Solar-driven calcium looping in fluidized beds for thermochemical energy storage
Resumen: Integration between Concentrated Solar Power (CSP) and Calcium Looping (CaL) is gaining consideration in the perspective of large shares of renewable energy sources, to smooth the variability of non-dispatchable energy input. The scope of this study is to investigate the CaL process for ThermoChemical Energy Storage (TCES), by performing a dedicated experimental campaign in fluidized bed under realistic process conditions suitable for CaL-CSP integration. Chemical deactivation of the limestone-based sorbent has been assessed by measuring the extent of Ca carbonation along iterated calcination/carbonation cycles, correlated with physico-chemical characterization of the sorbent at selected stages of the conversion. Properties that have been scrutinized were particle size distribution, bulk density, and particle size, density, and porosity of bed solids. The attainable values of energy storage density were evaluated as well. A remarkable finding of the experimental campaign is the pronounced synergistic deactivation of limestone when it is co-processed with silica sand. Chemical interaction of CaO with the silica sand constituents at the process temperatures has been scrutinized as possible responsible for the loss of reactive CaO toward CO2 uptake. Post-process of particle density data, together with N2-intrusion porosimetric analysis, and quantitative and qualitative XRD analyses, suggests that the sand/lime interaction induces a strong reduction of the total and reactive sorbent porosity and, in turn, of reactivity. Density-based classification to separate converted and unconverted limestone particles after the carbonation step has been evaluated with the goal of increasing process efficiency, by avoiding the circulation of streams with unreacted particles through the plant. For this purpose, the minimum fluidization velocity of calcined and carbonated particles has been measured after each reaction step at the relevant process temperature.
Idioma: Inglés
DOI: 10.1016/j.cej.2023.142708
Año: 2023
Publicado en: Chemical Engineering Journal 466 (2023), 142708 [14 pp.]
ISSN: 1385-8947

Factor impacto JCR: 13.3 (2023)
Categ. JCR: ENGINEERING, ENVIRONMENTAL rank: 3 / 81 = 0.037 (2023) - Q1 - T1
Categ. JCR: ENGINEERING, CHEMICAL rank: 7 / 170 = 0.041 (2023) - Q1 - T1

Factor impacto CITESCORE: 21.7 - Chemical Engineering (all) (Q1) - Environmental Chemistry (Q1) - Industrial and Manufacturing Engineering (Q1) - Chemistry (all) (Q1)

Factor impacto SCIMAGO: 2.852 - Chemical Engineering (miscellaneous) (Q1) - Industrial and Manufacturing Engineering (Q1) - Environmental Chemistry (Q1) - Chemistry (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU17-03902
Financiación: info:eu-repo/grantAgreement/ES/MICIU EST19-00144
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-07-31-09:48:32)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-01-23, última modificación el 2024-07-31


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)