000130098 001__ 130098
000130098 005__ 20240705134148.0
000130098 0247_ $$2doi$$a10.3390/nano13182585
000130098 0248_ $$2sideral$$a136451
000130098 037__ $$aART-2023-136451
000130098 041__ $$aeng
000130098 100__ $$aWinkler, Robert
000130098 245__ $$aA review of the current state of magnetic force microscopy to unravel the magnetic properties of nanomaterials applied in biological systems and future directions for quantum technologies
000130098 260__ $$c2023
000130098 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130098 5203_ $$aMagnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM’s main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
000130098 536__ $$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131064B-I00$$9info:eu-repo/grantAgreement/ES/CSIC/QTP-2103003$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E12-23R-RASMIA$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-124734OB-C21
000130098 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000130098 592__ $$a0.798$$b2023
000130098 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000130098 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ2
000130098 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130098 700__ $$0(orcid)0000-0003-1930-1455$$aCiria, Miguel
000130098 700__ $$aAhmad, Margaret
000130098 700__ $$aPlank, Harald
000130098 700__ $$aMarcuello, Carlos
000130098 773__ $$g13, 18 (2023), 2585 [42 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000130098 8564_ $$s5148689$$uhttps://zaguan.unizar.es/record/130098/files/texto_completo.pdf$$yVersión publicada
000130098 8564_ $$s2761920$$uhttps://zaguan.unizar.es/record/130098/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130098 909CO $$ooai:zaguan.unizar.es:130098$$particulos$$pdriver
000130098 951__ $$a2024-07-05-12:47:53
000130098 980__ $$aARTICLE