000130158 001__ 130158
000130158 005__ 20240319081008.0
000130158 0247_ $$2doi$$a10.1016/j.apcata.2022.118751
000130158 0248_ $$2sideral$$a130036
000130158 037__ $$aART-2022-130036
000130158 041__ $$aeng
000130158 100__ $$aRimaz, S.
000130158 245__ $$aInsights into catalyst structure, kinetics and reaction mechanism during propane dehydrogenation on Pt-Ge bimetallic catalysts
000130158 260__ $$c2022
000130158 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130158 5203_ $$aIn the present work, in-depth characterization techniques combined with kinetic analyses were used to develop a deep understanding of the remarkable catalytic performance observed during propane dehydrogenation (PDH) over Ge-promoted Pt/SiO2. Following our previous work on Pt-Ge/Al2O3, we found Ge to significantly affect Pt catalytic performance, reaction mechanism and kinetics, regardless of the nature of the support. The synthesized catalysts were characterized using XAS, XPS, TPR, TGA, C3H6/C3H8-TPD, HRTEM, CO-chemisorption, BET, and CO-DRIFT. Upon Ge promotion to Pt nanoparticles supported on a large, neutral, SiO2 surface area, the bimetallic samples showed higher activation energy, lower desorption energy of C3H6, lower coke formation rates, and higher C3H6 selectivity as compared to the results from using the unpromoted catalyst. Ruling out the neutral SiO2’s support effect, the kinetic study indicates the C3H8 reaction order remains close to 1 for all the samples, while the H2 reaction order decreases from 0.04 to - 0.52 with increasing Ge loading from 0 wt% to 5 wt%. According to the kinetic analysis, the ¿rst C-H bond cleavage seems to be the rate-determining step. The addition of Ge enhances the adsorption of hydrogen, which explains the change of the hydrogen reaction order and the apparent activation energy exhibited by the bimetallic samples.
000130158 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130158 590__ $$a5.5$$b2022
000130158 591__ $$aENVIRONMENTAL SCIENCES$$b71 / 275 = 0.258$$c2022$$dQ2$$eT1
000130158 591__ $$aCHEMISTRY, PHYSICAL$$b55 / 161 = 0.342$$c2022$$dQ2$$eT2
000130158 592__ $$a0.987$$b2022
000130158 593__ $$aProcess Chemistry and Technology$$c2022$$dQ1
000130158 593__ $$aCatalysis$$c2022$$dQ2
000130158 594__ $$a9.4$$b2022
000130158 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130158 700__ $$aKosari, M.
000130158 700__ $$aChen, L.
000130158 700__ $$aXi, S.
000130158 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, A.$$uUniversidad de Zaragoza
000130158 700__ $$aKawi, S.
000130158 700__ $$aBorgna, A.
000130158 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000130158 773__ $$g643 (2022), 118751 [11 pp.]$$pAppl. catal., A Gen.$$tAPPLIED CATALYSIS A-GENERAL$$x0926-860X
000130158 8564_ $$s2124794$$uhttps://zaguan.unizar.es/record/130158/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000130158 8564_ $$s2699832$$uhttps://zaguan.unizar.es/record/130158/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000130158 909CO $$ooai:zaguan.unizar.es:130158$$particulos$$pdriver
000130158 951__ $$a2024-03-18-14:50:21
000130158 980__ $$aARTICLE