000130143 001__ 130143
000130143 005__ 20241125101152.0
000130143 0247_ $$2doi$$a10.1109/JSEN.2023.3324363
000130143 0248_ $$2sideral$$a136449
000130143 037__ $$aART-2023-136449
000130143 041__ $$adeu
000130143 100__ $$aMartínez-Cesteros, Javier$$uUniversidad de Zaragoza
000130143 245__ $$aCreep and hysteresis compensation in pressure-sensitive mats for improving center-of-pressure measurements
000130143 260__ $$c2023
000130143 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130143 5203_ $$aLarge-area tactile sensors are used to image the pressure exerted by human body parts. More specifically, they can be used to measure plantar pressure on human stability tests. The center-of-pressure (CoP) trajectory is the primary outcome of such tests. Previous research has shown that the parameters obtained from the trajectory correlate with those obtained from a reference instrument, that is, a force platform (FP). However, there are still noticeable differences. In this work, a low-cost prototype of a pressure-sensitive mat (PSM) has been built and compared with an FP in stability tests. The sensitive material is Velostat, which is readily available. Such a mat could make objective stability tests more accessible. A model of two nonlinear effects, hysteresis and creep, has been considered to compensate for them. Given that it was rather difficult to characterize the large mat with a pneumatic device, a small-sized sensor array was first characterized in a controlled environment. Then the model was extended to the large mat using a suitable scaling factor. The experimental results show that compensating for the nonlinear effects led to a decrease in the differences between the two instruments, the FP and the mat, with an average improvement of 26% in the distance between the trajectories.
000130143 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T49-20R$$9info:eu-repo/grantAgreement/ES/MCIN/PID2021-125091OB-I00$$9info:eu-repo/grantAgreement/ES/MCIU/FPU18-04282
000130143 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000130143 590__ $$a4.3$$b2023
000130143 592__ $$a1.084$$b2023
000130143 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b84 / 353 = 0.238$$c2023$$dQ1$$eT1
000130143 593__ $$aInstrumentation$$c2023$$dQ1
000130143 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b15 / 76 = 0.197$$c2023$$dQ1$$eT1
000130143 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ1
000130143 591__ $$aPHYSICS, APPLIED$$b48 / 179 = 0.268$$c2023$$dQ2$$eT1
000130143 594__ $$a7.7$$b2023
000130143 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130143 700__ $$0(orcid)0000-0001-7671-7540$$aMedrano-Sánchez, Carlos$$uUniversidad de Zaragoza
000130143 700__ $$aCastellanos-Ramos, Julián
000130143 700__ $$aSánchez-Durán, José A.
000130143 700__ $$0(orcid)0000-0001-7550-6688$$aPlaza-García, Inmaculada$$uUniversidad de Zaragoza
000130143 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000130143 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000130143 773__ $$g23, 23 (2023), 29585-29593$$pIEEE sens. j.$$tIEEE SENSORS JOURNAL$$x1530-437X
000130143 8564_ $$s2614821$$uhttps://zaguan.unizar.es/record/130143/files/texto_completo.pdf$$yVersión publicada
000130143 8564_ $$s3482199$$uhttps://zaguan.unizar.es/record/130143/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130143 909CO $$ooai:zaguan.unizar.es:130143$$particulos$$pdriver
000130143 951__ $$a2024-11-22-12:07:15
000130143 980__ $$aARTICLE