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Abstract The effect of fluid flow on tissue adaptation

was the focus of many research works during the last

years. Moreover, the use of poroelasticity models to sim-

ulate and understand the interstitial flow movement has

taken interest due to the possibility to include the fluid

effect on mechanical simulations. In particular, shear

stresses induced by bone canalicular fluid flow are sug-

gested to be one of the mechanical stimulus controlling

bone remodeling processes. Due to the high difficulty to

measure canalicular fluid flow and shear stresses, com-

putational poroelastic models can be used in order to

estimate these parameters. In this work, a finite ele-

ment dual porosity model based on Russian doll poroe-

lasticity is developed. Two experiments with a turkey

ulna and a human femur are simulated. Bone lacuno-

canalicular fluid flow is computed and compared with
the experimental results, focusing on the zones of bone

remodeling and showing a relation between this flow

and the bone formation process.
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M.A. Pérez, J.M. Garćıa-Aznar
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1 Introduction

Bone is a living material whose main function is form-

ing the skeleton and therefore enabling locomotion and

protection of the organism. In consequence, it is sub-

jected to permanent and transient loads caused by daily

activity or specific events such as accidents. It is well-

known that bones adapt their properties depending on

the loads they are supporting and respond differently to

them, exhibiting thus an heterogeneous behavior [12].

Furthermore, bone can be considered as a porous ma-

terial formed by a mixture of components where water

is transporting nutrients and waste products [17].

Bone is structured with a hierarchical network of

porosities with quite different characteristic dimensions

[8]. Vascular porosity (PV) contains blood vessels and
nerves and it is associated with blood irrigation of the

bone. The lacuno-canalicular porosity (PLC) is the net-

work where the osteocytes are embedded and collagen-

apatite porosity (PCA) is associated with the spaces

between collagen and mineral in the bone matrix. These

three porosities are nested hierarchically one inside the

other and the typical pore size is 50µm for the vascular

porosity, 100 nm for the lacunar-canalicular one, and

1 nm for the collagen-apatite one. All of these porosi-

ties are filled with bone fluid, but in PCA the fluid flow

is negligible [8]. Due to that, the focus on studying the

bone fluid flow lies on the PV and PLC porosities and

the ratio between their pore sizes is approximately 167

[11]. Furthermore, there exist some differences between

the PLC and the PV porosities: the bone fluid in the

PLC can sustain higher pressure for longer time due to

mechanical loading whereas PV will function as a low-

pressure reservoir that interchanges bone fluid with the

PLC. The mechanical loads applied to the whole bone

moves the bone fluid in the PLC. In compression, the
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bone fluid moves from the PLC to the PV, and in ten-

sion, this fluid is sucked from the PV to the PLC. This

process of draining and absorption greatly affects the

fluid pressure in the PLC while hardly affects to the

pressure in the PV. These differences in pressure are

directly related to the fact that the linear dimension as-

sociated with the PV is two orders of magnitude larger

than the associated with the PLC.

Bone has also the ability of adapting its structure

to the mechanical environment in a process known as

bone remodeling [27]. The specific mechanical stimulus

controlling this process is not completely understood

[9], but evidences suggest that it is related with lacuno-

canalicular fluid flow and the shear stresses that ex-

erts to the osteocytes [26,9,3,14]. However, measuring

fluid flow velocities and shear stresses in the lacuno-

canalicular network is difficult [4] and different compu-

tational models have been developed to estimate these

quantities [23,6,24,19,25,16,1,13,2,18,21,20]. In most

of these models, bone fluid flow was studied microscop-

ically, simulating a small portion of bone and using

poroelasticity models to calculate the PLC fluid flow.

Steck et al. [24] was the first work with a macroscopic

approach although they only considered the lacuno-

canalicular porosity and not the vascular porosity. Later,

Fornells et al. [13] applied a dual porosity poroelas-

tic model to compute fluid flow in both PV and PLC,

but this macroscopic model was not able to analyze

the fluid flow at the level of an osteon. More recently,

Cowin and Cardoso [7] and Cardoso et al. [10] gath-

ered different analytical and numerical models to un-

derstand the influence of the fluid interchange between

the bone porosities in the bone tissue mechanotrans-

duction. They reviewed a model for poroelastic mate-

rials with hierarchical pore space architecture for the

description of interstitial fluid flow in bone, that was

firstly introduced in [11,15], the Russian doll poroelas-

tic model. In [11], Cowin et al. obtained an analytical

solution to the interchange of pore fluid between the

PV and the PLC in bone tissue due to cyclic mechani-

cal loading and Gailani and Cowin [15] used this model

to determine this interchange due to a ramp loading.

The objective of this work is to simulate numerically

the behavior of the fluid flow in the cortical bone tak-

ing into account the hierarchical relation between the

PV and PLC porosities. Considering the porous struc-

ture of bone and the almost independent behaviour of

the fluid pressure in the vascular and lacuno-canalicular

domains (see [8,11]), we will propose to simulate this

process by considering two separate continuum poroe-

lastic models to represent each level of porosity. The

coupling between the two models, consisting of the fluid

flow between them, occurs through sources connecting

the PV and PLC porosities. The Russian doll poroe-

lastic model [11] is employed to computationally model

the bone fluid flow at PV and at the level of an osteon

at the PLC. Then, a finite element (FE) simulation is

carried out to compute the different flows and their in-

fluence in several factors related with bone remodeling.

Two different simulations have been developed to test

this model considering two experiments: the application

of a loading regime to maintain bone mass in a turkey

ulna [22], and the influence of age on the osteon size of

a human femur [5].

2 Methods

The Russian doll porosity formulation used in this work

was proposed by Cowin et al. [11], where they presented

a particular pore space structure model to simulate the

interstitial pore fluid flow in tissues like bone, tendon,

meniscus, etc. This model is called Russian doll poroe-

lastic model since it recalls a nested set of Russian dolls:

the different porosities are nested within the other and

a porosity with a specific pore size can only drain its

fluid into a porosity with a smaller pore size, and receive

it from a porosity with a larger pore size (or viceversa).

This model is based on considering each porosity level

as a separate poroelastic continuum problem, with in-

teraction between them through source and sink terms

that allow the transfer of fluid on the boundaries.

Here, we are going to implement the Russian doll

model in a FE approach to simulate the influence of

the fluid flow in the bone response under different me-

chanical loads.

2.1 Mathematical model

The mathematical model of the cortical bone consists of

two poroelastic formulations to solve and compute the

deformations, stresses and pressures for each porosity

(PV and PLC) with a coupling term between them in

order to take into account their fluid interchange. Fig.

1 shows an scheme of the considered cortical bone that

is formed by several osteons connected to each other. In

the figure, a particular osteon is highlighted. An osteon

is a roughly hollow cylindrical structure with 0.2 mm of

radius. The PLC porosity lies in the annular domain of

the osteon whereas the PV porosity corresponds to the

central section of the bone. The connection between the

two porosities takes place in the inner cylindrical wall

of the different osteons (the hollow part of the osteon

belongs to the PV domain).
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Fig. 1 Diagram of a typical long bone showing one of the
osteons. Both the section of the long bone and the osteon can
be modeled as hollow cylinders. The osteon is part of the PLC
porosity whereas its inner lumen is part of the PV porosity.
Courtesy of SEER - U.S. National Cancer Institute’s Surveil-
lance, Epidemiology and End Results (SEER) Program.

2.1.1 Poroelastic model for PV

The quasi-static equilibrium of the bone is governed by

the mechanical equilibrium equation

div(σv) + Fv = 0, (1)

where σv denotes the total stress tensor and Fv are the

external volume forces.

Bone is assumed to be a poroelastic material and

therefore, the constitutive law relating the stress tensor

σv with the suffered deformation ε(uv) and the pore

fluid pressure pv is as follows:

σv = λvtr(ε(uv))1+ µvε(uv)− αvpv1, (2)

where uv denotes the displacement field, λv and µv are

the Lamé coefficients related with the Young’s modulus

and the Poisson’s ratio through the usual expressions,

respectively, and αv is the Biot effective stress coeffi-

cient; 1 denotes the identity tensor.

The governing equation for the fluid flow in the PV

is obtained from the mass conservation equation for the

fluid. First, Darcy’s law describes the fluid flow through

the porous medium conformed by the bone structure,

that is,

qv = −κv

ηv
∇pv, (3)

qv = φv (vf − u̇v) , u̇v =
∂uv

∂t
,

where qv is the percolation velocity, given in terms of

the fluid velocity vf and the solid velocity u̇v, φv is the

porosity of the medium, κv is the permeability tensor

of the bone, and ηv the fluid viscosity. In general, the

definition of the permeability tensor κ depends on the

isotropic or anisotropic properties of the material. Here,

we consider the isotropic and orthotropic cases:

κ =


κ1 for the isotropic case,κ11 0 0

0 κ22 0

0 0 κ33

 for the orthotropic case.

Second, we consider the mass balance equation for the

solid phase, taking into account the fluid content vari-

ation, that is:

1

Mv

∂pv
∂t

+ div(qv) +
∂

∂t
tr (αvε(uv)) = −Γ, (4)

where Mv is the Biot modulus or constrained specific

storage coefficient given by the expression

1

Mv
=

φv
Kv

f

− αv − φv
Kv

s

,

being Kv
f and Kv

s are the bulk modulus of fluid and

solid part, respectively. In Eq. 4, Γ corresponds to the

leakage term that takes into account the rate of flow

between canaliculi and Haversian canals, i.e., the fluid

interchange between the PV and PLC porosities. This

term can be written as follows:

Γ = γ(pv − pl), (5)

where pv is the pore pressure in the PV porosity, pl the

pore pressure in the PLC and γ is the leakage parame-

ter.

Gathering Eqs. 1-5, the proposed system of differ-

ential equations is the following:

div(σv) + Fv = 0,

σv = λvtr(ε(u))1 + µvε(u)− αvpv1,

1

Mv

∂pv
∂t
− κv∇2pv +

∂

∂t
tr (αvε(u)) = −γ(pv − pl).

Boundary conditions for the vascular porosity PV

are medullary pressure in the endosteum (taking it as

reference pressure, so pm = 0) and no fluid flow across

the periosteum. Displacement boundary conditions de-

pend on the characteristics of each specific simulation.

2.1.2 Poroelastic model for PLC

In the lacuno-canalicular porosity, the system of differ-

ential equations is similar to that proposed for the PV,

that is,

div(σl) + Fl = 0,

σl = λltr(ε(ul))1+ µlε(ul)− αlpl1,

1

Ml

∂pl
∂t
− κl∇2pl +

∂

∂t
tr (αlε(ul)) = γ(pv − pl),
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where ul and σl are the displacement field and stress

tensor suffered by the osteon material in the lacuno-

canalicular porosity and pl is the corresponding pore

fluid pressure.

Boundary conditions for the lacuno-canalicular poro-

sity PLC are fluid flow not allowed through the cement

line and pressure in the Haversian canal equal to the

obtained with the vascular model PV. In this case, dis-

placement boundary conditions are also derived from

the vascular model.

2.2 Numerical implementation

Regarding the numerical solution, the simulations at

bone scale and at osteon scale are solved separately,

that is, the problems for the PV and PLC are solved in

an uncoupled way. This simplification can be made due

to the different orders of magnitude between the PV

and PLC fluid pressures and porosities. Although the

two porosities exchange fluids (the fluid transport oc-

curs through sources connecting the two different poros-

ity levels), the influence on the fluid pressure is small,

and the two poroelastic problems could solve indepen-

dently. Thus, the resulting matrix systems are:

– for the vascular model:

KuNv − αvCp
N
v = RN

v ,

αvC
tu̇Nv + (Hv + γM) pNv +

1

Mv
M ṗNv = QN

v + γMpNl ,

– for the lacuno-canalicular model:

KuNl − αlCp
N
l = RN

l ,

αlC
tu̇Nl + (H l + γM) pNl +

1

Ml
M ṗNl = QN

l + γMpNv ,

where the superscript N denotes the time step. The

matrices used in the previous systems are the following:

K =

∫
V

BT
uDBudV,

Hn =

∫
V

BT
pKnBpdV, n ∈ {v, l},

Rn =

∫
V

NTF ndV +

∫
S

NTTdS,

Qn =

∫
S

NTqndS,

C =

∫
V

BuNdV, M =

∫
V

NTNdV,

where N is the matrix of shape functions correspond-

ing to the discretization of the problem, Bu and Bp

are the deformation matrices written in terms of the

derivatives of shape functions, D corresponds to the

constitutive stress-strain matrix, Kv and Kl represent

the permeability matrices for the PV and PLC porosi-

ties, respectively; F n corresponds to the external vol-

ume load vector, T is the external surface load vector

and qn the fluid flux vector for the PV and PLC porosi-

ties. Displacements and pressures are approached by

means of linear shape functions and a backward Euler

scheme is used to compute the unknowns at each time

step.

Fig. 2 Scheme of the two computational domains of interest.

The numerical simulation of the two problems is

carried out by using the FE commercial code Abaqus

(Dassault Systems, Suresnes, France) and it was imple-

mented as user element routines. Fig. 2 shows a scheme

of the two computational domains considered for this

numerical simulation. Firstly, the macroscopic model

at bone level is solved and the obtained results, that

is, the displacements on the nodes and pressures on the

elements, are used as boundary conditions to simulate

the problem at osteon scale in different osteons placed

in different locations. To do that, two different meshes

are considered: a macroscopic mesh to discretize the

domain corresponding to the bone section and a micro-

scopic mesh to represent the different osteons simulated

in the bone section. The coupling between these two

scales and meshes is implemented by using linear in-

terpolation in the displacement and pressure fields and

assuming that the elements of the considered osteon are

located in the geometrical center of certain elements of

the macroscopic bone section.
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3 Results

In order to validate the applicability and potential of

the Russian doll poroelastic model, several mechanical

load conditions were simulated by considering two real

applications to compute the effective fluid flow in bone:

the morphometric change in a turkey ulna [22] and the

influence of the osteon size in the fluid flow in a human

femur [5].

3.1 Changes in bone morphology in a turkey ulna

experiment

We first simulated the experimental work of Qin et al.

[22], where they determined the ability of a relative

high-frequency and moderate-duration loading regime

to maintain bone mass in a turkey ulna model of dis-

use osteopenia. A bending load was applied to a small

sample of bone to determine the morphometric change

of bone at the mid-diaphysis.

A section of the turkey ulna was modeled with the

following geometrical dimensions: 6 mm of height, 10

mm of small external diameter, 16 mm of big external

diameter and approximately 1.7 mm of cortical thick-

ness (see Fig. 3). Sinusoidal mechanical loading of 30 Hz

was applied and the specimen was subjected to a bend-

ing load of 9 N through compression at the dorsal side

(see Fig.3(a)). The section of the turkey ulna is com-

posed of 15444 nodes and 12285 elements.

Six bone sectors were considered (see Fig. 3(b)); an

osteon is assumed in each sector where the morphome-

tric bone change will be analyzed. Each osteon is mod-

eled as a cylinder of 200µm of length, 15µm of internal

diameter and 76µm of external diameter. Its finite el-

ement model consists of 9360 nodes and 8200 elements

(see Fig. 3(c)).

The cortical bone of the turkey ulna section is as-

sumed to be an elastic material with a Young’s modulus

of 15.8 GPa and a Poisson’s ratio of 0.3; however, its

poroelastic properties are assumed to be orthotropic.

Regarding the osteon, it is also assumed to be an elas-

tic material but with isotropic poroelastic properties.

The values of the properties of the turkey ulna used in

the simulation are detailed in Table 1 (see [13,25,28]).

With this model, we analyze the effective pore fluid

velocity at the level of an osteon and we try to relate

it with the morphometric change of bone at the mid-

diaphysis determined experimentally in [22].

Fig. 4 gathers the effective fluid flow on the six os-

teons considered in the bone section. The maximum

fluid flow is reached at osteons 2 and 5 with a coin-

cident value. These sectors correspond to the higher

Table 1 Parameter values of the turkey ulna Russian doll
poroelastic model.

Young Modulus E 15.8 GPa
Poisson’s ratio ν 0.3
Vascular porosity φv 0.04
Orthotropic vascular permeability k11 10−13 m2

Orthotropic vascular permeability k22 10−13 m2

Orthotropic vascular permeability k33 10−12 m2

Lacuno-canalicular porosity φl 0.05
Lacuno-canalicular permeability kl 10−20 m2

morphometric changes of bone determined experimen-

tally in [22], where the mechanical loading resulted in

a significative reduction of bone loss when compared

to the results obtained in disuse. Moreover, the mini-

mum value for the fluid flow is obtained at osteons 3

and 6, being also the sector where more bone loss was

observed in the experiments. These results allow us to

infer a relation between the effective fluid flow in the

osteons and the bone adaptation processes: the greater

the fluid flow in the osteon, the lower bone loss is ob-

tained.

3.2 Relation between the human femoral osteon size

and age with the fluid flow

In this section we infer a relationship between the fluid

flow and the osteon size, taking into account the analy-

sis carried out by Britz et al. [5], where they evaluated

the impact of age, sex and body size in human femoral

osteon geometry, concluding that decreasing the osteon

size with age was the dominant pattern of variation. By

using the Russian doll poroelastic model to simulate
those experiments, we aim to find a relation between

the effective fluid flow on osteons with changes in the

corresponding osteon size.

With this objective in mind, we consider a section

of a human femur to which a bending load of sinusoidal

type is applied (see Fig. 5(a)). The effective fluid flows

at the three osteons located at the femur shown in Fig.

5(b) are analyzed. The osteons are modeled as hollow

cylinders (see Fig. 5(c)) with two different diameters,

250µm corresponding to a 20 years old specimen and

201µm corresponding to a 90 years old specimen. The

internal diameter is of 15µm and the length of 200µm.

The computational mesh of the section of the human

femur is composed of 11772 nodes and 9878 elements

whereas the computational mesh for the osteon model

consists of 13754 nodes and 12125 elements (see Fig.

5(c)).

Similarly to the previous experiment, both the cor-

tical bone and the osteon are assumed to be elastic

materials but with orthotropic poroelastic properties
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Fig. 3 (a) Finite element model of the turkey ulna section under a bending load (D = dorsal and V = ventral); (b) cross
section of the finite element model showing the neutral axis when subjected to the bending load with the six osteons (bold
points marked) considered at each bone sector; (c) finite element model of the osteons.

Fig. 4 Effective fluid flow at PLC on the six osteons.

Table 2 Parameter values of the human femur Russian doll
poroelastic model.

Young Modulus E 15.8 GPa
Poisson’s ratio ν 0.3
Vascular porosity φv 0.04
Orthotropic vascular permeability k11 10−14 m2

Orthotropic vascular permeability k22 10−14 m2

Orthotropic vascular permeability k33 10−13 m2

Lacuno-canalicular porosity φl 0.05
Lacuno-canalicular permeability kl 1.7×10−20 m2

in the case of the cortical bone and isotropic properties

for the osteon. The values of the properties of the hu-

man femur used in this simulation are detailed in Table

2 (see [13]).

Fig. 6 shows the effective fluid flow at three differ-

ent osteons for the two different sizes. Notice that the

application of the same force at the macroscopic bone

produces a clear reduction of the effective fluid flow for

the young specimen (250µm) in the three osteons.

Fig. 7 shows the reaction forces in the macroscopic

analysis for the two diameters of the osteon correspond-

ing to the reference load. With the aim to obtain the

same effective fluid flow for the two different osteon

sizes, a reduction in the force applied in the osteon of

201µm (old specimen) is needed. In this way, after car-

rying out the microscopic analysis, a significant reduc-

tion in the fluid flow for the osteon size of 201µm is

obtained and as a consequence, it coincides with the

values corresponding to the osteon size of 250µm. Fig.

8 gathers the results obtained for the reference forces

with the two osteon sizes and for the lower force for the

old specimen.

The obtained results allow us to infer that, since old

people reduce their activity (there exists a load reduc-

tion in the loads at the femur), in order to have the

same effective fluid flow at the osteon level, the osteon

diameter should be reduced.

4 Conclusions

In this work we have presented the application of the

Russian doll poroelastic model developed by Cowin and

co-authors [11,15] to compute and analyze the effect

of the fluid flow in the vascular and lacuno-canalicular

porosities with the objective to determine its influence

in the bone adaptation processes. The proposed model

takes into account the two different bone porous net-

works by considering a combination of macroscopic and

microscopic approaches for the two levels. This allows

to compute numerically and enhance the evaluation of

fluid flows and pressures of both PV and PLC porosi-

ties. Moreover, the proposed model also permits the

computation of the fluid flow at osteon level and the
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Fig. 5 (a) Finite element model of the human femur section under a bending load; (b) cross section of the finite element
model showing the neutral axis when subjected to the bending load with the three osteons (bold points marked) considered
at each bone sector; (c) finite element model of the osteons located in previous femur section.

Fig. 6 Effective fluid flow through three different osteons
for the two osteon sizes. A reduction in the fluid velocity is
produced in the young specimen for the same applied load.

Fig. 7 Reaction forces obtained in the bone for two different
values of the osteon size.

consequent analysis of its influence in different experi-

ments.

Fig. 8 Comparison of effective fluid flow through osteon 4
with two different applied forces. When a low force is applied,
the fluid flow corresponding to the old specimen is closer to
the young one.

In order to check the potential of the Russian doll

poroelastic model, we have carried out a numerical sim-

ulation of the experiment by Qin et al. [22], which

consists of the application of a relative high-frequency

and moderate-duration loading regime to a section of a

turkey ulna. The objective of this experiment was to de-

termine the bone sector where the bone loss is reduced.

The results obtained with the model presented here

have shown the same behaviour that those obtained

experimentally.

Moreover, we have used the Russian doll poroelas-

tic model to infer a relation between the fluid flow and

the osteon size, and relate this with age following the

analysis given in [5]. To do that, we have carried out

a numerical simulation of a section of a human femur

subjected to a bending load of sinusoidal type. The ob-

tained results let computationally determine that a re-

duction of activity (generally, in old people) implies a
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reduction of the osteon diameter in order to have the

same effective fluid flow at the osteon level.

Nevertheless, the proposed model presents some lim-

itations. Although an orthotropic behavior was assumed

for the vascular porosity, a more realistic model at mi-

crostructure level should be considered. Moreover, the

osteon geometries in both examples were assumed with

the same type and size although they represent different

species. This was due to the absence of information re-

garding the experimental data. In a future study more

realistic data and different osteon geometries would be

analysed.

Summarizing, the finite element model based on Rus-

sian doll poroelasticity has been able to demonstrate

that the lacuno-canalicular fluid flow is one of the main

stimulus to regulate adaptive bone response. Further-

more, the application of this model to other examples

could provide a more detailed assessment of the intra-

cortical remodeling process during human bone devel-

opment.
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element dual porosity approach to model deformation-
induced fluid flow in cortical bone. Ann. Biomed. Eng.
35, 1687–1698 (2007)

14. Fritton, S.P., Weinbaum, S.: Fluid and solute transport
in bone: Flow-induced mechanotransduction. Annu. Rev.
Fluid Mech. 41(1), 347–374 (2009)

15. Gailani, G., Cowin, S.: Ramp loading in russian doll
poroelasticity. J. Mech. Phys. Solids 59(1), 103 – 120
(2011)

16. Gururaja, S., Kim, H.J., Swan, C.C., Brand, R.A., Lakes,
R.S.: Modeling deformation-induced fluid flow in cortical
bone’s canalicular-lacunar system. Ann. Biomed. Eng.
33, 7–25 (2005)

17. Harrigan, T.P., Hamilton, J.J.: Bone strain sensation
via transmembrane potential changes in surface os-
teoblasts: Loading rate and microstructural implications.
J. Biomech. 26(2), 183 – 200 (1993)

18. Kumar, N.C., Dantzig, J., Jasiuk, I.: Modeling of cortical
bone adaptation in a rat ulna: Effect of frequency. Bone
50(3), 792 – 797 (2012)

19. Mak, A.F.T., Huang, D.T., Zhang, J.D., Tong, P.: De-
formation induced hierarchical flows and drag forces in
bone canaliculi and matrix microporosity. J. Biomech.
30, 11–18 (1997)

20. Pereira, A.F., Javaheri, B., Pitsillides, A.A., Shefelbine,
S.J.: Predicting cortical bone adaptation to axial load-
ing in the mouse tibia. J. Royal Soc. Interface 12(110),
20150590 (2015)

21. Pereira, A.F., Shefelbine, S.J.: The influence of load
repetition in bone mechanotransduction using poroelas-
tic finite-element models: the impact of permeability.
Biomech. Model. Mechanobiol. 13(1), 215–225 (2014)

22. Qin, Y., Rubin, C.T., McLeod, K.J.: Nonlinear depen-
dence of loading intensity and cycle number in the main-
tenance of bone mass and morphology. J. Orthop. Res.
16, 482–489 (1998)

23. Smit, T.H., Burger, E.H., Huyghe, J.M.: A case for strain-
induced fluid flow as regulator of bmu-coupling and os-
teonal alignment. J. Bone Miner. Res. 17, 2021–2029
(2002)

24. Steck, R., Niederer, P., Knothe Tate, M.L.: A finite ele-
ment analysis for the prediction of load-induced fluid flow
and mechanochemical transduction in bone. J. Theor.
Biol. 220, 249–259 (2003)

25. Wang, L., Fritton, S.P., Cowin, S.C., Weinbaum, S.: Fluid
pressure relaxation depends upon osteon microstructure:
modelling an oscillatory bending experiment. J. Biomech.
32, 663–672 (1999)

26. Weinbaum, S., Cowin, S., Zeng, Y.: A model for the exci-
tation of osteocytes by mechanical loading-induced bone
fluid shear stresses. J. Biomech. 27(3), 339 – 360 (1994)

27. Wolff, J.: Das gesetz der transformation der knochen.
Hirschwald, Berlin (1892)

28. Zhang, D., Weinbaum, S., Cowin, S.C.: Estimates of the
peak pressures in bone pore water. J. Biomech. Eng. 120,
697–703 (1998)


