000130145 001__ 130145
000130145 005__ 20241125101153.0
000130145 0247_ $$2doi$$a10.3390/w15183268
000130145 0248_ $$2sideral$$a136464
000130145 037__ $$aART-2023-136464
000130145 041__ $$aeng
000130145 100__ $$0(orcid)0000-0002-3635-6223$$aFernández-Pato, Javier$$uUniversidad de Zaragoza
000130145 245__ $$aA 2D hydraulic simulation model including dynamic piping and overtopping dambreach
000130145 260__ $$c2023
000130145 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130145 5203_ $$aNumerical simulation of unsteady free surface flows using depth averaged equations that consider the presence of initial discontinuities has been often reported for situations dealing with dam break flow. The usual approach is to assume a sudden removal of the gate at the dam location. Additionally, in order to prevent any kind of dam risk in earthen dams, it is very interesting to include the possibility of a progressive dam breach leading to dam overtopping or dam piping so that predictive hydraulic models benefit the global analysis of the water flow. On the other hand, when considering a realistic large domain with complex topography, a fine spatial discretization is mandatory. Hence, the number of grid cells is usually very large and, therefore, it is necessary to use parallelization techniques for the calculation, with the use of Graphic Processing Units (GPU) being one of the most efficient, due to the leveraging of thousands of processors within a single device. The aim of the present work is to describe an efficient GPU-based 2D shallow water flow solver (RiverFlow2D-GPU) supplied with the formulation of internal boundary conditions to represent dynamic dam failure processes. The results obtained indicate that it is able to develop a transient flow analysis taking into account several scenarios. The efficiency of the model is proven in two complex domains, leading to >76× faster simulations compared with the traditional CPU computation.
000130145 536__ $$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2022-IAR-03
000130145 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000130145 590__ $$a3.0$$b2023
000130145 592__ $$a0.724$$b2023
000130145 591__ $$aWATER RESOURCES$$b40 / 128 = 0.312$$c2023$$dQ2$$eT1
000130145 593__ $$aAquatic Science$$c2023$$dQ1
000130145 591__ $$aENVIRONMENTAL SCIENCES$$b169 / 358 = 0.472$$c2023$$dQ2$$eT2
000130145 593__ $$aWater Science and Technology$$c2023$$dQ1
000130145 593__ $$aGeography, Planning and Development$$c2023$$dQ1
000130145 593__ $$aBiochemistry$$c2023$$dQ2
000130145 594__ $$a5.8$$b2023
000130145 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130145 700__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, Sergio$$uUniversidad de Zaragoza
000130145 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza
000130145 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000130145 773__ $$g15, 18 (2023), 3268 [15 pp.]$$pWater (Basel)$$tWater (Switzerland)$$x2073-4441
000130145 8564_ $$s4466228$$uhttps://zaguan.unizar.es/record/130145/files/texto_completo.pdf$$yVersión publicada
000130145 8564_ $$s2745219$$uhttps://zaguan.unizar.es/record/130145/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130145 909CO $$ooai:zaguan.unizar.es:130145$$particulos$$pdriver
000130145 951__ $$a2024-11-22-12:08:04
000130145 980__ $$aARTICLE