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A B S T R A C T

The sustainability and decarbonization of processes in the steel industry are enhanced with the valorization of the gas generated during the
chemical reactions produced in blast furnaces. However, the combustion of blast furnace gas (BFG) faces the drawback of lower flame sta-
bility, which increases the chance of operation shifts towards abnormal conditions and even the flashback or extinction of the flame. Thus,
early detection and correction of regime deviations are needed to increase combustion efficiency, for which image-based systems have a
high potential. This work focuses on monitoring an industrial furnace for steelmaking processes based on estimating O

2
concentration in

flue gases using color images captured inside the combustion chamber. An experimental campaign was performed in a 1.2-MW burner to
develop the supervision system, using three fuel blends of BFG and natural gas. Images were processed to extract intensity and textural fea-
tures, which were used to train predictive models based on machine learning algorithms: logistic regression, support vector machines, and
artificial neural networks (multilayer perceptron). O

2
concentration in flue gases was correctly estimated for at least 97 % of all the test

samples and fuel blends. This study shows the potential of image-based systems for the automated control of BFG combustion at the indus-
trial scale.

1. Introduction

Steel is crucial in modern societies as the third most manufactured bulk material,
with 1.9 billion tons of world yearly production [1]. Steelmaking is also an energy-
intensive industry, accounting for 8 % of global energy demand and 7 % of CO2 direct
emissions from the worldwide energy system. Reducing these quantities is urgent for the
European Union, the second-largest steel producer. Consequently, Europe has ambitious
targets for steel decarbonization, cutting emissions by 55 % by 2030 and reaching cli-
mate neutrality by 2050. Several strategies can help achieve these objectives, such as
valorizing gaseous waste streams from the steel production processes. Blast furnaces,
used in the basic oxygen steelmaking process to reduce iron ore, are a significant source
of waste streams. Chemical reactions inside blast furnaces generate a by-product, the
blast furnace gas (BFG), which can be used as fuel in other steelmaking furnaces, reduc-
ing natural gas (NG) consumption.

BFG differs from traditional fuels in its large concentration of inert gases and low
calorific value. With a typical composition of 1–7 %vol. H2, 18–25 %vol. CO2, and
20–28 %vol. CO, balanced with N2 [2], BFG has a lower heating value (LHV) around
3.3 MJ/Nm3, one-tenth the calorific value of NG. Even though BFG reduces the thermal
energy released during combustion, it can be used in high-temperature processes (such
as steel reheating furnaces) by adopting multiple strategies. These solutions include its
mixture with NG or coke oven gas (COG) [3], preheating of the combustion air [4],
flameless combustion [5,6], and the use of several burner technologies (oxy-fuel, double
regenerative and regenerative flat flame) [7].

The combustion of BFG and low-calorific fuels has been analyzed in the past by sev-
eral numerical and experimental approaches. Regarding the steel industry, BFG and
other by-product combustion gases were analyzed by Caillat [3] for their use in reheat-
ing furnaces and annealing lines. The study discussed the constraints due to the by-
products' variable composition and physical properties. Cuervo-Piñera et al. [7] tested
three burner technologies (oxy-fuel, double regenerative, and regenerative flat flame)
for the combustion of BFG in steel reheating furnaces. The trials successfully proved the

operation of these furnaces with only BFG, supplying oxygen or meeting other specific
conditions. However, the economic viability of these alternatives should be checked for
each facility, considering fuel saving, oxygen consumption, burner replacement, and
retrofitting investment. The combustion of BFG/NG fuel blends was also simulated and
validated for a semi-industrial furnace in the steel sector [8]. The authors analyzed ve-
locity, temperature, OH and O2 concentrations, and NOx rate generation. The significant
differences in the LHV of the fuel blend modified combustion fluid dynamics, affecting
flow pattern, heat transfer, and temperature gradients in the furnace and, thus, process
quality. Other works also analyzed the BFG combustion more broadly outside the steel
industry. For instance, laminar flame characteristics were studied for several initial con-
ditions and fuel compositions [2]. Moreover, composition, temperature, and fuel-
switching effects were evaluated for the combustion stability of hot air heaters [4]. A
critical ambient temperature was maintained to achieve stable combustion, which can
be reduced by increasing the H2 proportion in the blend from 1 to 5 %vol. Furthermore,
mixtures of BFG and COG required a large concentration of BFG, higher than 80 %vol.,
to inhibit temperature oscillations.

Indeed, another consequence of the low LHV of BFG is the appearance of combus-
tion instabilities [2,4]. Thus, disturbances under regular furnace operation may cause
more severe deviations than other higher volumetric-energy density fuels. Early detec-
tion of these changes is essential to adjust the process quickly and reduce the period un-
der suboptimal conditions, optimizing the overall operation. Thus, monitoring fuel
blends with BFG is particularly interesting due to its lower combustion stability. In this
aspect, image-based systems are a promising alternative to detect early deviations when
burning fuels blended with BFG.

Image-based systems are essential in the state-of-the-art of combustion monitoring.
This technology relies upon acquiring flame images and their correlation with combus-
tion conditions. For example, images have been employed to estimate variables related
to the air–fuel equivalence ratio, such as the air ratio [9], combustion regimes [10,11],
and O2 concentration in flue gases ([O2]fg) [12]. In contrast to conventional sensors, a
single camera could simultaneously monitor several burners captured in the same pic-
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ture. To monitor the combustion, image-based systems perform several activities em-
ploying computer vision and machine learning (ML). Like other industrial problems,
these tasks can be categorized into image acquisition, pre-processing, segmentation, fea-
ture extraction, and interpretation [13]. ML techniques lead the interpretation step, in
which image features are transformed (modeled) into variables related to the combus-
tion process. Nowadays, ML provides a set of horizontal techniques for data analysis and
modeling. For example, in the field of combustion, ML has been used to predict opera-
tion parameters [14], exhaust gas temperature [15], emissions [16,17] and performance
[16–18]. Unlike most literature research, the application of computer vision and ML
techniques is limited for commercial camera systems installed in the industry. For exam-
ple, market tools do not include the interpretation step, which depends on a human
worker to analyze the information. Moreover, software suppliers generally do not in-
clude segmentation and feature extraction tools.

Image-based systems have also been used to monitor BFG combustion. Zheng et al.
[2] employed a high-speed camera to compute the laminar burning velocity of BFG fuel
blends. Earlier work by the authors [19–21] focused on image monitoring for steel in-
dustry applications. In this aspect, a preliminary study assessed the feasibility of com-
bustion monitoring with a color camera in an industrial furnace [19]. At the laboratory
scale, emission spectra, color, and radical images were captured and deeply analyzed for
optical supervision of BFG combustion, showing strong dependencies with BFG concen-
tration and equivalence ratio [20]. Furthermore, slight combustion variations were de-
tected with accuracies from 0.78 to 0.97, processing flame images and training predic-
tive models [21].

Nevertheless, monitoring BFG combustion at the industrial scale has not been stud-
ied in detail in the open literature. Therefore, image processing requires further analyses
to tackle differences between lab and industrial levels. This work focuses on that re-
search gap and proposes an image-based system to predict BFG combustion states to in-
crease steelmaking process efficiency and address industry particularities. Trials are per-
formed to analyze the new image processing with an experimental industrial furnace
and a 1.2 MW burner used in steel production. A commercial vision system with a trans-
fer device, cooling, and control unit acquired color images of flames, which are
processed to predict [O2]fg by ML algorithms. In addition, image processing is analyzed
for the optimum fuel blend under controlled emissions and transient temperature states.
The monitoring system is evaluated for three fuel blends under steady emissions and
temperature conditions.

In this work, natural gas was used as a baseline, and two blends (70 and 80 BFG
%vol.) were studied. These blends are extracted from the blast furnace line of the As-
turias plant and are used by ArcelorMittal in their industrial processes to reduce natural
gas consumption. The study will aid in promoting higher valorization of BFG and lower
NG consumption in steelmaking industries. This contributes to reducing the pollutant
emissions from fossil fuels, while a subproduct of the steel production process is val-
orized within the same plant where it is produced. From a global perspective, large
amounts of process gas (BFG), which can be used as fuel in steel production processes,
are available at steel production plants [22]. For the case of the ArcelorMittal Asturias
plant, it has been estimated that the use of the whole amount of BFG in the steel produc-
tion processes would involve a reduction of 52.8 kWh per ton of steel produced, with
savings of 2.6 € per ton of steel and a decrease of 13.2 kg of CO2 equivalent per ton of
steel.

2. Material and methods

2.1. Experimental setup

The results presented in this work were obtained during a test campaign performed
in an industrial testing furnace installed in the facilities of the ArcelorMittal Asturias
plant in Spain (Fig. 1). The combustion chamber has the following dimensions: 4.6 m in
length, 1.5 m in width, and 2.8 m in height. The furnace accepts different burners up to
1.2 MW of thermal input power and maximum working temperatures of around

1350 °C. These burners can be fueled with NG and with the off-process gases produced in
the plant (COG and BFG). Using the same fuels as in the large plant ensures realistic re-
sults and avoids issues related to changes in gas composition at different scales. This
way, the solution can be scaled up to other plant furnaces without this problem [8].

In the experimental trials, a diffusion burner is employed (Fig. 2). It allows the use of
various gaseous fuel blends utilizing different fuel and air injection configurations. In
particular, the burner has one central lance, two side lances for fuel, and multiple air in-
lets.

A water circuit with six semi-circular lances simulates the heat transferred from an
industrial furnace to a steel strip. The water enters the circuit through the nearest lance
to the burner and increases in temperature as it flows through the other conducts. At the
end of the circuit, a fluid cooler reduces the water temperature before being reintro-
duced to the lances. The furnace has a control and data acquisition system for registering
flow, temperatures, pressure, oxygen concentration in flue gases ([O2]fg), and pollutant
emissions (CO, NOx, SO2, and CO2). Five thermocouples measure combustion chamber
temperature (Tcc) at different locations. The furnace can be configured to work with dif-
ferent gaseous blends and allows testing different configurations, such as preheated
combustion air and O2 injection.

Fuels with different compositions are tested in the experimental furnace. They are
identified as 100 %vol. NG (BFG0), 30 %vol. NG and 70 %vol. BFG (BFG70), and
20 %vol. NG and 80 %vol. BFG (BFG80). BFG0 and BFG70 were also studied in a previ-
ous work [8]. BFG is extracted, filtered, and fed to the furnace directly from the plant’s
blast furnaces. Its composition is subjected to variability, influenced by the chemical
processes inside the blast furnace [7]. A typical composition and LHV of the fuel blends
are shown in Table 1.

The increase of BFG share in the fuel blend reduces NG consumption, leading to sav-
ings in fossil fuel consumption. However, higher concentrations of BFG raise difficulties
in reaching the high temperatures needed during the steel production process. Addition-
ally, the lower calorific value of BFG requires higher gas flow rates to meet the thermal
energy demands, which could potentially result in operational issues in larger furnaces.
Therefore, the use of BFG in the fuel blend is limited, and a certain NG share is required
to ensure a stable operation. Considering this, BFG70 was defined as the optimum fuel
blend. BFG80 was studied as an operative but suboptimal fuel, while BFG0 was analyzed
as a baseline.

A commercial camera system was deployed inside the furnace through a viewing
port in front of the burner. The devices included a BASLER BIP2-1920c color camera.
The camera has a CMOS sensor, which provides a resolution of 2 MP at 30 frames per
second. The camera is protected by a water-cooled metallic case installed on a SOBOTTA
automatic transfer device which allows the introduction and extraction of the system in-
side the furnace. This device protects the optical system by retracting the camera from
the furnace when detecting harmful temperatures or system malfunctions.

The image acquisition parameters of the camera were fixed during all the trials to
obtain equivalent and comparable images. As a first step, the configuration of the expo-
sure time was optimized by analyzing images and histograms under different conditions,
avoiding under- or over-exposed images under any condition.

A data acquisition software recorded the images synchronously to measured vari-
ables (process information such as furnace temperatures, gas/air flow rates, pollutants
or oxygen concentrations).

2.2. Methods

This section includes the methodology used in the research for furnace operation
and flame processing.

2.2.1. Furnace operation
The furnace was pre-heated before the tests to reach steady conditions for emissions

and temperature. Temperature was evaluated by averaging the measures of Tcc on five
different points. Flue gas emissions stabilized thirty minutes after the start, but the tem-

Fig. 1. The ArcelorMittal experimental furnace used for the tests [23].

2



CO
RR

EC
TE

D
PR

OO
F

P. Compais et al. Fuel xxx (xxxx) 130770

Fig. 2. View of the diffusion burner installed in the furnace.

Table 1
Fuel blends typical composition.
Fuel blend BFG0 BFG70 BFG80

[CH4] (%vol.) 92 28 18
[C2H6] (%vol.) 8 2 2
[N2] (%vol.) – 34 39
[CO] (%vol.) – 16 18
[CO2] (%vol.) – 15 18
[H2] (%vol.) – 3 3
[H2O] (%vol.) – 1 1
[O2] (%vol.) – 1 1
LHV (MJ/Nm3) 38 14 10

perature remained transient. When the heating reached 8 h, both emissions and temper-
ature were constant. These two working conditions were labeled steady emissions and
transient temperature (SETT) and steady emissions and steady temperature (SEST). The
fuel flow rate (and, consequently, the calorific power rate introduced) was constant for
each fuel blend. In contrast, the air-flow rate was slightly modified to reach different op-
eration conditions. This resulted in different amounts of excess oxygen in flue gases

Table 2
Summary of the experimental tests.
Campaign EXP1 EXP2 EXP3 EXP4

Working condition SEST SEST SEST SETT
Fuel blend BFG0 BFG70 BFG80 BFG70
Combustion mode Regular Regular Flameless Regular
[O2]fg,1 (%vol.) 0 0 0 1
[O2]fg,2 (%vol.) 1 1 1 2
[O2]fg,3 (%vol.) 5 5 5 3
[O2]fg,4 (%vol.) – – – 4
[O2]fg,5 (%vol.) – – – 5

([O2]fg), depending on the blend composition and the combustion stoichiometry. Table 2
lists the tests' working conditions, fuel blends, combustion modes, and [O2]fg concentra-
tions in flue gases.

Each fuel blend under SEST conditions was tested for 0, 1, and 5 %vol. [O2]fg (sub-
stoichiometric, near-stoichiometric and over-stoichiometric conditions). Moreover,
BFG70 was studied under SETT state for 1, 2, 3, 4, and 5 %vol. [O2]fg.Fuel was injected through the central lance for all tests except for BFG80. Main and
side burner lances were employed to improve the burner operation with that fuel blend,
which implies different combustion modes. In this configuration, the reactants were
strongly diluted with combustion products, and the burner operated in a flameless mode
[5]. Flameless combustion is also known as moderate or intense low oxygen dilution
(MILD), and it has a more significant reaction zone throughout the combustor volume.
This distribution promotes a reduction in peak flame temperature and NOx emissions [5,
24]. The term “flameless” indicates that flames have a lower visibility than conventional
flames, but the human eye may still detect them in some cases [24]. For instance, Reddy
et al. [25] and Yetter et al. [26] recognized flames under flameless conditions.

Air was preheated at 485 ± 35 °C (21 %vol. O2 concentration), fuel thermal power
varied around 920 ± 15 kW, and Tcc around 1285 ± 75 °C. The tests for the three fuel
blends provided the same thermal power by modifying the fuel flow rate three to four
times higher for BFG70 and BFG80, respectively, compared to BFG0. A 10-minute video
was captured during each test, and 1875 flame images were analyzed with an approxi-
mate frame rate of 3 images per second. For example, fourteen video fragments (one per
test) of 1 s each are available as supplementary material. All the fragments are en-
closed in a single video, which includes text in each frame to define the associated work-
ing condition, fuel blend, and [O2]fg.

2.2.2. Flame processing
Methods for processing flame images are partially based on the feature extraction

and interpretation methodology detailed in previous work [21]. However, a significant
modification is introduced to adapt the system to the industrial scale by removing the
flame-segmentation step.

For the visual monitoring of combustion, flame segmentation is an alternative that
can be applied before the feature extraction step. However, its use is not extended to all
cases. Flame segmentation classifies image pixels into flame and non-flame groups, en-
abling the extraction of characteristics from only flame pixels. For instance, Mathew et
al. [27] and Katzer et al. [28] employed thresholding to segment flames. Without flame
segmentation, features are extracted from the whole image [9,12]. Other works based on
deep learning did not perform an explicit flame segmentation, although it could be im-
plicitly included to some extent in the layer operations [10,11]. Bai et al. [9] remarked
on the complexity of defining flame boundaries, which can be inaccurate and lead to low
performance in monitoring. Identifying the flame body could be easier for flames with
more stability and simpler geometry. This is the case of previous authors’ work [20], in
which flames had a simpler and similar geometry for different combustion conditions.
However, image flames processed by Bai et al. [9], Abdurakipov et al. [10], Han et al.
[11], and Yang et al. [12] were more diffuse and variable. Therefore, their segmentation
could be more complex. Furthermore, the difficulty of flame segmentation also depends
on the image background and the appearance of other non-flame elements. For instance,
in the studies of Bai et al. [9], Abdurakipov et al. [10], and Han et al. [11], the back-
ground was empty, and thus, the classification of pixels into flame and non-flame groups
could be more straightforward. Nevertheless, in [19], flames appeared over the furnace
background.

To sum up, the complexity of flame segmentation depends on the use case consid-
ered in each study. The present research focuses on the same industrial furnace and simi-
lar flue blends from the work of Compais et al. [19]. Therefore, segmentation would
have the challenge of identifying flames from the furnace background. Moreover, a pre-
liminary inspection of the furnace operation ensured the diffuse and variable geometry
of the flames, which would increase the segmentation complexity even more. Thus, due
to the high risk of inaccurately identifying flames and lowering the monitoring perfor-
mance, the present research modifies the procedure of Compais et al. [21] by removing
the flame-segmentation step. This more straightforward method could be more suitable
for future implementation of the monitoring system at the industrial level, in which un-
seen flame images and combustion conditions may appear over time.

The flame processing used in this research is summarized in Fig. 3. It consists of ex-
tracting 51 features and their interpretation to predict [O2]fg. Flame segmentation is not
applied, and image variables are computed from the whole image.

Regarding the feature extraction step, a wide range of image characteristics can be
considered for combustion analysis. Standard features are based either on intensity [9,
27–29], geometry [28], or texture measures [9,12]. Intensity and texture characteristics

Fig. 3. Method for the processing of flame images.
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can be extracted from the entire image or specific flame pixels. Geometry features gener-
ally calculate properties of the flame body, such as length and area [28], and therefore,
they require the application of flame segmentation. Usually, each study manually selects
a limited group of features tailored to its use case. This work computes a subset of the
characteristics from the work of Compais et al. [21], including only those of intensity
and textural type. Geometrical features are not analyzed because the present work does
not apply flame segmentation. The feature subset comprises 51 variables per color im-
age, and the extraction method is shown in Fig. 4.

The three-color channels of the image (red, green, and blue) are considered sepa-
rately, analyzing their corresponding monochrome images. Each color channel is
processed to extract four intensity features (mean, standard deviation, skewness, and
kurtosis of the pixel intensities [21,29]) and compute its gray level co-occurrence matrix
(GLCM). This matrix is employed to define thirteen textural features selected from the
work of Haralick et al. [30] and also used in other studies [9,21].

Predictive models estimate combustion conditions based on image properties in the
final interpretation processing step. With that purpose, the present work uses the same
ML method described in [21] to train and test models based on the experimental cam-
paign performed at an industrial scale. The procedure comprises analysis of variance
(ANOVA) F-tests for feature selection and nested cross-validation (CV) for hyperparame-
ter tuning and performance evaluation. The same ML algorithms analyzed in [21] are
tested at an industrial scale in the current work.

Three ML algorithms are studied: logistic regression (LR) [10,11], support vector
machines (SVM) [9–11], and artificial neural networks (ANN) [9–11]. A multilayer per-
ceptron (MLP) is defined for the latter with a single hidden layer of 100 neurons. Flame
images are labeled according to their associated [O2]fg, and the models classify them into
three or five discrete [O2]fg values. The whole set of images of each experimental cam-
paign is split into training and test sets. The training set is used to automatically select a
subset of image characteristics as input, tune hyperparameters, and evaluate the perfor-
mance of the ML algorithms. Finally, the best algorithm is assessed again, employing the

test set. The input subsets of image features include the ten variables with the highest
variance for the [O2]fg classes. These characteristics are selected using ANOVA F-tests.
The hyperparameter tuning and performance evaluation of the training set are imple-
mented in a nested CV procedure. An outer CV of ten folds splits the training set into ten
pairs of training and validation subsets. The accuracy of each training and validation
subset is computed and averaged for each ML algorithm. For each training subset, model
hyperparameters are selected with an inner CV of five folds. The training subset is split
into five pairs of training and validation subsets, for which several combinations of hy-
perparameters were evaluated with the model’s accuracy. After the nested CV, the ML
algorithm with the best performance is analyzed in more detail by computing its confu-
sion matrixes for the validation subsets of the four experimental campaigns. Next, the
chosen ML algorithm is re-evaluated with the test set, measuring its test accuracy and
comparing it with the achieved for training and validation.

Python is used as a programming language (version 3.7) to develop the code for im-
age processing and predictive models. The following libraries are also employed:
OpenCV, Scikit-learn, NumPy, SciPy, Mahotas, and Pandas.

3. Results and discussion

3.1. Flame images for the working conditions, fuel blends, and [O2]fg

Fig. 5 shows flame images captured for SEST conditions and the fuel blends of BFG0,
BFG70, and BFG80 at different [O2]fg. In the case of BFG70, images captured for SETT
were also studied (Fig. 6). For each working condition (SEST or SETT), fuel blend and
[O2]fg, Fig. 5 and Fig. 6 include a single image, which corresponds to the first frame cap-
tured in its associated test. Therefore, the images shown were captured at least 8 h or
30 min apart from each other, which are the required time intervals to achieve SEST or
SETT conditions, respectively.

Fig. 4. Method for feature extraction of flame images.

Fig. 5. Flame images for SEST and (a) BFG0, (b) BFG70, and (c) BFG80.
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Fig. 6. Flame images for SETT and BFG70 with [O
2
]

fg
of (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5 %vol.

The red color channel predominates over blue and green in diffusion flame images.
While premixed flames are bluish and dominated by chemiluminescence, diffusion
flames are orangish and characterized by their soot emission [31]. Soot particles emit
blackbody radiation [32], ideally described by Planck’s law [33]. According to this law,
an object at a higher temperature emits higher radiation. Indeed, soot temperature and
volume fraction can be retrieved from flame images [34]. The longer period of furnace
preheating under SEST conditions caused higher Tcc (Fig. 7) and generated brighter im-
ages (Fig. 5.e and Fig. 5.f) than SETT ones (Fig. 6.a and Fig. 6.e). In contrast to premixed
flames, the color of diffusion flames has a lower dependence on the reactant composition
and equivalence ratio [35]. Still, this work detected differences under SEST conditions.

Flames had significantly lower visibility for the fuel blend of BFG70 and BFG80 con-
cerning BFG0. In particular, BFG70 flames in static images were hardly visible to the hu-
man eye. In contrast, its capture on video helped their recognition due to the detection of
variations in the flame geometry and location in the furnace. The lower visibility of
flames for BFG70 and BFG80 is caused by the large volume fraction of inert gases in the
fuel, with around 35 %vol. and 15 %vol. of N2 and CO2 concentrations, respectively. A
similar behavior was detected in [32], where the OH* chemiluminescence peak was re-
duced when the N2 dilution for CH4 diffusion flames was increased. BFG80 images (Fig.
5.g, Fig. 5.h, and Fig. 5.i) also captured the widespread distribution of flames, which is
characteristic of flameless combustion.

[O2]fg was related to Tcc, as shown in Fig. 7. In this work, [O2]fg of 1 %vol. corre-
sponds to near-stoichiometric conditions (where air and fuel flow rates were fixed to
produce stoichiometric combustion). Therefore, concentrations below or above that
value are related to sub-stoichiometric or over-stoichiometric conditions, respectively.
Considering this, temperature trends in Fig. 7 follow the expected behavior of adiabatic
flame temperature concerning air–fuel equivalence ratio, reaching maximum tempera-
ture for near-stoichiometric conditions.

The brightness of the image increased when the operation moved toward stoichio-
metric conditions. Both significant and slight image changes were reported based on the
temperature variations. For SEST conditions and the same fuel blend, images differed
significantly between 1 and 5 %vol [O2]fg. This behavior was slighter for SETT condi-
tions, which reached lower Tcc than the SEST regime. Furthermore, in all the tests, im-
ages were similar for variations of [O2]fg around 1 %vol.

3.2. Selection of image characteristics for the estimation of [O2]fg

As described in the methods for flame processing, the initial set of 51 features was
manually selected based on the state of the art. To summarize, previous works have
monitored combustion with intensity [21,29] and texture features [9,21] considered in
this work. The image properties used in this work have been validated for the flame
characterization of similar fuel blends at lab scale [21].

From the total of 51 image properties, a subset of ten features was selected using
ANOVA F-tests. This analysis measured the variance of image features with [O2]fg. Criti-
cal F-values were computed for each experimental campaign with a 0.05 confidence
level, resulting in 3.00 (SEST) and 2.37 (SETT). The critical F-value was the same for the
tests with SEST conditions because they included the same population (classes of O2 con-
centration in flue gases) and number of samples (flame images per experimental cam-
paign). All the F-values of image features were at least an order of magnitude higher
than the critical F-value of their experimental campaign. Therefore, the classes of [O2]fgaffected the mean values of every extracted image feature for regular and flameless com-
bustion. This result proves that the application of flame segmentation was not necessary
for these use cases since characteristics from the whole image are effective descriptors of
the [O2]fg.The subset of ten image features with higher F-values was used for each experimen-
tal campaign to feed predictive models. All the subsets comprise characteristics from the
two types of features (intensity and textural) and three-color channels (red, green, and
blue), except for SETT. For the latter tests, properties were not computed from the blue
channel. In particular, the mean intensity of the pixel values for the red channel had a
significant role in all the subsets (Fig. 8). The general behavior of this image feature
matched the brightness and temperature changes previously discussed (Fig. 5, Fig. 6 and
Fig. 7).

3.3. Evaluation of predictive models for the estimation of [O2]fg

Predictive models were adjusted to estimate [O2]fg based on the subsets of ten image
features. Three different ML algorithms (LR, SVM, and MLP) were studied for each fuel

Fig. 7. T
cc

during the experimental tests.
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Fig. 8. Image feature of red mean versus [O
2
]

fg
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

blend. A nested CV was employed to train and validate the predictive models and tune
hyperparameters, achieving significant accuracies (Table 3).

Predictive models reached validation accuracies around 0.995, which were lowered
to 0.960 for the fuel blend of BFG70 and SEST conditions. Similar results were obtained
for the three ML algorithms. However, SVM provided the highest accuracy in all the
cases, outperforming ANN, as in [21] and [36]. The higher performance of a specific al-
gorithm could be promoted by its particular characteristics. While LR fits a probability
model based on logistic functions, SVM adjusts a hyperplane between classes, maximiz-
ing the margin between them. By contrast, MLP is a feed-forward artificial neural net-
work, whose neurons are trained by back-propagation. However, the reduced difference

Table 3
Validation accuracies of the predictive models for estimating [O2]fg.
Campaign EXP1 EXP2 EXP3 EXP4

Working condition SEST SEST SEST SETT
Fuel blend BFG0 BFG70 BFG80 BFG70
LR (accuracy) 0.9920 0.9666 0.9970 0.9998
SVM (accuracy) 0.9936 0.9671 0.9980 0.9999
MLP (accuracy) 0.9866 0.9640 0.9962 0.9998

in accuracy between the algorithms (below 1 %) limits the extrapolation of SVM as the
best choice. Generalizability, and interpretability (black-box nature) are advanced re-
search lines for ML techniques applied to combustion [37].

Fig. 9 shows the confusion matrixes of the predictive models based on that algo-
rithm, for the validation subsets of all the experimental campaigns. According to the
confusion matrixes, the predictive models achieved a balanced behavior, reaching high
accuracies (0.9489 as a minimum) for all the [O2]fg classes, fuel blends, and working
conditions.

As a final evaluation, predictive models were adjusted employing the whole training
set and the SVM algorithm. Hyperparameters were defined according to the best results
of the nested CV, which were a linear kernel, a regularization term of 10 for the three ex-
perimental campaigns for SEST, and a regularization term of 0.1 for the tests of SETT. Fi-
nally, the accuracy of the models was measured for the test set. The training, validation,
and test accuracy of the predictive models based on SVM are compared in Fig. 10.

The accuracy of the predictive models had a similar behavior for training, valida-
tion, and test sets without a significant influence of overfitting or underfitting. The pre-
dictive models achieved a high accuracy in estimating [O2]fg based on flame images, al-
though images may have slight variations that the human eye cannot perceive between
different conditions. Furthermore, predictions were accurate even for low-visibility
flames during regular or flameless combustion and transient conditions. Thus, automa-

Fig. 9. Confusion matrixes of the predictive models based on SVM for the validation subsets of (a) SEST BFG0, (b) SEST BFG70, (c) SEST BFG80 and (d) SETT BFG70.
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Fig. 10. Training, validation, and test accuracies of the predictive models based on SVM.

tion methods can enhance the visual monitoring of the combustion supervised by hu-
mans.

4. Conclusions

In this study, the combustion monitoring in the steel sector was analyzed by acquir-
ing color images from the flames of an experimental industrial furnace with a diffusion
burner. Predictive models were adjusted to estimate the [O2]fg based on intensity and
textural characteristics extracted from the images. This monitoring was developed for
tests with a fixed thermal power of 925 kW, two stability conditions (steady and tran-
sient temperature), and three fuel blends (BFG0, BFG70, and BFG80) obtained by mixing
NG with BFG. Predictive models were fed by subsets of the computed image features, de-
fined by ANOVA F-tests, and comprised the characteristics of a higher variance with
[O2]fg. Three ML algorithms (LR, SVM, and ANN-MLP) were studied for the predictive
models. The accuracy of the algorithms was evaluated by employing training-test split
and nested CV.

The main conclusions of this research are as follows.

• Color images were affected by the combustion conditions analyzed. Image
brightness increased for higher Tcc, related to lower BFG share in the fuel and
[O2]fg closer to 1 %vol. Moreover, adding BFG to NG reduced flame visibility.

• Intensity and textural characteristics from the three-color channels of the images
were highlighted as descriptors of [O2]fg without requiring the application of flame
segmentation.

• Predictive models fed by the image characteristics reached high accuracies
during training, validation, and testing, with adequate behavior without
overfitting or underfitting and a minimum value of 0.96. The use of different ML
algorithms (LR, SVM, or ANN) did not significantly affect the results, which were
slightly better for SVM.

• Predictive models accurately estimated variations in [O2]fg during regular and
flameless combustion, even when images had minor variations between them. This
way, the visual monitoring of combustion performed by humans can be improved.

The current research sets the stage for automated flame monitoring at an industrial
scale. The detection of changes in the combustion conditions allows for the correction of
deviated parameters, helping to optimize the processes and avoid the appearance of crit-
ical instabilities. The results obtained in this study demonstrate high precision for the
case analyzed in an industrial test facility incorporating an industrial burner commonly
used in steel manufacturing processes. This facility’s process conditions and image qual-
ity were optimal for model training and development. However, using raw material in-
side the furnace instead of simulated load could affect the accuracy of the models. The ir-
radiance from the steel load could interfere with the image or create fumes or particles
inside the furnace, which may require additional preprocessing.

Further developments should focus on applying the models to industrial furnaces,
such as reheating or annealing furnaces, where multiple burners can be captured in a
single image. Overall air and fuel flow rates are typically measured in these furnaces,
making it challenging to detect imbalances if there are several burners. Applying the
models developed in this work to the different burners could provide a valuable moni-
toring tool, potentially reducing maintenance costs when residual streams are used as
fuel. For this application, other challenging aspects of image processing are expected,
like the separate segmentation of each burner or interferences of the combustion of the
different burners in the same field of view. Nevertheless, industrial furnaces offer inter-
esting possibilities for camera installation and image acquisition, as external viewing

ports, which can reduce investment costs, or the installation in optimal locations to mon-
itor the areas of interest.
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