000130093 001__ 130093
000130093 005__ 20241125101135.0
000130093 0247_ $$2doi$$a10.1109/TIM.2023.3325446
000130093 0248_ $$2sideral$$a136494
000130093 037__ $$aART-2023-136494
000130093 041__ $$aeng
000130093 100__ $$0(orcid)0000-0002-8617-5703$$aPérez-Bailón, Jorge
000130093 245__ $$aCryogenic measurement of CMOS devices for quantum technologies
000130093 260__ $$c2023
000130093 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130093 5203_ $$aIn this article we present the experimental characterization of active components of a standard 65 nm CMOS technology for a temperature range from 313 to 5 K, analyzing the variation of the main parameters over temperature and voltage, recovering their main parameters (threshold voltage Vth , transconductance Gm and channel conductance GDS ). The measurement has been carried out wire-bonding the bare dies with the devices to a dedicated printed circuit board (PCB) that has been placed inside a dilution refrigerator. The ID - VDS curves for both NMOS and PMOS transistors shows an increase of ID in the cryogenic regime that is more relevant for high values of VGS because for lower values it is partially compensated by the variation of Vth . Also, a kink is observed in these curves for high VDS values, caused by the bulk current generated by impact ionization at the drain combined with the increased resistivity of the frozen-out substrate. The transconductance Gm reaches non-zero values for higher VGS as T decreases and then peaks to higher values in the cryogenic regime. In turn, GDS increases for increasing T , following the behavior observed for ID . Both results are in accordance with other thermal characterizations carried out on CMOS transistors in different technologies.
000130093 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-114110RA-I00
000130093 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130093 590__ $$a5.6$$b2023
000130093 592__ $$a1.536$$b2023
000130093 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b9 / 76 = 0.118$$c2023$$dQ1$$eT1
000130093 593__ $$aInstrumentation$$c2023$$dQ1
000130093 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b53 / 353 = 0.15$$c2023$$dQ1$$eT1
000130093 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ1
000130093 594__ $$a9.0$$b2023
000130093 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130093 700__ $$aTarancón, Miguel
000130093 700__ $$0(orcid)0000-0003-0182-7723$$aCelma, Santiago$$uUniversidad de Zaragoza
000130093 700__ $$0(orcid)0000-0002-8236-825X$$aSánchez-Azqueta, Carlos$$uUniversidad de Zaragoza
000130093 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000130093 7102_ $$15008$$2250$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Electrónica
000130093 773__ $$g72 (2023), 1504007 [7 pp.]$$pIEEE trans. instrum. meas.$$tIEEE Transactions on Instrumentation and Measurement$$x0018-9456
000130093 8564_ $$s1515790$$uhttps://zaguan.unizar.es/record/130093/files/texto_completo.pdf$$yPostprint
000130093 8564_ $$s3602477$$uhttps://zaguan.unizar.es/record/130093/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130093 909CO $$ooai:zaguan.unizar.es:130093$$particulos$$pdriver
000130093 951__ $$a2024-11-22-12:00:28
000130093 980__ $$aARTICLE