = 0 has 

(1)�1 = k1
(
�3 − �

)
+ k2

(
�3 − �

)1∕2

an envelope, Úcar (2021) derived the equation of the 
envelope, which can be expressed parametrically as:

And the shear stress, ��:

The material constants, k1 and k2 , are obtained 
from the parabola properties as

and

Their obtention involves the latus rectum concept 
-the chord through a focus parallel to the conic sec-
tion directrix (Coxeter 1961)—by applying a coordi-
nates switch (Úcar 2021). Because of this, the author 
often refers to this criterion as Úcar’s Focus proce-
dure. The constant k4 , that appears as an integration 
constant, is obtained from the boundary conditions, 
for example, by imposing that �3 is equal to 0 (uni-
axial compression test, so that �1 is �c).

The criterion is extended to rock masses as

where, as before, �1 =
(
�1∕�c

)
 , �3 =

(
�3∕�c

)
 , k1 

and k2 are rock mass dependent constants, and now 
�m = (�tm∕�c) , where �c is the uniaxial strength of the 
intact rock, and �tm is the tensile strength of the rock 
mass.
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The new constant, �m , is obtained from the rock 
mass classification, in this case from the Rock Mass 
Rating (RMR, Bieniawski 1989), although it could 
be expressed, as well, as a function of the Geological 
Strength Index (GSI, Hoek and Brown 2019), Q-sys-
tem (Barton et  al. 1974) or Rock Mass index (RMi, 
Palmström, 1995):

The factor ac varies, according the literature, 
between 18.75 ≤ ac ≤ 24 , as for Ramamurthy (1986), 
ac = 18.75 ; for Kalamaras and Bieniawski (1995), 
ac = 24 ; and for Sheorey (1997), ac = 20 . Finally, the 
tensile strength of the rock mass is derived from:

Therefore, when RMR is 100 (akin to intact rock), 
it follows that �m = � . Consequently, when consid-
ering the rock mass resistance with Eqs.  1 and 2, 
parameter � is replaced by �m , and similarly, k1(�) and 
k2(�) become k1(�m) and k2(�m) , respectively.

In summary, this criterion requires the determi-
nation of both the uniaxial compressive and tensile 
strength of the intact rock, as well as the characteri-
zation of the rock mass. It is worth noting that direct 
tensile strength (DTS) testing is rarely performed 
due to difficulties in preparing the specimens; many 
poorly prepared specimens fail invalidly, and ade-
quately lathing specimens to achieve the desired test-
ing shape remains a strong limiting factor (Klanphu-
meesri 2010; Perras and Diederichs 2014). However, 
indirect tensile tests, specifically the results of the 
Brazilian Test (BTS), have been found to provide a 
reasonably good correlation with DTS, albeit lithol-
ogy dependent, with DTS = f ⋅ BTS , where f  can be 
considered approximately 0.9 for metamorphic, 0.8 
for igneous, and 0.7 for sedimentary rocks (Perras 
and Diederichs 2014). The uncertainties associated 

(7)k2 = k2
�
�m
�
=

�
�m − k1

�
−�m

��
√
−�m

(8)

k1 = k1
(
�m
)
=

−
(
�m + ||�m||

)
+
√

�2
m
+ 6 ⋅ �m ⋅

||�m|| − 7�2
m

2||�m||

(9)�m =

(
�cm
�c

)
≈ exp

(
RMR − 100

ac

)

(10)�m =

(
�tm
�c

)
≈ � ⋅ exp

(
RMR − 100

14

)

with the proposed correlation will likely limit this 
approach to preliminary design purposes unless tri-
axial tests are available, and a regression fitting to the 
data allows for a better determination of �.

The relative simplicity (if the direct tensile test is 
obtained by correlation with the Brazilian test) and 
ease of obtaining input data make this criterion a very 
interesting and cost-effective alternative in the pre-
liminary stages of geotechnical surveys.

3  Notation, Geometry, and Dynamics 
of the Problem

The entire procedure for estimating the factor of 
safety, as presented here, can be carried out using a 
spreadsheet (available as supplementary material 
with this paper). To input the required data into the 
spreadsheet, we must first define the parameters of 
the problem.

A common approach to analyzing the rupture sur-
face, both in soils and rock masses, is to divide it into 
two rupture planes (Gadeus 1970; Kranz 1972; Hoek 
and Bray 1977; Wyllie and Mah 2004; Priest 2005; 
Pariseau 2006). An important precursor to rigid block 
analysis is the determination of kinematic feasibil-
ity. A given block is kinematically feasible if it is ’… 
physically capable of being removed from the rock 
mass without disturbing the adjacent rock’ (Priest 

Fig. 1  Slope geometry showing the potential failure plane, and 
the depth of the tensile crack
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1985). Let us, then, consider (Fig. 1) the 2D case of a 
slope of finite height, where a block is kinematically 
feasible (Markland 1972; Priest 1993). The geomet-
rical prerequisites for the analysis, following similar 
models (Hoek and Bray 1977; Priest 1993; Wyllie 
and Mah 2004), are as follows:

We shall consider the case where a rock face, AB, 
the potential sliding plane, AD, the top of the slope, 
BC, and the tension crack, CD, all strike within some 
20–25° of each other and intersect to form a kine-
matically feasible block along the planar discontinu-
ity AD (Fig. 1). The height of the rock face (vertical 
distance between A and B) is H; it dips �t , and its 
upper slope dips �c . The plane dips 𝛼d < 𝛽t , so it may 
daylight at the slope face (Markland 1972), and will 
intersect at the slope’s toe (maximum volume for the 
sliding block). Let us assume that a tension crack has 
developed upslope in the rock mass, possibly along a 
favorably oriented joint set or by coalescing several 
pre-existing fractures. The crack reaches an unknown 
depth z, and its dip angle is denoted by �g . For ease 
of calculation, we set the slope toe as the coordinate 
datum (X = 0, Y = 0). In our case, we seek to deter-
mine the most critical block and, consequently, the 
safety factor.

Regarding forces and stresses (Fig.  2), we will 
consider a unit width slice perpendicular to the slope 
face. In tension cracks, opening is the only kinemati-
cal consideration in the absence of tangential stress. 
The tension crack, of vertical depth z, may contain 
water to a vertical depth zw . Initially, we will assume 
zw = 0 . Once we determine the critical plane (z and 
�d ), we can incorporate pore pressure (both in the ten-
sion crack and the main plane) and additional loads 

(static overload upslope and dynamic seismic loads) 
into the model to obtain the modified safety factor, 
F. The maximum water pressure at the base of the 
tension crack is umax = �w ⋅ zw , where �w is the unit 
weight of water. This water pressure also acts within 
the sliding plane AD, and possible groundwater pres-
sures configurations are (Wyllie and Mah 2004): uni-
form pressure on the slide plane for drainage blocked 
at the toe; triangular pressure on the slide plane for 
water table below the base of tension crack, or a lin-
ear decay to zero at the rock face, also as a triangular 
distribution, in our case this last configuration, which 
is probably one of the most commonly in use (see, 
for instance, Raghuvanshi 2019) has been adopted, as 
expressed in Fig. 2. The distribution of normal stress 
acting on the main plane is triangular as well.

In a sense, by adopting this pore pressure distribu-
tion it is assumed that only the water in the tension 
crack and along the slip surface influences slope sta-
bility. For Wyllie and Mah (2004) this is tantamount 
to assuming that the rest of the rock mass is imper-
meable, an assumption that is certainly not always 
justified.

The spreadsheet has an input area where the fol-
lowing data are to be specified:

• Geometric parameters: H, �t , �c , distance d (hori-
zontal distance from the slope rim to the tension 
crack daylight in the upslope), �g.

• Force and stress parameters:  � (average bulk 
weight of the rock mass, in kN∕m3 ), q (overload, 
in kN∕m2 ), kh and kv (seismic accelerations, as 
fractions of g),

• Resistance parameters: RMR, �c (uniaxial 
strength, in MPa ), �t (tensile strength, in MPa ), 
ac and at (necessary for the Focus procedure, see 
Eqs. 7 and 8).

To evaluate the safety factor, F, we need to know 
the weight of the sliding block, hence its volume. The 
coordinates of the corresponding vertices, B, C, D, of 
the block must be determined (vertex A is known: it 
is the reference point or datum).

Considering the sliding plane AD and the tension 
crack CD, the coordinates of point D are:

where XA ≤ X ≤ XD , and

(11)YD = XD ⋅ tan �d

Fig. 2  Force distribution in the slope
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where XD ≤ X ≤ XC , and b is the intercept. Develop-
ing Eqs. (11) and (12), we obtain:

Considering now the point C, of coordinates 
XC = d + H cot �t , and YC = d tan �t + H , and that 
additionally, by considering the plane CD, the ordi-
nate at point C is:

Replacing XC and YC results in:

Following Priest (1993, 2005), we define M in 
Eq.  (15), as an intermediate geometrical parameter, 
as M allows us to relate other parameters belonging 
to the geometry of the slope. On the other hand, the 
abscissa XD value depends on XC through Eqs. 13 and 
14) and taking into account that d = XC − H ⋅ cot �t is 
also determined in the following expression:

It is easy to check that tan�g → ∞ ⇒ XD = XC , 
and that M tends towards XC . Likewise, from 
Eq. (16), can be obtained:

And from Eqs. (17) and (11) we obtain:

In Fig. 1 we can observe the meaning of angles �c 
and �t , and also that CD =

(YC−YD)
sen�g

 , and 

Z =
(
YC − YD

)
= CD ⋅ sen�g , so

(12)YD = XD ⋅ tan�g + b

(13)XD =

−
(

b

tan�g

)

1 − tan �d ⋅ cot�g

(14)

YC = XC ⋅ tan�g + b∴ −
b

tan�g

=
(
XC − YC ⋅ cot�g

)

(15)

−
b

tan�g

=
[
d ⋅

(
1 − tan �c ⋅ cot�g

)
+ H

(
cot �t − cot�g

)]
= M

(16)XD =

⎛⎜⎜⎜⎝

XC ⋅

�
tan�g − tan �c

�
+ H

�
tan �c
tan �t

− 1
�

�
tan�g − tan �d

�
⎞⎟⎟⎟⎠

(17)M = XD

(
1 − tan �d ⋅ cot�g

)

(18)YD = XD ⋅ tan �d =
M(

cot �d − cot�g

)

Finally, for clarity in the analytical process, 
Table  1 summarizes the values of the vertex coor-
dinates of the sliding block. Knowing these values, 
the area of the polygon ABCDA can be obtained by 
cross multiplication and knowing that XA = 0 and 
XB = 0.

As we are considering a slice of unit width, the 
weight of the sliding block derives from:

The distance d quite often varies between a fifth 
and a half the height of the slope (Coates 1967). We 
can easily incorporate other forces into the analy-
sis. For instance, to add seismic dynamic loading 
we can use the horizontal and vertical acceleration 
coefficients to evaluate the seismic forces acting in 
the slope:

where k =
√

k2
h
+
(
1 + k2

v

)
Next, XC is expressed as a function of the depth 

z of the tensile crack, because later the safety fac-
tor will be minimized depending on �d and z. 
In Fig.  1 we can observe that YD = YC − z and 
YD = XD ⋅ tan �d (Eq.  11). The equation of the 
straight line BC comes as

Equating both ordinates belonging to point D 
and replacing the value of YC given in Eq. (23), and 
given the value of XD = XC − z ⋅ cot�g , then the 
abcissa XC can be expressed in this way:

(19)Z =
(
H + d ⋅ tan �c

)
−

M(
cot �d − cot�g

)

(20)Area =
1

2

[
XC ⋅

(
YB − YD

)
+ YC ⋅

(
XD − XB

)]

(21)

WT =
�

2

�
XC

�
YB − YD

�
+ YC

�
XD − XB

��
+ q ⋅

⎛⎜⎜⎜⎝

d

⏞⏞⏞⏞⏞
XC − XB

⎞⎟⎟⎟⎠

(22)R = WT

√
k2
h
+
(
1 + k2

v

)
⇒ R = WT .k

(23)YC = XC tan �t + H

(
1 −

tan �C
tan �t

)

(24)

XC =
H
(
1 − cot �t ⋅ tan �c

)
− z

(
1 − cot�g ⋅ tan �d

)
(
tan �d − tan �c

)
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In Fig. 2 it can be observed the maximum pres-
sure due to water occurs at point D, and its value is 
umax = �w ⋅ zw . Thus, the resulting hydraulic force U 
generated by the water pressures that act over the 
plane of area AD ⋅ 1 (unit width) equals to

From Eq. (18) we obtain:

At the same time, it has been considered that this 
interstitial pressure u is acting on the slip plane and 
decreases to zero at the slope toe. Additionally, the 
resulting of the interstitial pressure that act over the ten-
sile crack, V, is,

(25)U =
1

2
�w ⋅ zw ⋅ AD =

1

2
�w ⋅ zw ⋅

YD

sin �d

(26)U =
1

2
�w ⋅ zw ⋅

(
M

cos �d − sin �d ⋅ cot�g

)

(27)V =
1

2
�w ⋅ z2

w
⋅ cos ec�g

On the other hand, from Figs.  2 and 3 the normal 
and tangential components of V are:

and

Applying the equilibrium equations results to the 
normal forces ( Fn)

where

(28)Vn = V ⋅ cos
(
�g − �d

)

(29)Vt = V ⋅ sin
(
�g − �d

)

(30)Rt = R ⋅ sin
(
�d + �

)
= WT ⋅ k ⋅ sin

(
�d + �

)

(31)
∑

Fn = 0 ⇒ N + Vn + U − Rn = 0

(32)Rn = R ⋅ cos
(
�d + �

)
= WT ⋅ k ⋅ cos

(
�d + �

)

Table 1  Coordinates 
of relevant points and 
parameters M and d

Point Coordinate X Coordinate Y

A 0 0
B XB =

H

tan �
YB = H

C XC = d + H cot �t YC = XC ⋅ tan �t + b
1

XC =
H(1−cot �⋅tan �t)−z(1−cot� ⋅tan �)

(tan �−tan �t)

XC =
(
b
2
− z ⋅ b

3

)
YC = XC ⋅ tan �t + H

(
1 −

tan �t
tan �

)

b
2
=

H⋅(1−cot �⋅tan �t)
(tan �−tan �t)

YC = XC ⋅ tan �t + b
1

b
3
=

(1−cot� ⋅tan �)

(tan �−tan �t) b
1
= H

(
1 −

tan �t
tan �

)

D
XD =

(
XC ⋅(tan�g−tan �c)+H

(
tan �c
tan �t

−1
)

tan�g−tan �d

)
YD = XD ⋅ tan �d =

M

(cot �d−cot�g)

XD =
XC ⋅

(
tan� − tan �t

)
+ H

(
tan �t
tan �

− 1

)

(tan� − tan �)

= XC ⋅ b
5
− b

6

YD = YC − z

b
5
=

(tan�−tan �t)
(tan�−tan �)

z = � ⋅ H

b
6
=

H
(

tan �t
tan �

−1
)

(tan�−tan �)

YD = XC ⋅ tan �t + b
1
− � ⋅ H

XD =
YD

tan �
=

(XC ⋅tan �t+b1)−�⋅H
tan �

M M = d ⋅

(
1 − tan �c ⋅ cot�g

)
+ H

(
cot �t − cot�g

)
d d = XC − XB = XC −

H

tan �
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On the other hand, with the tangential forces, ( Ft)

4  Determining the Safety Factor, F

Usually, slope stability is analyzed with limit equilib-
rium methods and it is expressed as a safety factor. As 
is well known, it is common practice to determine the 
safety factor by applying the linear Mohr–Coulomb 
failure criterion through the equations

(33)
N = WT ⋅ k ⋅ cos

(
�d + �

)
− U − V ⋅ cos

(
�g − �d

)

(34)
∑

Ft = 0 ⇒ T − Rt − Vt = 0

(35)T = WT ⋅ k ⋅ sin
(
�d + �

)
+ V ⋅ sin

(
�g − �d

)

(36)F =
C ⋅ AD +

(
Rn − U − Vn

)
tan�

Rt + Vt

This section describes, in contrast, the procedure 
for determining the factor of safety by applying two 
different non-linear failure criteria, those of Úcar and 
Hoek and Brown (Hoek and Brown 1980, 2019; Úcar 
2011, 2021).

4.1  Slope stability assessment with Úcar criterion

We shall consider that the safety factor is constant all 
over every sliding plane. First, �np′ the normal effec-
tive stress (average value) due to the wedge weight, is 
determined with Eq. (29). Then, observing Fig. 2 and 
considering the length of the sliding segment AD, it 
results in the following equation

If we modify Eq.  (33) to be dimensionless by 
dividing by �c , we can equate Eqs. (2) and (33), 
obtaining:

(37)

F =
C ⋅ AD +

(
WT ⋅ k cos

(
�d + �

)
− V cos

(
�g − �d

)
− U

)
tan�(

WT ⋅ k ⋅ sin
(
�d + �

)
+ V ⋅ sin

(
�g − �d

))

(38)

��
np

=
WT ⋅ k ⋅ cos

(
�d + �

)
− U − V ⋅ cos

(
�g − �d

)

AD
=

N

AD

Fig. 3  Workflow chart
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And likewise, from Eq. (3):

At this point, if we know � we can immediately 
obtain the normal and shear stresses with Eqs. (34) 
and (35). As the normal stress, �′

np
 , is actually an 

average value of the normal stress distribution act-
ing on AD, and must equal to the normal stress 
expressed by Eq. (34), the obtained values of � will 
represent in this case average values of the friction 
angle,�i , along the sliding surface (Fig. 4).

Finally, the safety factor can be obtained as:

Now, this expression of the safety factor is a 
function of AD , that in turn depends on the position 
of the tension crack (Fig. 1).

It is worth noting the importance of the dimen-
sionless parameter � = z∕H , which is intended 
to better understand and analyze the geometry of 
the wedge as a whole because it indicates which 

(39)

�
1

�c

��
WT ⋅ k ⋅ cos

�
�d + �

�
− U − V ⋅ cos

�
�g − �d

�

AD

�
=

= �m + (1 − sin �)

⎧⎪⎨⎪⎩
k
4
+

�
k
2

2
�
1 + k

1

�
�2⎫⎪⎬⎪⎭�

4k
1
+
�
3 − k

1

���
1 − k

1

�
+
�
1 + k

1

�
sin �

�
��
1 − k

1

�
+
�
1 + k

1

�
sin �

�2
�

(40)

(
��
�c

)
=

(
�n
�c

− �m

)
⋅ tan

(
45 +

�

2

)
−

−

(
k2

2

)2

⋅ tan
(
45 +

�

2

)2

[
tan2

(
45 +

�

2

)
− k1

]2

(41)

F =

(
�n
�c

− �m

)
⋅ tan

(
45◦ +

�

2

)
−

(
k2

2

)2

⋅tan
(
45◦+

�

2

)
[
tan2

(
45◦+

�

2

)
−kl

]2
(

1

�c

)
⋅

(
1

AD

)(
WT ⋅ k ⋅ sin

(
�d + �

)
+ V ⋅ sin

(
�g − �s

))

(42)AD =

(
YC − z

sin �d

)
=

[
XC ⋅ tan �c + b − � ⋅ H

]
sin �d

fraction of the slope height corresponds to the depth 
of the tensile crack. For example, if z = 0, then 
� = 0 and, of course, there is no fracture due to trac-
tion; and on the contrary, if z = H then � = 1 , that 
is to say, the tensile crack corresponds to the slope 
height. Experience has shown that values of � are in 
the interval of 0.20–0.50 (Coates 1967).

Additionally, one can determine the weight of 
the two potential failure blocks depending on the 
abscissa XC , which is  XC = f

(
�d, �

)
  consider-

ing �g, �t, �c , and H constants. This allows a more 
global and integral vision of the problem by deter-
mining the F with respect to the variables � , �d , and 
� . As previously mentioned, � is the inclination of 
the tangent to the rupture envelope for each value of 
normal stress. This angle is known as the instanta-
neous friction angle ( � = �i).

The main advantage is that XC represents the loca-
tion of the tensile crack at the crown of the slope, 
being also the abscissa that serves as a link to deter-
mine YC of the tensile crack.

The weight in Eq. (22) can be put into function of 
XC in this way:

Fig. 4  Force polygon
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The value of b1 is indicated in Table 1. Substituting 
z = � ⋅ H , we obtain:

On the other hand, we already know that 
WT = �

(
�d, �

)
 , AD = �

(
�d, �

)
 , XC = �

(
�d, �

)
 and 

�n = �(�) . It is important to note that, by applying 
the numerical methods of the Solver add-in pro-
gram within the spreadsheet, it is possible to deter-
mine the minimum safety factor together with the 
parameters � , �d and  � quickly. All this without the 
need to carry out the laborious analytical process 
of deriving to minimize the safety factor as we will 
see next.

Another way to calculate the minimum safety 
factor is by applying the classical mathematical 
analytical tools, where a new function f  , is consid-
ered attached to the condition of Eq. (34):

In Eq.  (39), the terms 
(
��∕�c

)
 and 

(
�n∕�c

)
 cor-

respond to Eqs. (34) and (35) and were obtained 
by Úcar (2021) and � is the Lagrange’s multiplier. 
Thus, to calculate the minimum safety factor, the 
following derivatives are required:

(43)

WT =
�

2
(H ⋅ XC − X2

C
tan �c − b

1
⋅ XC + z ⋅ XC

+ [

YC2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
XC tan �c+b1]

2
⋅ cot �d)

+
�

2
⋅ (−z ⋅ XC ⋅ tan �c ⋅ cot �d

− z ⋅ cot �d ⋅ b1 − XC tan �c ⋅ H ⋅ cot �t)

− H ⋅ cot �t ⋅ b1 + q ⋅ XC − q ⋅ H ⋅ cot �t

(44)

WT =
�

2

⎛⎜⎜⎜⎝
H ⋅ XC − X2

C
tan �c − b

1
⋅ XC + � ⋅ H ⋅ XC + [

YC2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
XC tan �c + b

1
]2 ⋅ cot �d

⎞
⎟⎟⎟⎠

+
�

2
(−� ⋅ H ⋅ XC ⋅ tan �c ⋅ cot �d − � ⋅ H ⋅ cot �d ⋅ b1 − XC tan �c ⋅ H ⋅ cot �t

−H ⋅ cot �t ⋅ b1) + q ⋅ XC − q ⋅ H ⋅ cot �t

(45)

f =

(
��
�c

)
(

1

�c

)
⋅

(
1

AD

)(
WT ⋅ k ⋅ sen

(
�d + �

)
+ V ⋅ sen

(
�g − �d

))+

+ �

(
1

�c

)[
WT ⋅ k ⋅ cos

(
�d + �

)
− U − V ⋅ cos

(
�g − �d

)

AD

]
− −� ⋅

(
�n
�c

)

�f

��d
= f�d = 0

Undoubtedly, calculating these derivatives 
involves a painstaking and laborious process, in 
addition to having to subsequently solve the system 
of non-linear equations to determine the param-
eters � , �d and � . Fortunately, all this is solvable 
in a few seconds by applying the useful numerical 
tools and their algorithms through the Solver add-
in by constraining the problem with the appropriate 
conditions.

4.2  Slope stability Assessment with Hoek and 
Brown’s Failure Criterion

Taking into account the H–B criterion, Kumar (1998) 
determined the rupture envelope and the normal ten-
sion for the general case of a ≥ 1∕2 by means of a 
simple analytical procedure, without the need to solve 
any differential equation; as previously found by Úcar 
(1986), using the original equation that relates the 
main stresses �1 and �3 of such a criterion, by means 
of the well-known quadratic equation represented by 
the following equation, that is to say a = 1∕2.

Considering the values of �� and �n obtained by 
Kumar (1998) and whose expressions are given 
below, the calculation procedure is otherwise exactly 
the same as described in Sect. 4.1:

Kumar’s Eqs. (17) and (20):

Therefore, the expression of the safety factor is:

�f

��i

= f�i
= 0

�f

��
= f� = 0

(46)
�1
�c

=
�3
�c

+

[
m ⋅

�3
�c

+ s

]1∕2

(47)�

�c
=
(
m ⋅ a

2

)(
a

1−a

)(
1 − sin�i

sin�i

)(
a

1−a

)(
cos�i

2

)

(48)

�

�c
=

1

m
⋅

(
m ⋅ a

2

)(
1

1−a

)

⋅

(
1 − sin�i

sin�i

)(
1

1−a

)

⋅

⋅

(
1 +

sin�i

a

)
−

s

m
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5  Influence of Water Pressure on Stability

The presence of groundwater in a rock slope has sev-
eral detrimental effects on stability (Wyllie 2017): 
Water pressure reduces the shear resistance of poten-
tial failure surfaces. When present in tension cracks, 
it increases the forces that favor sliding. Water accel-
erates weathering and decreases the shear strength of 
intact rock. Freezing of groundwater can cause wedg-
ing in water-filled fissures. Also, ice can block drain-
age paths. Excavation costs can be increased when 
working below the water table. In any case, the most 
important effect of groundwater in a rock mass is the 
reduction in stability resulting from water pressures 
within the discontinuities.

There are two possible approaches to introducing 
water pressure distributions into stability calcula-
tions: either applying a flow pattern deduced from 
the distribution of discontinuities, and their hydraulic 
conductivities, or obtaining data from direct measure-
ments of water levels in wells, or of water pressure by 
means of piezometers installed in boreholes.

Obviously, given the multiplicity of possible geo-
metric scenarios of fluid pressure distribution, in the 
absence of other data, we will apply the model most 
frequently used in these cases, albeit some caution is 
warranted; in this regard, (Wyllie 2017) recommends 
analyzing the sensitivity of our slope-problem to a 
variety of realistic fluid pressure distributions, paying 
particular attention to rapid recharge phenomena and 
the transient pressures that may generate. The con-
sidered case, with water present in the tension crack 
hydraulically connected to the water generating pres-
sure on the sliding surface, probably is a worst-case 
scenario or close enough to it.

In this procedure, we proceed at first as if there is 
no water in the rock mass and, once z, �d and F are 
determined in dry conditions, it is possible to incor-
porate different values of zw  (water height within the 
tension crack) to explore the detrimental effect of 
water in the F.

(49)

F =

{(
ma

2

)(
a

1−a

)(
1−sin�i

sin�i

)(
a

1−a

)(
cos�i

2

)}

(
1

�c

)
⋅

(
1

AD

)(
WT ⋅ k ⋅ sin

(
�d + �

)
+ V ⋅ sin

(
�g − �d

))

6  Step by Step Procedure with the Spreadsheet 
and SOLVER

As previously mentioned, the full procedure can be 
implemented via a dedicated spreadsheet available as 
supplementary material with this paper, it includes 
a detailed step-by-step procedure. The spreadsheet 
has an input area where relevant data on the studied 
slope can be included in the model. The presented 
equations are employed to determine the value of 
the factor of safety, and its value is then minimized 
by varying the geometric parameters to obtain the 
worst-case scenario. Solver is an add-in program for 
spreadsheets that can find an optimal (maximum or 
minimum) value for a formula in one cell—called the 
Objective cell, which in our case contains the Fac-
tor of Safety—subject to constraints, or limits, on the 
values of other formula cells on a worksheet. Simply 
put, it serves to determine the maximum or minimum 
value of one cell by changing other cells.

6.1  Instructions for Using the Spreadsheet

This spreadsheet comprises two sheets that should 
be used sequentially. The parameters entered in the 
first sheet are automatically transferred to the second 
sheet. The reason for structuring it into two sheets is 
so that SOLVER does not need to be configured each 
time.

We start on the [parameters] sheet.

1.  Enter the starting parameters. Under the header 
"1 PARAMETERS" there are cells for entering 
the uniaxial compressive strength of intact rock 
( �c ), tensile strength ( �t ), and the RMR value 
of the rock mass. Additionally, we can vary the 
values assigned to the constants at and ac . By 
default, they appear as at = 14 and at = 20 , as 
seen in previous paragraphs.

When these parameters are entered, the spreadsheet 
automatically computes the values of � , �m , �m , 
and the constants k1 , k2 , and k3.

2. Obtain k4 . We must obtain k4 in an iterative pro-
cess using SOLVER, with the target being cell 
"Eq. k4" making it equal to zero by modifying 
the cell "solver adj" (under the cell labeled K4).

Now we move to the [FS] sheet.
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We check that the sheet has successfully captured the 
values entered in step 1, as well as the calcula-
tions performed: s k1 , k2 , k3 , and k4.

3. Input of basic slope geometry (see Fig.  1 for 
guidelines, and notice the location of the spa-
tial datum at the toe of the slope for coordinates 
determination). Enter the height of the slope 

(in cell YB , under cell H = YB ), coordinates of 
point B, slope inclination in degrees (under the 
cell labeled "BETAtalud"), and inclination of 
the crest of the slope in degrees (under the cell 
labeled "BETAcorona").

4. Enter the average bulk weight of the rock present 
in the slope (in kN∕m3).

Fig. 5  Flowchart for safety 
factor calculation in the 
spreadsheet
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5.  Enter, if necessary, the overload on the crest of 
the slope, and the horizontal and vertical seismic 
acceleration coefficients, kh and kv.

6. Apply SOLVER to obtain the value of the safety 
factor, F. The target cell is F, minimizing its value 
by changing the cells � (relative depth of the ten-
sile crack), �d (dip of the failure plane), and � 
(instantaneous friction angle), subject to the con-
ditions that XC is greater than or equal to XB , d is 
less than or equal to ds and greater than or equal 
to dl , � is equal to zero, and � is between zero and 
one. In this step, once we obtain the minimized 
value of F, the values in cells � and �d reflect now 
the relative depth of the tensile crack, and the dip 
of the failure plane, determining the geometry of 
the sliding block in the critical condition.

7. Once the basic value of F has been obtained, 
we can add the effect of the presence of water 

on the slope by introducing the factor Kw , the 
ratio between zw and z. The safety factor will be 
updated accordingly.

A flow chart illustrating this procedure is in Fig. 5.

Table 2  Geometry and mechanical and elastic properties

Property Value Unit

Slope Height H = 52 m
Slope dip 76

◦

Slope crown dip �crown = 10
◦

Unit weigh � = 25 kN∕m3

Overburden q = 300 kPa
Horizontal and vertical seis-

mic coefficients
kh = 0.2 and kv = 0.1

Angle of internal friction � = 26
◦

Poisson’s coefficient � = 0, 25

Elasticity modulus E = 25, 00E6 kPa
Uniaxial compressive strength �c = 48 MPa
Rock Mass Rating RMR = 55

Material constant mi = 12

Disturbance factor D = 0

Table 3  Summary of results

Úcar’s Hoek and Brown’s SLIDE PLAXIS 2D

F 2.392 2.067 2.292 2.133
d(m) 17.28 16.28 19.29 20.00
z(m) 18.18 17.14 9.75 16.00
� 50.64° 52.23° 52.00° 48.68°

Fig. 6  Comparison of results of the different methods for the 
proposed example. a Geometry of the case. Red dashed line, 
results of the method proposed in this work. b Crack surface 
generated by Finite Element Method (Plaxis 2D). c Results 
obtained through the Limit Equilibrium Method (SLIDE). The 
FS, the distance of the tensile crack at the slope crest and the 
depth of the tensile crack are shown
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7  Worked Example: Comparing Results Between 
Using H–B Criterion, Úcar Criterion, Limit 
Equilibrium Method (Slide), and Finite Element 
Method (Plaxis 2D) with an Idealized Slope

The geometric characteristics and mechanical and 
elastic properties of the slope under study are pre-
sented in Table  2. From the simulations using the 
finite element and limit equilibrium method and 
analytically with the H–B criterion for the analyzed 
slope, and comparing their results with the proposed 
analytical method of the Úcar criterion, it is observed 
(see Table 3 and Fig. 6):

For the case with seismic loading and linear over-
load, the FS with the Úcar criterion yielded a value of 
2.392. The correlation percentages with respect to the 
other 3 methods are between 86.42 and 95.82%.

The distance of the formation of the tensile crack 
at the head of the slope by the Úcar criterion is 
17.28 m and the correlation percentages are between 
94.22 and 84.26%. For the tensile crack depth 18.18 
m of the Úcar criterion, the percentage correlations 
would be 53.64 and 94.28%. It should be noted that 
the value of 53.64% corresponds to that obtained by 
the limit equilibrium method and its correspondence 
is low, however for the other two methods the corre-
spondence is very good, being above 88.01%. Finally, 
when comparing the dip of the rupture surface, which 
in the case of the Úcar rupture criterion is obtained 
� = 50.64◦ , the percentage value of correspond-
ence with the other methods are between 96.13 and 
97.32%.

The results show that there is a good correlation 
and a high correspondence of the proposed method 
with the Úcar breakage criterion with the other 
methods because most of the results are above 90% 
correlation.

8  Conclusions

We present a method for calculating or estimating the 
factor of safety in a highly jointed rock mass, consid-
ering plane failure with an unknown depth of a ten-
sile crack. The Úcar’s Focus Procedure and Hoek and 
Brown’s failure criteria are applied by implementing 
the necessary formulas in a spreadsheet. The required 
parameters include the slope geometry, strength 

parameters, and either the RMR of the massif or its 
mi , depending on the chosen criterion. An iterative 
process with conventional tools is used to obtain an 
estimate of the safety factor. The resulting value is 
reasonably close, with a similarity degree of around 
86–96% in the solved example, to that obtained with 
more sophisticated numerical calculation tools. Thus, 
the proposed procedure is a useful and cost-effective 
contribution in the early stages of a project or as a 
starting point for more detailed investigations.
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