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Abstract: Magnetism plays a pivotal role in many biological systems. However, the intensity of the
magnetic forces exerted between magnetic bodies is usually low, which demands the development
of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM)
offers excellent lateral resolution and the possibility of conducting single-molecule studies like other
single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the
paramount importance of magnetic forces for biological applications by highlighting MFM’s main
advantages but also intrinsic limitations. While the working principles are described in depth, the
article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance
the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work
also depicts some relevant examples where MFM can quantitatively assess the magnetic performance
of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome
flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the
most promising perspectives in this field are highlighted to make the reader aware of upcoming
challenges when aiming toward quantum technologies.

Keywords: atomic force microscopy; biological systems; drug delivery; magnetic force microscopy; mag-
netic properties; magnetic tip fabrication; nanofabrication; quantum technologies; single-molecule studies

1. Introduction

The properties of biological systems are determined by the ubiquitous forces that
govern in nature and define their performance. There exist four fundamental forces named
strong nuclear, electromagnetic, weak nuclear, and gravitational, which are classified from
the strongest interactions to the weakest. Magnetism is not typically considered a signifi-
cant factor in biological systems. For this reason, many existing mysteries surrounding its
role in biology are currently not well understood. Many examples of external, either static
or oscillating, magnetic fields (B) that affect biological systems have been reported, such
as the cases of cryptochromes [1], magnetosomes from magnetotactic bacteria of different
strains [2], regulation of the calcium concentration as a cell viability key factor [3], and en-
zymatic reactions related to DNA synthesis [4], among others. Cryptochromes are proteins

Nanomaterials 2023, 13, 2585. https://doi.org/10.3390/nano13182585 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13182585
https://doi.org/10.3390/nano13182585
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-6088-087X
https://orcid.org/0000-0003-1112-0908
https://orcid.org/0000-0003-3459-8605
https://doi.org/10.3390/nano13182585
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13182585?type=check_update&version=2


Nanomaterials 2023, 13, 2585 2 of 43

involved in light signaling or in circadian rhythms in many plants and animals and appear
to sense B [5]. Magnetosomes are magnetic nanoparticles coming from a natural source
like magnetotactic bacteria and can be a suitable alternative to chemically synthesized
nanoparticles designed for hyperthermia treatments [6]. Other biological reactions that take
place inside the cell are also affected by B. Magnetic control of biochemistry and catalytic
functions of biomolecules require a better comprehension of this property and of how it
impacts biological systems.

There are several bulk techniques available to measure the magnetic properties of the
studied samples.

• Superconducting quantum interference device (SQUID) magnetometry is a highly
sensitive technique to measure ultralow magnetic signals up to 5 × 10−14 Tesla (T)
with a noise threshold of nearly 3 fT · Hz−1/2 [7]. The signal-to-noise ratio can be
improved when the SQUID is damped by low susceptometer resonances [8]. For this
reason, SQUID is considered the most sensitive type of quantitative magnetometry
with 1 · 10−8 electromagnetic units (emu; 1 emu = 10−3 Am2). SQUID consists of
placing a sample in a magnetic field and measuring the magnetic moment of the
sample as a function of the applied field strength [9]. Moreover, controlling the
applied current by the integration of a heating resistor on the same sample chip makes
tunable the SQUID sensor device [10]. This technology has been applied to measure the
magnetic properties of biological systems such as magnetosomes from magnetotactic
bacteria [11], mesenchymal stem cells for tissue engineering applications [12], or the
characterization of iron oxide nanoparticles in biological samples [13], and for the
magnetic separation of microplastic bodies from water resources [14], respectively.

• Vibrating sample magnetometry (VSM) consists of the sample mounting on a thin
rod under B while simultaneous vibration of the sample at a specific frequency oc-
curs [15]. Multiple magnetic properties including magnetic moment, susceptibility,
and coercivity can be measured by varying the strength of B, the sample orientation
with respect to B, and its temperature [16]. Nowadays, customized VSM setups can
achieve signal sensitivities ranging from 1 · 10−5 to 1 · 10−6 emu [17]. The employment
of VSM has revealed the metagenomic analysis of magnetotactic bacteria [18], the
detection of ferromagnetic materials in insect tissues responsible for their orientation
toward external magnetic fields under both light and dark conditions [19], and the
characterization of magnetic nanoparticles in the use of DNA isolation [20] or for
hyperthermia therapies [21].

• Magneto-optic Kerr effect (MOKE) is based on measuring the rotation of the reflected
light polarization, which is proportional to the magnetic moment of the sample under
an external magnetic field [22]. MOKE technology can be used to address many
magnetic sample properties like the magnetization process, the magnetic domain
structure, and the magnetic anisotropy [23]. The sensitivity of MOKE is slightly
higher than VSM, being settled at 1 · 10−7 emu [24]. Recently, a twofold increase
in the intensity signal was reported by polarizing the beam splitter-based MOKE
setup [25] and the reach of femtosecond-scale time resolution by coupling a free
electron laser [26], respectively. The assemblies of magnetosomes from magnetotactic
bacteria [27], and the manipulation and trap of magnetic yeast cells on lab-on-chip
devices [28] are some of the few examples where MOKE is employed in biological
samples. MOKE is conventionally used in the study of multiferroic materials [29].

• Magnetic resonance techniques like nuclear magnetic resonance (NMR) [30], electron
paramagnetic resonance (EPR) [31], or ferromagnetic resonance (FMR) [32] apply a
magnetic field to the sample and measure the subsequent response of the atomic or
electronic spins according to this field, respectively. While NMR is mainly focused
on the determination of molecular structure and dynamics independent of the nature
of the sample [33], EPR requires magnetic domains embedded inside the sample
structure. For this reason, NMR cannot be considered a bulk technique to measure
the magnetic properties of biosystems. On the other hand, EPR is capable of detecting
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1012 spins per mT linewidth [34]. Alternatively, FMR detects the magnetic moments
of non-paramagnetic materials by applying a second microwave pulse, being widely
used for ferromagnetic particles [35] or magnetosomes [36]. EPR has satisfactorily
ascertained the magnetic sensitivity of cryptochromes in birds [37], the catalytic mech-
anisms of molecular radicals existing in nature [38], the conformational dynamics of
membrane proteins [39] or metalloenzymes [40], and the electron spin relaxation of
porphyrins [41], which regulates oxygen transport in the blood and muscles.

• Mössbauer spectroscopy is a versatile technique to study the interaction of certain iso-
topes with their surroundings [42]. This technology enables the hyperfine interactions
between the nuclei and electrons to be measured with an accuracy of 14–15 magnitude
orders [43]. Mössbauer spectroscopy was used to unravel the magnetic properties of
nanometer-size particles [44], magnetosomes [45], and cryptochromes [46]. Mössbauer
spectroscopy is a particularly powerful instrument when it is exploited in combination
with synchrotron facilities [47].

• Alternating current (AC) susceptibility refers to the extent to which the material can
become magnetized in response to an alternating magnetic field [48]. AC susceptibility
measurements are commonly carried out through a magnetic susceptibility meter
or a vibrating sample magnetometer. The signal analysis for the moment measure-
ments is processed by a high-speed digital voltmeter leading to sensitivity yields of
nearly 3.5 × 10−6 emu [49]. AC susceptibility measurements allow for the detection of
directional changes in magnetic fields of small insects [50] and magnetotactic bacte-
ria [51], the nucleus positioning of carcinogenic cells [52], iron detection in ferritins or
hemoglobins [53] and human serum albumin [54], or the elasticity of globular proteins
labeled with gold nanoparticles [55].

The main limitations of the above-described bulk techniques are based on the lack of
sensitivity to detect singularities or the hidden phenomena at very specific sample local ar-
eas. These detrimental aspects do not allow the detection of single events, which are crucial
to gaining the underpinning knowledge of magnetic biological nanomaterials. The high
complexity of living systems hinders the achievement and subsequent full comprehension
of these magnetic properties [56]. For all these reasons, single-molecule techniques have
emerged as suitable alternatives to overcome these drawbacks.

Firstly, scanning transmission electron microscopy (STEM)-based techniques are en-
compassed by Lorentz transmission electron microscopy (LTEM), holography, and differ-
ential phase contrast (DPC) microscopy that are capable of measuring magnetic signals.
Typically, TEM measurements are devoted to visualizing the supramolecular architecture
of materials including biological specimens [57]. LTEM records the interaction between the
primary electrons and the magnetic fields, which emerged in the tested sample [58]. The
electron deflection suffered when they encounter sample regions with different magnetic
domains is used to create the magnetic contrast image. The main limitations of LTEM are
the sensitivity to beam conditions, such as the incidence angle, the electron acceleration
energy, and the phase retrieval process, which exist when the electron wave phase informa-
tion is extracted. Thus, the implementation of these numerical simulations in combination
with the whole process of digital content acquisition involving the proper generation,
coding, and quality assessment of the digital holograms is time-consuming in comparison
to other techniques where no holograms are requested to be recorded. Finally, STEM DPC,
a segmented detector, measures the deflection of electrons caused by the local magnetic
field of the specimen due to Lorentz’s force. The position of the deflected electrons on the
four-quadrant annular detector can be translated to the in-plane direction of the magnetic
field at each point of the scanned area. DPC provides images, gathering the change in the
phase caused by the changes in sample thickness, refractive index, or density [59]. Eventu-
ally, a phase plate optical device is inserted into the STEM setup to expand the boundaries
of classical STEM by introducing a controlled phase shift to the electron wavefronts and
converting it to an amplitude [60], enabling the possibility of interrogating surfaces with
weak phase contrasts. On the other hand, DPC shows some challenges like the potential
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artifact sources coming from the proper calibration and alignment of the phase plate, or the
beam tilt. LTEM [61], holography [62], and DPC [63] have been successfully employed to
unravel the magnetic properties of a broad panoply of surface materials. Nevertheless, the
following limitations need to be considered in STEM-based techniques. The samples for
STEM measurements must be electron transparent, which limits these techniques to very
thin samples and often involves complicated sample preparation procedures. Furthermore,
the above-described STEM-based techniques can cause structural damage on the sample
surface, particularly at high beam currents. This aspect considerably limits their application
in those radiation-sensitive materials with a special focus on soft matter and biological sys-
tems. Promising results have been found working at low-density currents of 0.1 e−Å−2s−1

at room temperature conditions [64] or integrating different phase contrasts [65], but much
effort still needs to be devoted to this field.

Then, optical [66] and magnetic [67] tweezers (OT and MT, respectively) are tools
that enable the force measurement toward the positioning of the sample at the micrometer
scale. The noise threshold of both of them is very low. Additionally, MT can interfere with
the magnetic properties of certain materials or biological systems. Recently, MT devices
were designed to integrate the real-time feedback control of the magnetic flux density by
using a proportional–integral–derivative (PID) controller and a cascade control scheme [68].
The optimization of PID gains by the implemented algorithms results in magnetization
response times below 100 ms, which significantly minimizes the negative interferences with
magnetic samples. Nevertheless, as a counterpart, the main limitation of OT and MT is their
inability to map the sample and simultaneously correlate the property of interest with the
topography of the tested features. This makes OT and MT unappealing for single-molecule
studies on magnetic biological systems.

Single-probe microscopies (SPMs) were shown to be a suitable alternative to overcome
the aforementioned drawbacks existing in OT and MT. Since atomic force microscopy
(AFM) was discovered in 1986 [69], a large volume of research has been devoted to coping
with the challenges showcased by biological systems. AFM is considered a multiparametric
technique [70] capable of addressing a multitude of physico-chemical properties of the
tested biological samples like the morphology of biomolecular complexes [71] or living cell
scaffolds [72]. Three-dimensional volumetric statistical studies of the observed biomolecu-
lar morphology features upon the presence of their ligands and cofactors can be carried
out by subtracting the background contribution through accurate mask thresholds [73].
This information allows a better understanding of some relevant processes driven in biol-
ogy like the conformational transitions taking place in flavoenzymes under certain redox
conditions [74], the structural and functional properties of red blood cells [75] exhibited
in health and disease [76], the topological changes in lignocellulosic biopolymers after
chemical grafting [77], which can be exploited for food packaging or in the design of
green-friendly composites [78], or the creation of novel materials for implantable tissue-
engineered devices [79]. Then, the intermolecular adhesion properties of biological systems
can be addressed by AFM-based force spectroscopy (AFM-FS) studies [80]. This operational
mode allows the determination of the rupture force events between functionalized tips
and chemically modified surfaces. AFM-FS has been successfully employed to discern
the range of intermolecular interactions between redox enzymes with their protein part-
ners [81] or coenzymes [82], recognition events between biomolecules [83] or cells [84],
bioluminescence-engineered proteins [85], or the adhesion displayed between natural plant
fibers and biopolymer matrices [86]. The nanomechanical properties of biological soft mat-
ter can be deciphered by nanoindentation studies [87]. The AFM tip works as an indenter to
exert an elastic deformation on the tested surface sample. Nanoindentation was employed
to measure the elastic properties of living cells [88], collagen fibrils [89], and biopolymers
under different relative humidity [90], and to monitor the decay of cellular nanomechanics
in diseases like cystic fibrosis [91] or cancer [92], together with drug-targeting effective-
ness [93]. Finally, AFM based on nanoscale infrared spectroscopy (AFM-nanoIR) enables
the mapping of chemical composition and topography or determination of the full IR
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spectra at specific sample locations [94]. AFM-nanoIR works by scanning the sample with a
conventional AFM tip at the same sample location where a pulsed tunable IR beam spot is
focused, causing a photothermal expansion, which is recorded and subsequently correlated
with the chemistry of the analyzed area. The monitoring of molecular aggregation inhibitors
to neurodegenerative amyloidogenic proteins [95], the extracellular vesicle formation [96],
or the underlying drug release mechanisms relying on their content load [97] are some
examples of AFM-nanoIR studies.

Magnetic force microscopy (MFM) is a non-contact force tool where the magnetic
domains are imaged by the interactions exerted between the magnetized AFM tip and the
external sample surface areas [98]. MFM has become an appealing technique to detect mag-
netic forces at the single molecule level based on the extremely high resolution compared
to other magnetic bulk techniques such as MOKE where the spatial resolution is limited
to the optical wavelength (approximately 500–600 nm) [99]. Even SQUID is far below the
stray field of single atomic magnetic layers [100]. The lateral resolution of MFM relies on
the coated AFM tip radius of the commercial AFM probes (30–60 nm). MFM combines
the ultrahigh-sensitivity detection of magnetic forces with the capability of imaging and
positioning at the nanometer scale. Additionally, MFM allows environmental measure-
ments, unlike other techniques such as EPR where cryogenic temperatures are required
to enhance the setup sensitivity [101]. Other advantages showcased by MFM are that soft
matter samples can be interrogated, which is not recommended in other techniques such as
VSM where fragile materials can be damaged by the magnetometer vibrations during the
scan. Finally, MFM presents the possibility of measuring in liquid media [102], mimicking
inner cellular conditions of the studied biology systems in contrast to all the rest of the
bulk magnetic techniques or conducting experiments at ultralow temperatures [103]. By
coupling the MFM setup with a high-vacuum cryostat containing cryogenic liquids such as
nitrogen or helium, the scanning temperature can reach 64–70 K or 4 K, respectively [104].
This configuration allows the interrogation of fast magnetic relaxation changes unable to
be detected under environmental conditions [105]. For all these aforementioned reasons,
MFM successfully copes with the pitfalls existing in bulk magnetometric measurements.

This review aims to highlight the enormous potential of MFM to reveal the biological
processes where magnetism is involved, based on the recent technological developments
that this technique has undergone. The manuscript is divided into the following sections in
order to make the information more comprehensible: (1) Introduction, (2) Biological systems
affected by magnetism, (3) Working principles of MFM, (4) Existing MFM operational
modes, (5) Previous magnetic force measurements with commercially available MFM tips,
(6) Development of ultra-sharp MFM tips, and (7) Discussion and future perspectives. We
expect to sensitize the readers to the promising avenues that MFM can open up in biology,
and which could be implemented in many industrial applications like drug delivery or
quantum technologies.

Even if the impact of magnetism in biology is not as evident as other environmental
physico-chemical factors like temperature, relative humidity, pH, ionic strength, oxygen
availability, and mechanical forces, among others, there exist many examples of how
magnetism intersects with biology. The next section aims to list the existing biological
systems affected by magnetism and provide the necessary details to the reader for gaining
particular knowledge of the pivotal role that the magnetic forces exert on them and the
potential applications arising in this field.

2. Biological Systems Affected by Magnetism
2.1. Magnetosomes from Magnetotactic Bacteria

Magnetotactic bacteria (MTB) have the ability to produce intracellular membrane-
bound organelles containing ferrimagnetic nanoparticles called magnetosomes [106] Mag-
netosomes are composed of magnetite (Fe3O4) or greigite (Fe3S4) and under anoxic con-
ditions MTB can biomineralize and arrange chains up to 40 magnetosomes at mid cell
(Figure 1a) [107]. This provides MTB the possibility to sense B and move toward them [108].
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This phenomenon is named magnetotaxis. The mechanism to form magnetosomes is
divided into four different stages (Figure 1b).

The first step is based on protein sorting and invagination. MTB recruit magnetosome-
associated proteins (MAPS) including MamB, MamL, MamM, or MamQ, which are crucial
for membrane formation. Deletion of the genes that produce these proteins causes the
formation of immature vesicles unable to biomineralize magnetosomes [109]. Then, the
cellular arrangement of magnetosomes is organized by MamK and MamY. MamK is an
actin-like ATP-dependent protein that assembles in filaments [110], while MamY detects
the highest convex area in the formed vesicle membranes and aids in properly aligning
the magnetosome chain [111]. Ion transport inside the vesicle membrane is the third stage
that is entailed in the cooperating action of MamB and MamM. These proteins are cation
diffusion facilitator transporters that regulate the iron transfer from the cytoplasm to the
magnetosome vesicles exploiting the proton motive force [112]. Crystal shape and size
control of magnetosomes during nucleation is the last process tightly regulated by genetic
and environmental factors. Genes encoding the MamA/B proteins are involved in control-
ling the crystal morphology, whereas MamC and Mms6 are in charge of the nanoparticle
size [113]. Environmental factors like temperature, PH, or oxygen concentration in the me-
dia have been shown to affect magnetosome shape and size [114]. Room temperatures favor
the development of spherical cuboctahedral crystals [115] while at lower temperatures, the
formation of elongated magnetosomes is reported to be induced [116].

Magnetosome nanoparticles can be exploited in a wide range of biomedical and
biotechnology applications like the regulation of iron homeostasis in living cells [117],
or their use as microrobots for targeted cancer therapies [118] or against microvascular
thrombolysis [119]. Recently, genetic engineering modifications of those MTB crucial
proteins involved in the biomineralization process triggered the formation of customized
magnetosome shapes, like a bullet shape [120]. Due to their significant shape anisotropy, the
magnetic coercivity properties of these magnetosomes are highly improved compared to
the classic spherical or cuboctahedral, which make them excellent candidates for magnetic
resonance imaging (MRI) contrast agent [121] or magnetic hyperthermia treatments [122].
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Figure 1. (a) Magnetosome formation in M. gryphiswaldense. Scale bar 0.5 µm. Reprinted with
permission from [123]. Copyright 2023, Wiley. (b) Suggested model of protein sorting, membrane
invagination, and magnetosome assembly into an organized chain. Reprinted with permission
from [124]. Copyright 2021, Elsevier.

2.2. Synthetic Magnetic Nanoparticles Used for Biological Applications

There exist many types of magnetic nanoparticles (MNPs) with different chemical
natures designed by synthetic routes. Firstly, cobalt nanoparticles treasure high magnetic
anisotropy properties and can be easily magnetized in one direction [125]. For this rea-
son, cobalt nanoparticles can be exploited in applications like energy storage or used as
antimicrobial agents based on the observed high antibacterial activity [126]. Then, gadolin-
ium nanoparticles enhance the contrast of magnetic resonance imaging due to their high
magnetic moment [127]. Nevertheless, the risk of gadolinium release limits their clinical
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applications. For this reason, more research needs to be devoted to creating more efficient
strategies for the encapsulation and surface labeling of gadolinium nanoparticles [128].
Substitution strategies of ferrite nanoparticles by europium [129] or samarium [130] offer
suitable alternatives to gadolinium MNPs. Nickel nanoparticles produced by thermal
decomposition are another class of MNPs with promising applications in magnetic data
storage in electronic devices owing to their excellent electrical properties [131] or for the
production of the next-generation electrodes for supercapacitors [132].

Here, iron oxide (Fe2O3) nanoparticles are discussed since they are the most com-
monly synthesized MNPs due to the high availability of iron, their excellent displayed
biocompatibility, biodegradability, and overall chemical stability [133]. This aspect makes
Fe2O3 nanoparticles suitable for long-term applications. There exist several methods to
produce this type of nanoparticle as co-precipitation, thermal decomposition, or sol–gel.
The main limitation found in Fe2O3 nanoparticles is their tendency to self-aggregate due to
a high ratio between the surface area and the MNP volume, in addition to the attractive
magnetic interactions among magnetite [134]. To prevent this detrimental effect, many
strategies have been developed like surface grafting with surfactants or biodegradable
and biocompatible polymers, and the control of the pH, sonication, and MNP size [135].
The coating of Fe2O3 MNPs with polyethylene glycol (PEG) chains not only serves as a
particle stabilizer but also offers the possibility of functionalizing the external PEG side
with chemical compounds of interest, making this approach interesting for hyperthermia
and smart drug delivery [136]. Smaller Fe2O3 nanoparticles are more stable in liquid
solutions. The shape and morphology of Fe2O3 nanoparticles are tunable depending on
their final applications (Figure 2a–f). Cubic Fe2O3 MNPs show the optical shape for mag-
netic stem cell tracking imaging (Figure 2a) [137]. Fe2O3 MNP nanoflowers encapsulated
in liposomes display an outstanding response in hyperthermia treatments against lung
adenocarcinoma (Figure 2b) [138]. Hexagonal iron plates (Figure 2c) [139] and rod-shape
(Figure 2d) [140] Fe2O3 nanoparticles display stronger magnetic relaxation times compared
to classical globular MNP morphology (Figure 2e) [141], which can be particularly interest-
ing for longer-lasting imaging of biological tissues and monitoring disease progression in
response to certain treatments [142]. Finally, iron oxide tetrahedrons (Figure 2f) [139] also
display optimal optical properties [143] for ultrasensitive biosensing multimodal MRI and
hyperthermia therapies.

Thus, the iron oxide MNP shape is an important factor that impacts their properties
and performance, but the size of the nanoparticle is another key point to consider in their
design and synthesis. Figure 2g depicts the logarithm decreasing the magnetic saturation of
globular Fe2O3 MNPs according to their diameters [144]. The nanoparticle magnetization
decreases nearly 2.5-fold when the particle diameter dimensions are reduced 5.5 times
(from 14.0 to 2.5 nm). The smallest size nanoparticles undergo a weak impact of the dipolar
interactions on their magnetic behavior [145]. For this reason, small MNPs show enhanced
magnetic properties rather than larger particles. In addition, small MNPs are the best option
for targeted delivery or assistance for microfluidic analysis [146] due to their increased
surface load areas, and the possibility of embedding these MNPs in hydrogels or liposomes
can render smart platforms for tissue wound healing [147]. All the above-described consid-
erations highlight the urgency of developing new characterization methodologies for those
MNPs with small dimensions by improving the current limit of sensitivity.
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with permission from [140]. Copyright 2015, Royal Society of Chemistry. (e) Globular. Reprinted
with permission from [141]. Copyright 2004, Nature. (f) Tetrahedron. Reprinted with permission
from [139]. Copyright 2015, American Chemical Society. The scale bars are 50 nm and 20 nm for (a–d)
and (e,f), respectively. (g) Saturation magnetization evolution as a function of iron oxide magnetic
nanoparticle diameter at 5 K. The offset corresponds to the TEM images of the tested magnetic
nanoparticles (MNP diameters from 14.0 nm to 2.5 nm). Inset subfigures (A–F) are TEM images
of MNPs with the tested diameters. Reprinted with permission from [144]. Copyright 2011, Royal
Society of Chemistry.

2.3. Enzymatic Reactions Involving DNA and Neurodegenerative Diseases

DNA replication is the process where living cells produce exact copies of their genetic
material and it is divided into the following three stages: initiation, elongation, and
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termination [148]. DNA replication involves multiple enzymes, which work together
in a highly coordinated manner. One of the most relevant chemical reactions is based
on phosphorylation [149]. This enzymatic pathway catalyzes the transfer of phosphate
(PO4

3−) groups from energetic free adenosine triphosphate (ATP) molecules to DNA
strands. Phosphorylation activates the origin recognition complex (ORC) to recruit other
proteins and bind the DNA [150]. Then, the DNA polymerase adds nucleotides to the
forming DNA strand during the elongation phase through ATP hydrolysis [151]. Finally,
phosphorylation also regulates DNA replication by the activation of proteins like the
checkpoint kinase 1 (Chk1), which delays the cell cycle progression under replication
stress conditions or as a response to DNA damage [152]. Furthermore, phosphorylation
is not only crucial to regulate DNA replication but, also, to control the energy supply in
the cellular and tissue metabolisms [153], the proper functioning of the immunological
system [154], and the muscular contraction [155], among others. Recently, it was discovered
that the impact of B on the ATP synthesis and subsequent phosphorylation process took
place during DNA replication [156]. The rate of ATP synthesis by creatine kinase increased
nearly 3.5-fold at B of 55 mT when the 24Mg nonmagnetic ions were exchanged by the
respective paramagnetic 25Mg [157]. Sometimes the application of B has contradictory
effects. For example, its presence has demonstrated the promotion of the DNA double-
strand repair process in human bronchial epithelial cells [158]. On the other hand, strong B
can induce the production of reactive oxygen species (ROS) and the resulting DNA damage
in human neuroblastoma cells [159], spermatozoa [160], or cultured mammalian cells [161].
For this reason, it is necessary to carry out more research on this topic by designing
customized ultrasensitive detection strategies at the single-molecule level. The gathered
knowledge could serve not only to gain more insights according to the sequential binding
and location of protein regulators on DNA strands [162], which regulates the organism
gene expression [163] or the DNA degradation beyond the proteasome activation [164], but
also to optimize those industrial technologies related to DNA, such as clustered regularly
interspaced short palindromic repeat-associated protein 9 (CRISPR-Cas9), which enables
edit-specific genes in an organism that can be exploited in drug delivery [165] or agricultural
biotechnology [166], among others.

Neurodegenerative disorders (NDs) are a group of diseases that cause progressive dys-
function of neurological performance. NDs encompass several types including Alzheimer’s,
Parkinson’s, Huntington’s, and Creutzfeldt–Jakob disease or amyotrophic lateral and mul-
tiple sclerosis. All these diseases are characterized by the gradual loss of function of nerve
cells, which leads to decay in cognitive, sensory, and motor abilities. A total of 10 mil-
lion deaths and 349 million disability-adjusted life years were reported in 2019 caused by
NDs [167]. For this reason, the understanding of the underlying mechanisms and main
factors that trigger these disorders are aspects of key importance. Many studies at the
molecular level have been carried out including AFM imaging to visualize the morphologi-
cal folding and unfolding conformations of amyloidogenic fibrillar proteins like tau [168],
amyloid beta (Aβ) [169], huntingtin [170], and the S100B family [171], under conditions
that mimic the conditions inner the brain. Nevertheless, the biological detection of weak
B is a topic with numerous remaining open questions. Those reactions involving radical
spins are susceptible to being affected by B. The increase in ROS and oxidative stress fosters
protein misfolding and aggregation and the incidence of NDs [172]. In addition, weak
magnetic fields lead to more efficient phosphorylation processes, as above described. When
amyloidogenic proteins like tau are abnormally phosphorylated, they cause the formation
of fibrillary tangles responsible for neuronal apoptosis [173]. Thus, electromagnetic fields
can interfere with the evolution of neurodegenerative diseases [174] like amyotrophic
lateral sclerosis [175]. These examples highlight the importance of deeply interrogating the
role that magnetic forces play at the biomolecular level inside living cells and what the bio-
logical response is to external magnetic stimuli. Thus, this fundamental knowledge could
significantly contribute to creating more efficient methodologies and advanced tools to
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exploit the controlled application of B for the early prognosis and the subsequent treatment
of human diseases.

2.4. Cryptochromes

The singular mechanism that enables the cryptochromes as a unique biological re-
ceptor to sense spin chemical forces requires a full explanation of how this protein family
responds to light as well as β. The cryptochromes are members of a vast and diverse family
of flavoproteins that were initially discovered in plants [176]. Here, they control many
aspects of plant growth and development in response to blue light, and have important
agricultural significance [177–179]. Cryptochromes are very similar to a known family
of DNA repair enzymes called photolyases, which are globular flavoproteins that utilize
light energy for the repair of UV-damaged DNA, either of (6–4) photoproducts or of cy-
clobutane pyrimidine dimers [180,181]. Photolyases bind two light-harvesting co-factors:
a catalytic flavin adenine dinucleotide (FAD) and a secondary light-harvesting antenna
pigment (folate or flavin derivative) [180]. In the case of plant cryptochromes, there is
significant homology to so-called microbial Type I photolyases, specifically within the
N-terminal flavin binding domain of approximately 500 amino acids (see e.g., Figure 3).
Plant cryptochromes were unable to repair DNA, did not bind to a light-harvesting an-
tenna cofactor, and had, in addition, a 200 amino acid C-terminal extension beyond the
region of homology to photolyases. Both N-terminal and C-terminal domains participate
in interaction with signaling proteins and can undergo conformational change [182–184]
(Figure 3). However, not all cryptochromes have significant C-terminal extensions, and
some of them can still repair DNA. A more general definition that fits most cryptochromes
is that they are photolyase-like proteins that have either lost their significant DNA repair
function, have gained novel cellular signaling functions, or both.
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Figure 3. Schematic representation of the domain structure of photolyase and cryptochrome gene
families. A comparison between the domain structures of Escherichia coli photolyase and Arabidopsis
thaliana cry1 is shown. All classes of cryptochromes and photolyases contain the highly conserved
N-terminal domain binding light-abosrbing flavin adenine dinucleotide (FAD). E. coli photolyase
in addition binds methenyltetrahydrofolate (MTHF) antenna pigment. By contrast, the C-terminal
domain is not found in photolyases and it is poorly conserved displaying variable lengths even
among cryptochromes of the same species (e.g., Atcry1 and Atcry2).

Cryptochromes are found throughout the biological kingdom, being present in archae-
bacteria and many species of prokaryotes and eukaryotes including in humans [185,186].
This is at least in part due to their having independently arisen several times in evolution,
apparently from different photolyase ancestors, but with converging roles and mechanisms
of action. Much interest has centered around animal and human cryptochromes, which
have roles in the circadian clock and are implicated in diseases ranging from diabetes to
cancer. Intriguingly, some cryptochromes, such as the Type II mammalian cryptochromes,
do not require light for certain signaling roles in the circadian clock [187].
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Mechanistically, all cryptochromes are capable of undergoing redox reactions, whereby
the protein-bound flavin can be reduced by light. Reduced flavin can subsequently be
reoxidized in the presence of molecular oxygen. This process, known as ‘photoactivation’,
has been conserved from photolyases where it serves to keep the catalytic flavin in the
reduced redox state for DNA repair [185,188,189]. The best-studied cryptochromes, which
have known light signaling roles, are from plant (Cry1 and Cry2) and drosophila (Type I
Cry) [177]. In both these cases, flavin photoreduction forms the basis of a photocycle in
which oxidized flavin (FADox) is reduced by light to various reduced (FADo−, FADHo,
and FADH−) redox states with accompanying intraprotein electron and/or proton transfer
events. These redox state transitions activate Cry by inducing conformational change events
that enable the Cry protein to interact with its signaling partner proteins (Figure 4). The
reduced, activated form of the Cry spontaneously reoxidizes in the presence of molecular
oxygen to restore the inactive form. Intriguingly, this step is accompanied by the formation
of reactive oxygen species (e.g., H2O2), which can also, independently, have signaling
functions [190]. A summary of the plant cryptochrome photocycle is found in Figure 4.
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Figure 4. The Arabidopsis cryptochrome photocycle. This figure represents a composite consistent with
published data. In the dark, cryptochromes are in the inactive state (C-terminal domain folded against
the protein, flavin in the oxidized redox state). Upon illumination with blue light (wavelengths
below 500 nm), flavin undergoes photoreduction to the FADH◦ redox form (rate constant k1) by
forward electron transfer via the Trp triad pathway [177]. This event triggers conformational change
and unfolding of the C-terminal domain to give the activated form of the receptor, which is thereby
accessible for signaling partner binding. Subsequent illumination of FADH◦ with an additional
photon of either blue or green light (wavelengths below 600 nm) can induce further reduction to the
(FADH−) inactive redox form (k2), although at much lower efficiency than k1. Reoxidation to the
resting (FADox) state from FADH◦ occurs spontaneously in the presence of molecular oxygen, with a
rate constant (k1b) of several minutes, and is accompanied by the formation of ROS and H2O2. More
rapid reoxidation occurs from the FADH− redox form to FADox by an alternate pathway involving
formation of transient oxygen and flavin radical intermediates [190,191]. Changes in rate constants
k2b and k1b would explain the change in biological activity under applied magnetic field conditions.
Reprinted with permission from [189]. Copyright 2016, Elsevier.
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2.4.1. Magnetic Fields and Cryptochromes

One of the most intriguing features of cryptochrome signaling is their apparent respon-
sivity to relatively weak magnetic fields in the range of 0–1 mT. The idea that cryptochromes
may function as actual magnetosensors was first suggested for orientation in migratory
birds, which orient according to the direction of the earth’s magnetic field [192]. In birds,
magnetic field orientation occurs in response to the inclination of the magnetic field rather
than to the north–south direction, and therefore occurs via a chemical mechanism rather
than through ferromagnetic-based mechanisms known in bacterial magnetotaxis, for ex-
ample. Avian orientation can moreover be disrupted by oscillating (radiofrequency) fields
in the MHz range, indicative of a quantum physical mechanism. Orientation further-
more requires short wavelength light, suggesting a photoreceptor-based mechanism. The
Cry1a cryptochrome was suggested as the magnetosensor specifically because it is suit-
ably localized in the retina and is responsive to the same wavelengths as are effective in
avian orientation. Furthermore, Cry1a is organized into stacks in the membrane so as
to be capable of responding to an oriented signal in the bird; and it undergoes suitable
redox chemistry to form possible magnetosensitive radical pair intermediates capable of
responding to weak B (see below) [193].

Further evidence in support of this idea has been observations of magnetic field sen-
sitivity demonstrated for cryptochrome responses in plants [189,194], Drosophila [195],
and mammalian and human cell cultures [196] as well as in murine neuronal tissues [197],
among many other examples. Because this magnetic field sensitivity occurs across phy-
logenetic lines in cryptochromes of many divergent origins, magnetic field sensitivity is
evidently a fundamental property of the ancestral photolyase enzymes, which, in the course
of evolution, has been utilized (or not) to receive magnetic field directional information
from the environment. In this context, it should be mentioned that Cry4 cryptochrome,
which has been suggested as a possible avian magnetosensor, is in fact not a suitable
candidate. Apart from being inappropriately localized [198], the Cry4 cryptochromes have
a very slow photocycle and are more similar to photolyases. For example, in the chicken (a
bird that shows behavioral magnetic field orientation), the Cry4 reoxidation has a half-life
of several hours, eliminating a possible role as a magnetic field sensor through formation
of Trpo/FADHo radical pairs [199]. Thus, great care should be used in assigning biological
roles to specific cryptochromes.

2.4.2. Radical Pair Mechanism

To explain the magnetic field response characteristics of cryptochromes, quantum
physical principles have been invoked for the Radical Pair mechanism of biological mag-
netosensing [200]. In simplified form, this mechanism invokes the effects of applied
magnetic fields on excited state intermediates in biochemical reactions that form specific
spin-correlated radical pair intermediates. In this mechanism, a biochemical reaction is
triggered by light or some other energy source in the cell. Two suitably positioned atoms
with unpaired electrons (the so-called spin correlated ‘radical pair’) are generated with
electrons in opposing spins (singlet state). The singlet state is converted spontaneously
to the parallel spin state (the so-called triplet state). For this interconversion, the effect of
the magnetic field is to specifically modulate the rate of singlet/triplet interconversion.
Because reaction products are generally preferably formed from the triplet state, the net
effect of the magnetic field will be to modulate the rate of product formation and thereby
the actual reaction rate constant of a biochemical reaction. The radical pair mechanism has
been supported experimentally by demonstrations using model organic compounds and in
isolated proteins [200,201]. Suggested alternative mechanisms for Cry-dependent magne-
tosensing involving magnetite derivatives (e.g., MagR) cannot explain either the inclination
compass characteristics in birds or the effect of RF fields on magnetic sensitivity [192].

In the case of cryptochromes, there are two possible steps in the photocycle where
radical pairs can be formed. The first one occurs during the forward flavin photoreduction
reactions (Trpo/FADHo radical pair in the case of plant cryptochromes—Figure 4, step ‘A’).
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This reaction has been extensively studied in a variety of cryptochromes and photolyases
and shown to be sensitive to elevated (1–10 mT) applied magnetic fields in vitro [200]. It
was therefore concluded in literally dozens of publications, including many of very high
impact, that the trp/flavin radical pair is involved in cry-dependent magnetoreception.
However, this notion is conclusively debunked by behavioral experiments with birds,
showing they can orient to the magnetic field in green light. They are also oriented when
exposed to directional information in the dark (during light/dark pulse conditions) in
which the Trp/flavin radical pair is not formed [192]. Similarly in plants, magnetic field
effects occur by a light-independent mechanism [193,202] in which Trpo/FADHo radical
pair is not formed.

A second step at which radical pairs can be formed in cryptochromes occurs during
a flavin reoxidation reaction, in which the receptor is restored to its resting (oxidized)
redox state. This is referred to as reaction step ‘B’ in Figure 4. This step results from the
spontaneous reaction of reduced flavin (e.g., FADH−) with molecular oxygen (O2) to form
the FADox derivative (Figure 4). Although light is needed to generate the reduced flavin
redox form of cryptochrome, the magnetic field effect only occurs during the reoxidation
step and in the absence of light [192,193,202]. Therefore, the flavin reoxidation reaction of
cryptochrome is the actual step at which biological magnetosensing must occur.

The exact identity of possible intermediates formed at this reaction step is not fully
characterized, but likely involves flavin (FADHo) and superoxide (O2

o-) as well as ad-
ditional scavenging radicals [190,191]. What is additionally interesting about the flavin
reoxidation step is that, at each iteration of the cryptochrome photocycle, two molecules of
hydrogen peroxide (H2O2) are formed as byproducts. Since such so-called reactive oxygen
species or ‘ROS’ have many biological effects, this reaction represents an additional way by
which cryptochromes may modulate biological activity in response to B [203,204]. Several
theoretical studies have suggested possible mechanisms for the magnetic field effects on
this reaction step involving the Radical Pair Mechanism, although definitive evidence
requires identification of the radicals that are formed [191].

2.4.3. Light-Independent Magnetosensing in Cryptochromes

Intriguingly, magnetic field effects that require the presence of mammalian cryp-
tochromes have been documented in mouse and human cell cultures [196,197]. Placing
cell cultures in either lower (0–2 µT) or higher (500 µT) magnetic field strengths causes a
transient increase in the production of cellular ROS. These effects are light-independent,
and likely involve cellular redox reactions and flavin reoxidation. Because hydrogen perox-
ide (H2O2) is a byproduct of these reactions, it releases an oxidative burst in the cells that
can have therapeutic effects by stimulating cellular stress response and repair pathways.
Indeed, the application of B has been empirically used in medicine for over 50 years as
a means of treatment of various diseases by means of exposure to pulsed B via so-called
‘Pulsed Electromagnetic Field Therapy’. Exposure to pulsed electromagnetic fields (PEMF)
induces a similar increase in transient ROS in cell cultures [196], as in the case of static B;
these magnetic field effects also appear to occur via the Radical Pair Mechanism ([205] ‘A’).

Recent evidence shows that even the Drosophila cryptochromes can mediate responses
to magnetic fields independently of light, and that magnetic field sensitivity does not even
require that the Cry protein binds to flavin [206]. When the Drosophila Cry C-terminal
domain is expressed in flies independent of the flavin-binding N-terminal domain (see
domain structure in Figure 3), the construct is still biologically active and mediates magnetic
sensitivity in flies. A suggested mechanism for these intriguing effects has been that the
truncated Drosophila Cry C-terminal domain may interact with other cellular flavoproteins,
contributing in this way toward their signaling function without itself being directly
responsive to B. Although the precise mechanisms involved are unknown, it is clear that if
a radical pair reaction is underlying Cry magnetosensing, then it must occur independent
of light, and likely involve other flavoenzyme redox reactions [206].
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Taken together, the evidence now leads to a more generalized view of magnetosensing
in living organisms, in which multiple redox-active flavoproteins and indeed mitochondrial
enzymes could be modulated as a function of external B. Indeed, direct proof for a radical-
pair-based mechanism underlying these effects has been obtained through microscopy of
autofluorescence changes as a function of B in living HELA cells, due to the formation
and electron spin-selective recombination of spin-correlated radical pairs [207]. Another
example that supports the radical-pair mechanism in the spin selectivity of ROS formation
in cell cultures exposed to near-null magnetic fields is found in [208]. Thus, the radical pair
spin dynamics are governed by internal magnetic field interactions.

The development of single-molecule techniques such as MFM offers exciting prospec-
tive avenues in the interrogation of the magnetic response apparent in biological systems.
The potential anisotropic effects applied across avian retina sections or Cry organized into
crystallized arrays in vitro [208] or the existing oriented arrays in the case of avian putative
magnetosensor Cry1a [192] could be accurately assessed by MFM.

2.5. Biomolecules with Prospective Applications in Quantum Technologies

Biomolecules are becoming increasingly important in the field of quantum technolo-
gies. In this framework, molecules that are capable of emitting and absorbing light like
the case of chromophores can be used as quantum bits [209]. The changes in the energy
levels caused by photon emission and absorption render the different states of a molecular
qubit [210]. For example, copper-dopped dots enhance the de-excitation electron processes
as a prerequisite for single-photon sources for quantum information [211]. However, this
review is focused on those biomolecules that can be exploited in quantum technologies
based on their intrinsic magnetic properties. Biomolecules that present a magnetic mo-
mentum that can be modified under B are excellent alternatives. Ferritin, metalloenzymes,
or porphyrins can work as molecular scaffolds to build the next generation of quantum
technologies.

Ferritin is a ubiquitous protein found in almost all living organisms. The role of
ferritin is to uptake and store iron from the media through the shell structure composed
of the 24 subunits that conform to this protein [212]. Apoferritin and holoferritin terms
refer to the empty protein shell and the protein with iron stored in the core (Figure 5a),
respectively. Ferritin is a versatile iron nanocarrier that has received attention not only
in the development of quantum technologies, but also in food nutrition, medicine [213],
or as a prognosis marker in cardiovascular diseases [214]. Holoferritin is considered an
affordable 3D quantum dot material that exhibits high magnetic susceptibility anisotropy
at cryogenic temperatures [215]. Ferritin can contain between 3000 and 4500 iron atoms per
single protein depending on their natural source [216]. Holoferritin acts as a highly disorder
MNP whose net magnetic moment results from the superposition of the magnetization
vectors of the different crystalline domains that make up the inner core. Interestingly,
holoferritin can be trapped in self-aligned nanogaps [217], which is the preliminary step to
devise more complex depositions on specific resonator locations. By this immobilization,
the holoferritin molecules can detect changes in B with high precision. Recently, an increase
in T1 magnetic relaxation times with the iron content inside the protein was reported [218].
This observation is due to the abrupt change in the uncompensated number of spins when
the iron is accumulated inside the ferritin core. Large T1 relaxation times are an essential
point to consider for implementing quantum error correction and fault-tolerant protocols
in order to maintain quantum coherence for extended periods of time independent of the
number of quantum operations.

Metalloenzymes contain one or more metal ions in their active site, which confer their
catalytic performance [219]. The metal ion stabilizes the structure of the metalloenzyme and
can increase the nucleophilicity and acidity of the substrates. The most common metal ions
found in metalloenzymes are iron, copper, zinc, or manganese. Metalloenzymes take part in
a multitude of biological processes, including photosynthesis, and DNA repair [220], or as a
target for therapeutic interventions [221]. Moreover, metalloenzymes can be artificially en-
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gineered to improve their performance [222]. The biomolecular electronic spin orientation
allows us to encode the quantum bit (also named qubit) states. Layers of metalloenzymes
can render bidimensional (2D) qubits. There exist numerous advantages of 2D qubits
over 3D qubits: (i) 2D qubits display faster gate operations due to the close proximity of
these qubits within bidimensional lattices, enabling strong coupling between the qubits in
comparison to 3D qubits [223]. (ii) The coherence times of 2D qubits are generally larger
based on their simpler geometries. This fact enables more complex quantum algorithms to
be carried out, which request long coherence times to preserve the quantum state coher-
ence [224]. (iii) 2D qubits contain less matter than 3D qubits, which makes them effortlessly
integrate into semiconductor devices. (iv) The scalability of 2D qubits is more affordable
since they are arranged in planar arrays [225]. The simple manipulation a of high number
of qubits is requested for building large-scale quantum computers. For all these reasons,
metalloenzymes are considered promising 2D qubits. The development of multi-functional
chip devices was recently reported for recombinant azurin variants [226]. The integration of
the four azurin variants with metallocenters of cobalt, nickel, iron, and manganese enables
the fabrication of 4-bit memory devices. Other candidates to be converted in 2D qubits
are superparamagnetic myoglobins in native and aqua-met forms (electronic structures of
S = 1

2 and S = 5/2, respectively), where the iron metal is bonded in the heme group with
octahedral and distorted trigonal bipyramidal coordinations (Figure 5b) [227].
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Figure 5. (a) Schematic representation of ferritin, based on the protein database (PDB) of horse-
spleen apoferritin (PDB ID: 2W0O). Reprinted with permission from [217]. Copyright 2022, MDPI.
(b) Crystal structure of variant myoglobin (PDB ID: 5ZEO). The hydrogen bonds involving the distal
His64 and Ser46 residues with the heme group are shown by black dashed lines. Reprinted with
permission from [228]. Copyright 2022, American Chemical Society. (c) Bulk and interfacial formation
of the 2D MOF [{VO(TCPP)}-Zn2(H2O2)]∞. Reprinted with permission from [229]. Copyright 2020,
Royal Society of Chemistry.

Finally, porphyrins are a group of large organic compounds with a heterocyclic structure
formed by four pyrrole rings linked together by methine bridges [230]. Porphyrins are con-
sidered to be a subgroup of metalloenzymes since porphyrins also bind metal ions as part of
their active sites. Well-defined porphyrin structures with controllable size and morphology
exhibit great potential as electrochemical sensors [231], mediators of photocatalytic reac-
tions [232], or chelating agents for molecular imaging [233]. Porphyrins treasure the property
to create spontaneous metal–organic frameworks (MOFs) when a metal ion is present in the
media [234]. Porphyrin MOFs can be arranged in 2D layers by targeting molecules contain-
ing a pair of weakly coupled metal coordinates or through the dinuclear complexes of metal
anisotropic ions. Cu(II) phthalocyanines can be assembled through diamagnetic Zn(II) nodes
creating nanosheets with optimal spin-lattice relaxation values [235]. Zn(II) can also bind
forming vanadyl 5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin [{VO(TCPP)}Zn2H2O)2]∞
systems (Figure 5c) [229]. The average dimensions of the porphyrin nanosheets formed
are 100 nm and 0.3 nm in diameter and height, respectively. Vanadyl porphyrins have
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superior spin dynamics than the analogous aforementioned copper porphyrins, which
makes them interesting for coherent quantum manipulations. Another example is the case
of dithiocatecholate complexes with vanadium (IV) and copper (II): [V(C6H4S2)3]2− and
[Cu(C6H4S2)2]2− [236]. The covalency arranged in these porphyrins results in the obser-
vation of spin coherences at higher temperatures, which offers potential in manufacturing
qubits in environmental conditions necessary for quantum sensing biology applications. The
last porphyrin model discussed is the coordination of lanthanides (as gadolinium (III)) with
1,3 diketone and 2,6-diacetylpyridine [237] where the large separation between the magnetic
quantum numbers related to the first excited and ground states encodes a two-level spin sys-
tem. Moreover, the large dimensionless magnetic moment (also known as g-factor) makes
the qubit computational basis enormously polarizable, providing more optimal initialization
capacities. To sum up, Figure 6 summarizes all the biosystems discussed in this section.
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Figure 6. Biology systems and nanomaterials involved in biology applications affected by external
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3. Working Principles of MFM

MFM is a special AFM operational mode, which uses a flexible cantilever with a tip
consisting of a magnetic material [100,238]. The AFM tip geometry and material vary
depending on the final experimental purpose, and the fundamentals of the AFM probe
selection rely on the measured physico-chemical properties [239]. The cantilever bends
when touching the sample surface following the linear-Hookean force law [240]:

F = −k∆z (1)

where F is the sensed force, k corresponds to the cantilever spring constant, and ∆z refers
to the cantilever deflection, which is the direction perpendicular to the scanning plane and
sample. Thermal tune [241] and Sader’s [242] methods are used to determine the spring
constant of soft (k < 1 N/m) and stiff cantilevers (k > 1 N/m), respectively. Additionally, the
spring constant can be alternatively estimated by other approaches like vibrometry [243].

The cantilever can be described as a simple harmonic oscillator and, excluding damp-
ing [244], its motion is described by the equation:

z(t) = A cos (ω0t + ϕ) (2)

BioRender.com
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where z(t) is the precise position at a certain time, A is the constant oscillation amplitude,
whereas ω0 and ϕ symbolize the natural frequency and the phase respecting the start point
of the sinusoidal motion, respectively. Two scanner configurations exist to raster a certain
surface area, named the sample scanner and tip scanner. In the first option, the sample
of interest is attached on a nanoflat surface mounted on a piezoelectric scanner, whereas
the scanner is coupled into the AFM tip, in the second alternative. The scanner is made of
ceramic materials that enable the motion of the sample surface over the AFM probe (sample
scanner) or the opposite schema (tip scanner) by applying external voltages. Then, a laser
beam is reflected by the external side of the cantilever probe toward a photodetector sensing
device. As an alternative to the laser, the cantilever can be read out with a piezoresistive
element on the cantilever chip. This approach could be promising to prevent the potential
sample damage by the laser beam. The feedback loop maintains a constant interaction
force between the AFM tip and the external sample-surface-fixing-defined A0 or ω0 values.
Proportional and integral derivative (PID) controllers deliver a fast feedback response
according to the signal recorded by the AFM setup. The schematic representation of the
AFM main components is depicted in Figure 7a.
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Figure 7. (a) Schematic representation of the main components of a typical AFM setup. The laser beam
is reflected at the cantilever top surface to a photodetector, which records the cantilever deflection.
The cantilever is excited by the feedback chosen depending on the MFM operational mode used. The
piezoelectric scanner enables the high positioning precision of the mounted sample with respect to
the AFM tip. The zoom inset represents the magnetic moments of the AFM tip and a multi-domain
sample. (b) Excitation frequency shifts according to the orientation between the magnetic moments
of the AFM tip and the scanned sample. Positive frequency shifts are observed when the magnetic
moments are placed in anti-parallel (red line) orientation caused by repulsive magnetic forces. Parallel
(blue line) orientation of the tip-sample magnetic moments and the generated attractive magnetic
forces induce negative excitation frequency shifts. No changes in the frequency are reported if
perpendicular (black line) tip-sample magnetic orientation moments are displayed. (c) MFM channel
of the scanned substrate surface where the parallel and anti-parallel tip-sample magnetic orientations
correspond to brighter and darker setting colors, respectively. (d) Phase shifts (∆φ) originated from
the magnetic tip-sample interaction. Anti-parallel orientation of the magnetic moments between the
AFM tip and the scanned sample surface produces positive ∆φ, whereas the opposite effect takes
place for the antagonistic parallel magnetic moment orientation.

The previous descriptions are the fundaments of the contact and dynamic modes [245].
For soft biological samples, it is advisable to avoid direct contact with the tip, hence
oscillating methods are commonly used. The stationary oscillation of the cantilever at
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frequency w driven by the piezoelectric actuator is modified if a gradient of the interaction
force Fts between the tip and the sample is present:

A0kcos (ωt) = mz′′ (t) +
mω0

Q
z′(t) +

{[
k− dFts

dz

]
z(t)

}
(3)

A0 is the amplitude of the cantilever, and m and Q are the mass and the quality factor
of the cantilever, respectively. Thus, the phase (φ) between the free-drive and excited
cantilever oscillation is described by the following expression [246]:

φ = arctan

 mωω0

Q
(

k + dFts
dz −mω2

)
 (4)

And the force gradient produces a phase shift given by [246]:

∆φ = −Q
k

dFts

dz
(5)

Notice that the gradient of the force is the magnitude measurable by the oscillating
method, and φ can be influenced by modifications of Q and k during the measurement. Fts
encompass the van der Waals and electrostatic forces in addition to the magnetic force. The
resonance frequency also shifts with respect to ω0 [246]:

∆ω ≈ −ω0

2k
dFts

dz
(6)

Measuring the variables included in Equations (5) and (6) has motivated numerous
methods because Q, A0, and ω0 change as the tip-samples distance decreases.

The van der Waals force is short-ranged but is more potent than electrostatic and
magnetic forces. Thus, it is essential to position the AFM probe at least 30–50 nm above the
topography scan (see Section 4 for more details) to account for the long-range magnetic
forces [247]. The magnetic force between a tip, which in the dipole approximation, has a
fixed magnetic moment mtip, and the sample is due to the gradient of the stray field Bstray
generated by surface and volume magnetic charges [248]:

→
F =

→
mtip

∂
→
B stray

∂
→
z

(7)

where the cantilever displacement is normal to the sample. In heterogeneous samples, the
electrostatic force is present due to the varying electronic behavior. Numerous techniques
have been suggested to eliminate electrostatic artifacts, which will be briefly outlined in
Section 4.3. According to Equation (7), the force and its gradient can either be attractive or
repulsive, depending on the orientation relative to mtip and Bstray. Consequently, there will
be a phase shift toward lower and higher excitation frequencies, respectively (see Figure 7b).
An interesting result of this method is the simultaneous recording of the topography and
phase channels (Figure 7c) that allows the magnetic response with the morphology of the
observed features to be correlated. The contrast generated in the MFM channel is due to
the phase shift generated by the tip-sample magnetic interaction. Parallel and anti-parallel
orientations of the tip-sample magnetic moments are derived from positive and negative
phase shifts, respectively (Figure 7d). Finally, another relevant aspect to consider is the
cantilever spring constant. Cantilevers with low k render more force sensitivity but are less
stable during data acquisition. On the other hand, stiff cantilevers render excellent stability
during scanning, but the force detection is poor. There exists a trade-off between sensitivity
and stability.
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4. MFM Operational Modes

The methods used to reveal the magnetic features of the samples with the highest
resolution rely on the use of dynamic modes. In principle, static mode could be used in
the second pass of the tip over the surface as well. The AFM cantilever is lifted to a certain
height to prevent detrimental short-range interactions in this second pass. For that, the
average topography of the entire scanned region is set as lift height (dashed line, Figure 8a).
In this case, the cantilever deflection provides information about the force (constant force
mode Figure 8a) rather than its gradient. However, the sensitivity of this method is much
lower compared to dynamic modes and is rarely used to obtain magnetic images. In the
field of AFM, new operational methods involve analyzing the interaction with the sample
at the first and second tip resonance frequencies. This advancement has been helpful in the
study of thin films and nanostructured materials, and could also be applied to biological
systems. Below, the most used methods in this area will be briefly described.
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Figure 8. Schematic representation of all existing MFM operational modes: (a) Constant height and
constant force modes consist of a double pass of the AFM tip close to the sample surface area in
static mode. The tip-sample distance and the applied force between the tip and the external sample
surface are kept constant for each mode, respectively. Left image represents the phase shift caused
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by the magnetic contrast (∆φ) of the scanned sample domains. (b) Lift mode works with a second
pass of the AFM tip above to the scanned sample surface. While in the first pass, the tip is close to
this surface, during the second pass, the AFM tip is moved away a certain distance (hlift) in dynamic
contact mode (AC-mode). The movement of the AFM tip in this second pass corresponds to the
previously recorded topography of the scan line in the first pass. (c) Frequency-modulated Kelvin
probe microscopy directly observes the difference in the contact potential between the AFM tip and
the sample (VDC) by the detected probe resonant peak sidebands induced by the alternative current
voltage (AC-V). The detection of ∆φ is similar to the case of lift mode. The positive and negative
magnetic domains of the substrate are in green and brown, respectively. (d) Magnetic resonance
force microscopy displays a similar configuration to the above described but the tip scans the sample
surface with one single pass and setup is coupled with a microwave radio frequency source. The
yellow spheroid depicts a non-magnetic feature with conductive potential.

4.1. Lift Mode

One of the most extended methods to determine the magnetic structure consists of a
double scan over the sample. The first pass determines the topography of the sample and
the second one is carried out at a constant distance over the profile determined during the
first scan (Figure 8b). That so-called lift height of the tip is selected to maximize the magnetic
signal without topography interference due to the short-range distance van der Waals
forces at the same time. Thus, the lift height must be individually adjusted for each tested
sample prior to starting the data acquisition. This step favors stable operation and accurate
data recording depending on the main scan parameters. This second therefore records the
modifications of ∆φ or ∆ω caused by the magnetic force (see Equations (5) and (6)). Lift
mode can also be employed under a bimodal configuration where the cantilever is excited
at its first two harmonics [249]. Bimodal AFM can provide quantitative information on the
magnetic moment and magnetic field created by a magnetized sample. Nevertheless, the
main disadvantage to working in dual-pass for those magnetic features with nanometer size
is the difficulty in separating the magnetic signal respecting the topography-induced forces
due to the same extension decay for both contributions. Recently, some developments have
been devoted to overcoming this limitation like working in single-pass dual mode [250,251].
However, this novel technology is extremely sensitive to external factors. For this reason,
the reported measurements are carried out in vacuum conditions.

4.1.1. Amplitude Modulation (AM)

This method is appropriate if the sample is rough or unexplored and the quality factor
Q is large. The control parameter to perform the scan is the amplitude of the tip at the
resonance frequency obtained far away from the surface.

4.1.2. Frequency Modulation (FM)

Further refinement is the determination of w0 instantaneously since it is directly
related to the force gradient while the phase is in the AM mode mix Q and ω (compare
Equations (5) and (6)). This method is achieved by forcing the phase between the oscillation
of the tip and the external source to be 90 degrees. However, more sophisticated electronics
are required with phase lock loop modules.

4.2. Constant Height Mode

The continuous estimation of the tip surface distance is mandatory since a small
drift can modify the distance between the sample and the tip in the absence of feedback.
However, if the drift is small and the surface topography is very flat or well determined,
other strategies can be used. Mainly, the idea is to set the scan parameters with a recorded
surface or the average value, and evaluate the significant A, ω0, and Q by using either the
AM or FM techniques.
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4.3. Electrostatic and Tip Artifacts

Similar to magnetic forces, electrostatic forces act on long distance, and can produce
artifacts in the MFM images. Thus, the MFM signal can be distorted if the sample displays
potential variations across its external surface. The methods dedicated to the mapping
of this interaction are electrostatic force microscopy (EFM) and Kelvin probe microscopy
(KPFM). The latter measures the contact potential between tip and sample and can be
operated in amplitude or frequency-modulated feedback loops (Figure 8c) [252]. The com-
bined KPFM-MFM measurement allows compensation of the surface potential difference
between the sample surface and the MFM tip to be conducted during scanning in real time.
Theoretical frameworks have also been developed to decouple the influence of electrostatic
forces [253]. This approach fosters the accuracy of the magnetic data recorded by MFM.
Another strategy consists of modifying the magnetization of the tip because it will change
the magnetic force but not the electrostatic contribution. Therefore, demagnetizing the
tip will nullify or demote the magnetic signal, while inverting the tip magnetization will
switch the magnetic contribution’s signs. In any case, they maintain unaltered electrostatic
interactions. The removal of electrostatic artifacts has been shown to be of valuable interest
in characterizing superparamagnetic nanoparticles [254], and this methodology could be
extended to other systems of interest. The tip magnetization can modify the magnetic state
of the sample and produce variations in two consecutive images taken of the same area of
the sample. This is observed in soft magnetic materials and may require tips with small
quantities of magnetic materials.

Other techniques can be used to study biological systems with high spatial resolution.
However, they are technically more complex than the MFM methods described above. Two
of the most interesting techniques, namely, magnetic resonance force microscopy (MRFM)
and nitrogen-vacancy (NV) microscopy are briefly discussed:

4.4. Magnetic Resonance Force Microscopy (MRFM)

This technique measures the magnetic force between nuclear spins in a sample and a
magnetic tip, being suitable for non-magnetic samples. It combines magnetic resonance
imaging (MRI) with MFM. MRFM works by applying a radiofrequency (RF) pulse, polariz-
ing the nuclear sample spins. These nuclear spins and magnetic particles absorb energy to
move to higher energy states when the RF pulse is tuned at their resonance frequencies.
Then, the AFM tip detects the mechanical transitions induced by the nuclear spins, and
tridimensional images of the magnetic spatial distributions can be achieved after their
correlation with the positioning of the AFM tip (Figure 8d) [255]. The magnetic moment
sensitivity (µ) of this technique is given by:

µ =
1
G

√
4ΓkBTb (8)

where G is the magnetic field gradient, Γ is defined as the total friction undergone by
the cantilever oscillator, kB is the Boltzmann constant, T corresponds to the working
temperature, and b is the detection bandwidth of the MRFM setup, respectively [256]. This
expression pinpoints the critical factors that affect µ. The optimization of the µ parameter
demands the use of small magnetic particles to induce large magnetic gradients [257] and to
minimize as possible the sources of cantilever friction and the scanning temperature [258].
Additionally, it was recently reported that the sample coating with few nanometers of a
thin metal like gold can significantly reduce the signal-to-noise ratio up to 20-fold [259],
and the sensitivity of MRFM can be improved up to 10 µ when the RF coil is replaced
by a microwave micro-strip resonator [260]. Finally, MRFM can monitor statistical spin
fluctuations rendering larger polarizations, which have narrower distributions compared to
thermal polarizations [261]. This enables MRFM to reach nearly 10 times greater sensitivity
detections than classical EPR setups, thus displaying promising routes to enhance the
sensitivity of weak magnetic signals coming from nanometer-scale volumes.
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4.5. Nitrogen-Vacancy (NV) Microscopy

Nitrogen-vacancy centers are atomic fluorescent defects in diamond crystals where
a nitrogen atom replaces a carbon atom adjacent to a lattice vacancy. This creates an
unpaired electron spin associated with the nitrogen-vacancy center [262]. The advances
and implementation of NV centers in single-molecule techniques are based on their unique
magneto-optical properties like single-photon generation [263]; their energy levels, which
can create a quantum bit at room temperature with an easily accessible energy spacing in
the GHz range [264]; their spin state levels at local sample regions, which can be read out
via optical signals [265], and their milli-second coherence times [266]. All these make NV
centers attractive to be used as robust platforms for atomic-size quantum sensing [267]. For
it, the NV center needs to be excited at 532 nm (green light), which will be coupled with
the native state, reducing, thus, the fluorescence rate compared to the ground state. The
resonance can be optically detected by sweeping the microwave frequency [268]. The shift
in emitted fluorescence is proportional to the strength of the magnetic field at the location of
the NV center in the known Zeeman splitting effect [269]. The sensitivity of NV microscopy
is about nT. Pulsed measurements can significantly decrease the linewidth, increasing by a
factor of approximately seven the sensitivity detection threshold, enabling the detection of
single spins [270], which represents a breakthrough paradigm in the characterization of
advanced quantum material systems. The remarkable progress made in the monitoring of
the transition kinetics of single NV centers [271] has allowed the development of sensors
for biological and quantum applications, especially the detection of cancer biomarkers
in tumor tissues [272] and the study of radical-pair reactions and chiral spin selectivity
materials [273], respectively.

5. Magnetic Force Measurements with Commercially Available MFM Tips

Commercial MFM probes have benefited from great advances in the course of time.
In the early days, the nominal tip radius of these probes was 60–70 nm due to their
coating with cobalt-chromium (CoCr). Nowadays, AFM probe suppliers have been able
to significantly reduce the tip apex radius up to 25–30 nm based on decreasing the CoCr
coating thickness to 15–20 nm. Furthermore, commonly, these magnetic tips are coated
with successive layers protecting them from detrimental oxidation processes. The reduction
of the MFM tip radius dimensions leads to the perturbation of the magnetic signal coming
from the scanned magnetic domains to be minimized, reducing, thus, the reversal during
imaging and improving the MFM data quality [274]. The nominal magnetic moment of
these commercial tips is nearly 1 × 10−13 emu. Decreasing the magnetic moment of the
MFM tips is crucial to measuring samples with low coercivity values. Another alternative
to detect materials with low coercivities is to coat the AFM tips with alloys of hard magnetic
materials like iron-palladium (FePd), iron-platinum (FePd), or cobalt platinum (CoPt) [275].
Nevertheless, extremely high temperatures of almost 600 ◦C need to be employed, which
can be derived in processing issues like side lateral reactions with the core silicon tip or
unbalanced migration of the magnetic deposited alloy [276]. For these reasons, commercial
manufacturers prefer the use of CoCr even if this material does not sense the same magnetic
field strength in comparison with other alloys with different chemistry by attempting to
reduce the AFM tip dimensions as much as possible.

Many research works have been carried out to interrogate the magnetic response
coming from biology systems or nanomaterials applied for biological applications. Table 1
depicts the most relevant MFM studies applied in this field. Some key insights can be
gathered by observing the data displayed in Table 1. The most used MFM operational mode
is based on lifting the MFM tip during a second pass. Lift mode is the most widespread
among the users because this approach avoids the detrimental contribution of short-range
electrical and van der Waals interactions and it is more user-friendly and cost-effective than
other more complex techniques such as MRFM, as indicated in previous sections. Moreover,
there is no guideline to select a proper lift height. Some works reported lift heights of 10
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nm and others of several hundreds of nm. The magnetic scanned feature size limits this
operational setting since the magnetic signal strongly decays with distance.

Table 1. Compilation of MFM measurements carried out discriminating the biology system of interest,
the MFM operational mode used, and the size of the measured magnetic features. Dimensions are
assumed to be globular (indicated as “glob.”) for all the observed features with exception of the square
shape of cobalt nanorings [277] and rod-shaped magnetic particles that appeared in Magnetospirillum
magnetotacticum [278] and cobalt nanowires [277], respectively. Magnetospirillum is noted as M.
spirillum. L. and H. are length and width, respectively.

Biological Sample MFM Mode Lift Height Sample Height Ref.

Magnetosomes from M. spirillum magnetotacticum Lift mode 60–300 nm ~20 nm (glob.) [278]
Magnetosomes from M. spirillum magnetotacticum Lift mode 60–300 nm ~1.5 × 24 × 2000 nm (rod) [278]
Magnetosomes from M. spirillum gryphiswaldense Const. height - 21.0 ± 2.5 nm (glob.) [279]
Magnetosomes transfected to mesenchymal cells Lift mode 20 nm ~12 nm (glob.) [280]

Magnetosomes in bivalve Thasyra cf. gouldi Lift mode 35–150 72.9 ± 28.9 (glob.) [281]
Cobalt nanospheres MRFM - ~500 nm (glob.) [282]
Cobalt nanowires Lift mode 30 nm ~25 × 85 × 2750 nm (rod) [277]
Cobalt nanorings Lift mode 30 nm 1 × 0.1 µm (L., W.) (sq.) [277]

Magnetite (Fe3O4) nanoparticles Lift mode 50 nm 18.7 ± 3.0 (glob.) [283]
Magnetite (Fe3O4) nanoparticles Lift mode 10 nm ~4.8 nm (glob.) [284]
Magnetite (Fe3O4) nanoparticles Lift mode 10 nm ~20 nm (glob.) [285]

Iron oxide MNPs in polymer matrix KPFM 50 nm ~8 to 12 nm [286]
Gadolinium nanoparticles Const. height 150 nm ~12 nm [105]

Fe3O4 in hydrogels Lift mode 50 nm 34.0 ± 1.0 nm (glob.) [287]
Iron in rodent spleen Lif mode 30–100 nm 3.8 ± 0.2 nm (glob.) [288]

Iron deposits in brain histological sections Lift mode 30 nm ~5 to 8 nm (glob.) [289]
Diphenylpicrylhydrazil (DPPH) radicals MRFM - ~5 to 8 µm (glob.) [290]
Liposome membrane labeled with DPPH MRFM - ~5 to 15 µm (glob.) [291]
Mitotic arrest deficient 2 (MAD2) protein MRFM - ~4.5 nm (glob.) [292]

Ferritin Lift Mode 10–50 nm ~12 nm (glob.) [293]
Ferritin Lift mode 30–50 nm ~12 nm (glob.) [294]

Ferritin iron core Lift Mode 30 nm ~5 nm (glob.) [295]
Graphene quantum dots Lift mode 50 nm ~6.5 nm (glob.) [296]

Graphene functionalized with Fe2O3 particles Const. height - 5–10 nm [297]
Co-FeCo dots Cont. height - ~25 nm (glob.) [298]

We can conclude that most of the samples analyzed by MFM come from magnetic
nanoparticles based on the lack of sensitivity of magnetic-coated MFM tips commercially
available to measure magnetic entities with minor sizes. MFM was able to measure mag-
netic features with a broad range of shapes but the most common scanned morphology is
globular with a lower detection limit settled at 3.8–4.5 nm of the particle diameter [288,292].
This is the inspirational reason to devote more research to designing and fabricating more
sophisticated MFM tips reducing the tip apex dimension.

6. Development of Ultra-Sharp MFM Tips

A prerequisite for high-resolution AFM images is an ultra-sharp tip. However, in the
case of MFM, it must be pointed out that the spatial resolution is a compromise between
the tip apex and magnetic sensitivity, with the latter being determined by the quality but
also the quantity of the magnetic material [299].

Conventional MFM probes are typically standard AFM tips that are coated with
magnetic materials by sputtering. For a sufficient magnetic signal, a certain thickness of
the functional coating is required, which inevitably increases the tip radius. Commercially
available MFM probes provide typical tip radii of about 30 nm or more. Such broad tips,
however, do not routinely allow high-resolution MFM as required in biological systems.
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In this section, different development paths to reduce the tip radius below 30 nm are
presented. Figure 9 depicts some representative MFM tips for each fabrication technique
for a proper overview.

6.1. Advanced Coating Approaches

Coating AFM cantilevers by sputtering is a straightforward approach and can be
easily scaled up to wafer level to cover the original tip with high-quality material. There
are a few approaches to increase the resolution of MFM measurements while still using
a coating technique. As already mentioned in Section 5, the most intuitive approach
is to reduce the thickness of the coating and/or to use ultra-sharp AFM tips as a scaf-
fold [300] (Figure 9a). This can reduce the radius down to 15 nm (e.g., SSS-QMFMR from
NANOSENSORSTM [301]), but at the expense of the magnetic properties [302] due to the
reduced material volume, while the increased risk of delamination still remains. The second
option is to sputter only one side of the tip, which effectively reduces the tip radius [303].
However, aside from the same disadvantages as for a full coating (delamination, tip wear,
and sensitivity), there is also the slight lateral offset between the topography and magnetic
signal due to the asymmetric coating, which needs to be considered in data analyses.

An unconventional approach is the so-called “dual-tip” MFM probe introduced by
Precner et al. [304]. The basic idea is to deposit magnetic material on one sidewall of the
tip and then separate the original tip from the cantilever by focused ion beam milling.
This creates two closely spaced tips, one magnetic and the other non-magnetic. Using a
two-pass method, in the first pass, the non-magnetic part of the dual-tip is excited and
used for topography acquisition. In the second pass, the magnetic part follows the sample
topography at a user-selected lift height to measure the magnetic tip-sample interaction.
The main advantage of this approach is that the magnetic tip is not in close contact with the
sample (as required in the first pass), which minimizes the risk of disturbing magnetically
sensitive samples [304]. In terms of lateral resolution, the non-magnetic tip can be a
high-resolution standard AFM tip, providing high-resolution information at least for
the topography measurement. Combining this dual-tip approach with ultra-sharp tip
fabrication methods as discussed in the following could be a potential future perspective
for MFM on sensitive nanoscale samples.

6.2. Nanomachining by Focused Ion Beam Milling

A Focused Ion Beam (FIB) can be employed in a top-to-bottom approach to shape
a tip down to nanoscale dimensions. The simplest way is to sculpt a sharp tip from a
sputter-coated probe [305,306]. If necessary, a protective carbon cap can be deposited by
Focused Electron Beam Induced Deposition (see also Section 6.4) to protect the coating
from sputtering [307]. Furthermore, particles with exceptional magnetic properties can be
placed at the tip region and finally shaped via FIB to the desired morphology. For example,
micrometer-sized blocks were lifted out from magnetic multilayer films (e.g., SmCo5 [308]),
and machined to a sharp tip apex with the ion beam. Campanella et al. showed the FIB
nanomachining of a NdFeB milled into a hard magnetic MFM pillar [309] (Figure 9b).

While this approach is excellent in terms of material quality, the process steps for
lift-out/transfer and final shaping are cumbersome, time-consuming, and not scalable to
industrial production. In addition, ion beam bombardment and ion implantation often
degrade the magnetic properties of the thin film [310]. While all reported FIB-milled MFM
probes were processed with Ga+ ions, recent advances in ion beam technology for novel
ion sources might revitalize this avenue for MFM tip fabrication [311].
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nanofibers (CNF) grown by direct-current plasma-enhanced chemical vapor deposition. Reprinted 
from [313]. Copyright 2004, ACS Publications. (f) Ni nanowire synthesized by electrodeposition and 
attached to a cantilever by dielectrophoresis. Adapted from [314]. Copyright 2005, AIP Publishing. 
(g) Hollow Co3Fe cone deposited by Focused Electron Beam Induced Deposition (FEBID). Reprinted 
from [315]. Copyright 2023, MDPI. (h) TEM image of the tip area of a Co3Fe FEBID MFM tip. 

Figure 9. Examples of ultra-sharp MFM tips, fabricated by advanced fabrication techniques: (a) Carbon
nanotube (CNT) after CoFe sputtering. Reprinted from [312]. Copyright 2005, IOPscience. (b) NdFeB
needle extracted and sharpened by Focused Ion Beam (FIB) milling. Reprinted from [309]. Copyright
2011, IOPscience. (c–e) TEM images at different magnifications of Ni-capped Carbon nanofibers
(CNF) grown by direct-current plasma-enhanced chemical vapor deposition. Reprinted from [313].
Copyright 2004, ACS Publications. (f) Ni nanowire synthesized by electrodeposition and attached to
a cantilever by dielectrophoresis. Adapted from [314]. Copyright 2005, AIP Publishing. (g) Hollow
Co3Fe cone deposited by Focused Electron Beam Induced Deposition (FEBID). Reprinted from [315].
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Copyright 2023, MDPI. (h) TEM image of the tip area of a Co3Fe FEBID MFM tip. Reprinted
from [315]. Copyright 2023, MDPI. (i) Extremely thin Fe FEBID pillar deposited on an AFM tip.
Adapted from [316]. Copyright 2021, MDPI.

6.3. Carbon Nanotubes, Carbon Nanofibers, and Electrodeposited Wires

Carbon nanotubes (CNTs) are commonly used for ultrahigh-resolution AFM tips. For
MFM, CNTs must be either coated [300,312,317] (Figure 9a), capped (magnetic particle at
the end) [313,318] (Figure 9c–e), or filled with magnetic materials [319–321].

The common advantage of such MFM probes is the fact that the magnetic material
is widely protected from oxidation by the carbon shells [321]. Wolny et al. demonstrated
further advantages such as monopole-like behavior and exceptional long-term performance
of Fe-filled CNTs grown by chemical vapor deposition with a ferrocene precursor [321].

A major challenge for CNTs, however, is the transfer to the tip area. This can be
performed via micromanipulators or an electric DC field [318]. In general, those are risky,
cumbersome, and time-consuming procedures and, consequently, not suitable for large-
scale production [321]. Another approach is to grow a large number of CNTs directly on an
AFM cantilever by CVD [322]. This eliminates the laborious mounting procedure; however,
the positioning and orientation of the wires cannot be fully controlled [323]. It should also
be noted that the high temperatures (several hundred ◦C) [318,322] involved in CVD are
not compatible with all cantilever platforms.

Cui et al. used e-beam lithography to deposit Ni and Fe directly on a tipless cantilever
as seeds for the growth of carbon nanofibers (CNFs) in a direct-current plasma-enhanced
chemical vapor deposition reactor [313]. The cone-shaped carbon fibers terminate with the
magnetic nanoparticles, as shown in Figure 9c–e.

Magnetic nanowires (Ni, Co) can also be synthesized by electrodeposition [314]
(Figure 9f). Yang et al. furthermore showed the attachment to AFM tips via dielectrophore-
sis, where the suspended wires were anchored to the Si pyramid under an AC field [314].

6.4. Focused Electron Beam-Induced Deposition

Focused electron beam-induced deposition (FEBID) is an additive, direct-write tech-
nique based on the local decomposition of precursor molecules by a focused electron
beam [324–326]. A gas injection system continuously delivers gaseous precursor molecules
into the vacuum chamber, where they adsorb, diffuse and eventually desorb again from
the surface. The interaction with the electron beam dissociates the precursor and locally
immobilizes the functional material. FEBID technology offers some significant and partly
unique advantages for the fabrication of ultra-sharp AFM probes:

(1) Cylindrical pillars that taper to a sharp tip apex with radii of less than 10 nm [315,327]
(Figure 9h).

(2) Customizable pillar heights that are defined by the electron exposure conditions,
allowing for tips with high aspect ratios (Figure 9i), which is beneficial for a quasi-
monopole behavior [328].

(3) The magnetic volume can be deposited precisely at the tip region; either on a FIB-
milled or FEBID-grown plateau [329], onto an existing tip [330] (Figure 9i), or directly
on tipless cantilevers [315]. While the first approach requires an additional process
step, the second is a straightforward single-step process. Fabricating on flat/tipless
cantilevers requires a more sophisticated FEBID-tip design [315] (Figure 9g), but
simplifies the production of more advanced cantilever layouts.

(4) For perpendicular alignment of the cantilever axis to the substrate plane, the technical
pre-tilt in AFMs (typically about 10◦) can be easily compensated [330].

(5) FEBID is typically performed at room temperature [331], thus avoiding thermal stress
for the cantilever.

(6) Flexibility in material properties: The first attempts used the FEBID pillars as a
scaffold for sputtering with magnetic materials [332,333]. The development of high-
quality magnetic precursor materials for FEBID [325,334] has made this second process
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step unnecessary, now allowing for true direct-write, single-step fabrication of all
magnetic tips [335]. Consequently, FEBID-MFM tips have no risk of delamination,
while revealing 10 nm apexes. Different precursor materials have been used for
FEBID-MFM probes, listed in Table 2.

(7) Tip dimensions and material quality can be adjusted by the deposition conditions,
such as primary electron energies and beam currents, which enable a controlled tuning
of magnetic properties [327,336]. This way, FEBID-MFM tips can be adapted to the
requirements of the sample and environmental conditions. For example, Jaafar et al.
demonstrated exceptional MFM performance under liquid conditions [327] using Fe-
based nanorods, which is highly relevant for biological samples. In addition, a range of
various post-processing procedures (annealing [337], electron beam irradiation [315])
opens the door to a wide variety of MFM probes with different properties. Looking to
the future, the potential of FEBID has not yet been fully exploited, considering the
unrivaled possibilities of 3D nanoprinting [338] for the fabrication of advanced probe
designs [315,331] (Figure 9g).

Other challenges in MFM tip fabrication via FEBID are sometimes low metal contents
(depending on precursor and process parameters [325]) and low throughput, which limits
FEBID to prototyping and small batch production. The advent of multi-beam instrumen-
tation, however, contains the potential to change the situation and take advantage of the
partly unique FEBID advantages. Table 2 lists the most relevant studies on the fabrication
of ultra-sharp MFM tips.

Table 2. Ultra-sharp MFM tips reported in the literature, sorted by the size of the tip radius. The first
column indicates the fabrication technique and the tip shape. The second column lists the first author of
the study. The third column gives the magnetic material or, in the case of FEBID, the precursor material.
Forth column gives the tip radius, or an estimation from images if the value is not reported explicitly.

Technique-Tip Type First Author Material/Precursor Tip Radius Ref.

CNT-filled Wolny FeC n.a. ~25 nm [320]
CNT-filled Wolny FeC 25 nm [321]

FEBID-Pillar Utke Co2(CO)8 25 nm [339]
FEBID-Pillar Gavagnin Fe(CO)5 n.a. (<20 nm) [330]

Electrodeposition Yang Ni, Co 20 nm [314]
FIB milling Campanella NdFeB 20 nm [309]
CNT-coated Kuramochi CoFe 20 nm [312]
CNT-capped Arie Ni3C 17 nm [318]
CNT-coated Deng Ti/Co/Ti 15 nm [319]
FIB milling Gao CoPt 15 nm [306]
CNT-filled Tanaka Co3C 15 nm [322]

CNT-coated Choi Co90Fe10 15 nm [317]
FEBID-Pillar Escalante-Quiceno Fe2(CO)9 15 nm [340]
FIB milling Phillips Co 12 nm [305]

CNF-capped Cui NiC 10 nm [313]
FEBID-Pillar Belova Co2(CO)8 10 nm [329]
FEBID-Cone Winkler, Brugger-Hatzl HCo3Fe(CO)12 9 nm [315]
FEBID-Pillar Pablo-Navarro Fe2(CO)9 8 nm [316]
FEBID-Pillar Jaafar Fe2(CO)9 7 nm [327]

7. Discussion and Future Perspectives

Characterization of the magnetic performance of small molecules existing in nature is
a topic of paramount importance not only to gain insights into their biological role, but also
due to the promising implementations in spintronics in which they can be involved. Many
bulk techniques like SQUID, VSM, MOKE, EPR, or AC susceptibility can determine the
ensemble average magnetic response of the tested sample, but the impossibility of mapping
the scanning areas of interest does not allow local magnetic signals to be discerned. MFM
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is presented as a suitable alternative to conduct single-molecule studies and overcome the
above-described limitations.

Traditionally, MFM is capable of being combined with other magnetic bulk techniques
such as MOKE, which enables ultrathin films of varying temperatures in vacuum condi-
tions [341] or randomly oriented magnetic electrospun nanofibers to be studied [342]. Then,
MFM measurements can be also aligned with TEM-based DPC techniques. The gathered
data are complementary because MFM and TEM-based DPC achieve the out-of-plane
and in-plane sample magnetization, respectively. This experimental configuration was
devoted to eliciting the magnetic domain structures of crystalline spinodal alloys at the
nanoscale [343]. Finally, MFM can be also coupled with other SPMs such as scanning
tunneling microscopy (STM) [344] by supplying one scanner for each operational tool.
STM can reveal the charge distributions based on the sample electron states at atomic
resolution [345]. MFM-STM can be exploited to measure the electron transport between
the nanogap junctions between two electrodes and the associated magnetic signal [346].
The main problem associated with STM is that the tip surface diffusion at environmental
conditions is significant [347], which limits the applications of MFM-STM in biology. Fur-
ther progress is to upgrade MFM setups with quartz tuning fork qPlus sensors [348]. The
use of stiff quartz sensors optimizes the signal-to-noise ratio and improves the frequency
contrast resolution up to the level of mHz [349]. This threshold is sensitive enough to
detect the magnetic dipole–dipole interactions under unequal relaxation dynamics [350].
Finally, multioperational MFM probes functionalizing the tip apex with biotinylated DNA
are capable of attaching a single avidin–ferritin conjugate entity and, then, interacting
with modified surfaces of ferritin [351]. This approach enables the magnetic signal and
the tip-sample intermolecular adhesion forces to be simultaneously acquired. Thus, MFM
is shown as a multiparametric technique identifying multiple sample properties at the
nanoscale. The main bottleneck of MFM measurements is the shape of the tip apex. MFM
tips commercially available can detect the magnetic response of features higher than 4.0–5.0
nm. Recently, much effort has been devoted to fabricating MFM tips with reduced tip
radius. We expect that these ultra-sharp MFM tips with unprecedented resolution will
serve to interrogate local sample regions with a much lower number of spins. Furthermore,
recent advances in 3D nanoprinting [338,352–355] using FEBID have opened new avenues
for advanced MFM tip designs [282,315], such as hammerhead tips [356] or meshed-styled
nano-cubes [357]. These high-resolution 3D capabilities, combined with ongoing research
on new precursor materials and post-processing approaches, make FEBID a promising
candidate for novel MFM probes. For all the above-described reasons, the future prospects
of MFM are excellent [358,359] to deal with the current challenges, not only in the field
of quantum technologies, but also for drug delivery [360], tissue regeneration [361], and
wastewater treatments [362].

The magnetic characterization of small features independent of their source could
open new gates in the design and miniaturization of superconducting resonators that
can act as ultrasensitive paramagnetic resonance devices. The development of quantum
technologies requires the proper attachment of magnetic features with multiple spin states
on these resonator chips. The Langmuir–Blodgett (LB) technique allows homogeneous
films controlling the coverage of the deposited material through the surface pressure to be
created [363]. LB has successfully been exploited to transfer successive layers of porphyrins
on niobium surfaces of superconducting coplanar resonators [229]. The main drawback
related to LB is that it is not possible to deposit matter on specific areas of interest rather
only to the entire surface introduced to the air–liquid interphase. This aspect is relevant
when nanoconstrictions are specifically fabricated in the resonator chip [364]. These regions
concentrate the microwave magnetic field due to the spin Hall nano-oscillator effect [365],
which gives the maximum orientation and subsequent coupling of the spins with the photon
magnetic field, improving, thus, the signal sensitivity required for quantum applications.
Soft dip-pen nanolithography (DPN) overcomes this limitation, being able to deposit the
material of interest embedded in inks under certain conditions of relative humidity and
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viscosity [366]. Magnetoferritins have been deposited on specific SQUID sensor regions by
DPN [367]. This approach enables the alternating current magnetic susceptibility of these
ferritin arrays in a wide range of temperatures and frequencies to be measured. DPN could
be also employed to precisely control the deposition on the customized nanoconstrictions
of other magnetic biomolecules like the aforementioned porphyrins or matter of different
a nature such as metalloenzymes, or small magnetosome nanoparticles. Moreover, the
creation of 2D- and 3D-lattice architectures of nanometric magnetic features can make
tunable systems by out-of-plane ligation by scanning probes [368].

Progress toward these quantum targets requires coordinated cooperation between dis-
ciplines and the combination of experimental and simulation methods. The characterization
of the deposits on the nanoconstrictions could be studied by MFM using ultra-sharp mag-
netic tips to quantitatively assess their magnetic response. Ultra-sharp MFM tips have been
shown to exhibit significantly more sensitivity than commercial MFM tips, which can open
promising future avenues in the magnetic characterization of 2D qubit systems like arrays
of metalloenzymes or porphyrins (Figure 10). Cryptochromes are also presented as suitable
candidates to work as 2D qubits. The radical pair mechanism involved in cryptochromes
favors their quantum coherence and entanglement [369]. This allows the manipulation of
cryptochromes to create functionalized surface materials maintaining the pairwise tunable
spin–spin exchange quantum dynamics [370]. Furthermore, cryptochromes enable the
read-out of the quantum states of single trapped molecular ions, preserving biomolecular
integrity and its quantum state itself [371]. This fact can lead to the design of harnessed
methodologies to couple this kind of biomolecule with an exceptional nature on quantum
sensing surfaces. For all these reasons, cryptochromes may lead the next generation of the
integration of 2D qubits in quantum technology resonators. Recently, MFM measurements
were coupled to field gradient mapping by controlling multiple vibration modes [372], and
a microwave probe station was integrated with an MFM setup to furnish simultaneous
electrical and microwave contact with an operational spintronic resonator [373]. These
advances will make a fine contribution to mapping local magnetic fields of these nano-
oscillators. Additionally, machine learning [374] and finite-element simulations [375] can
be unfurled to better understand the magnetic signal obtained by MFM through theoretical
algorithm frameworks. These developed automated strategies can significantly make easier
the handling and processing of the acquired magnetic data. The technology presented in
this review is expected to pave the way for the development of quantum technologies.
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Figure 10. SEM field image of an MFM tip (scale bar of 5 µm). Reprinted with permission from [376]. 
Copyright 2010, AIP Publishing. Zoomed SEM images of the apex from a commercial and ultra-
sharp MFM tips. Scale bar of 100 nm. Reprinted with permissions from [315]. Copyright 2023, MDPI. 
Commercial and ultra-sharp MFM tips can characterize the magnetic properties of 3D qubits and 
2D qubit systems, respectively. 
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