000130141 001__ 130141 000130141 005__ 20241125101151.0 000130141 0247_ $$2doi$$a10.1109/JLT.2023.3331328 000130141 0248_ $$2sideral$$a136443 000130141 037__ $$aART-2023-136443 000130141 041__ $$aeng 000130141 100__ $$0(orcid)0000-0002-2616-3735$$aWaseem, M. 000130141 245__ $$aCellular Guardband NB-IoT Performance Over PMMA plastic optical fibers 000130141 260__ $$c2023 000130141 5060_ $$aAccess copy available to the general public$$fUnrestricted 000130141 5203_ $$aOver the last decade, the growing demand of connectivity has produced a rapid evolution of 5G technology to answer the requirements of relevant areas such as Internet of Things (IoT). Radio and optical technology convergence appears as a solution to fulfill the needs of the future networks, exploiting the high bandwidth-range of optical fibers with the ubiquity and mobility of radio communications. The concept of Radio-over-Fiber has usually been applied successfully using silica fibers to transmit light from a modulated laser to a photodetector for demanding applications. In this work, we propose to evaluate the performance of Polymer Optical Fiber (POF) links to carry RF signals for those applications where their limited bandwidth-length product is sufficient, while their fast and cost-effective deployment is paramount. In particular, we analyze the performance of the downlink transmission of Long Term Evolution (LTE) and guardband Narrow-Band Internet of Things (NB-IoT) signals through a 75-m Poly(methyl methacrylate) – PMMA Graded-Index POF. Our study considers a comprehensive set of LTE carrier frequencies and bandwidths. 000130141 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122505OB-C33$$9info:eu-repo/grantAgreement/ES/DGA-FSE/T20-23R$$9info:eu-repo/grantAgreement/ES/DGA/T31-23R 000130141 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000130141 590__ $$a4.1$$b2023 000130141 592__ $$a1.37$$b2023 000130141 591__ $$aOPTICS$$b26 / 119 = 0.218$$c2023$$dQ1$$eT1 000130141 593__ $$aAtomic and Molecular Physics, and Optics$$c2023$$dQ1 000130141 591__ $$aTELECOMMUNICATIONS$$b33 / 119 = 0.277$$c2023$$dQ2$$eT1 000130141 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b94 / 353 = 0.266$$c2023$$dQ2$$eT1 000130141 594__ $$a9.4$$b2023 000130141 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000130141 700__ $$0(orcid)0000-0002-5622-9993$$aLópez, A.$$uUniversidad de Zaragoza 000130141 700__ $$0(orcid)0000-0001-5849-5198$$aCarro, P. L.$$uUniversidad de Zaragoza 000130141 700__ $$0(orcid)0000-0003-1542-3236$$aLosada, M. A.$$uUniversidad de Zaragoza 000130141 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac. 000130141 773__ $$g41, 23 (2023), 7302-7308$$pJ. lightwave technol.$$tJournal of Lightwave Technology$$x0733-8724 000130141 8564_ $$s1675811$$uhttps://zaguan.unizar.es/record/130141/files/texto_completo.pdf$$yVersión publicada 000130141 8564_ $$s3619372$$uhttps://zaguan.unizar.es/record/130141/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000130141 909CO $$ooai:zaguan.unizar.es:130141$$particulos$$pdriver 000130141 951__ $$a2024-11-22-12:07:14 000130141 980__ $$aARTICLE