000130191 001__ 130191 000130191 005__ 20241125101139.0 000130191 0247_ $$2doi$$a10.1364/OL.491481 000130191 0248_ $$2sideral$$a134169 000130191 037__ $$aART-2023-134169 000130191 041__ $$aeng 000130191 100__ $$0(orcid)0000-0003-3178-5253$$aTorcal-Milla, F. J.$$uUniversidad de Zaragoza 000130191 245__ $$aModified Mach–Zehnder interferometer for spatial coherence measurement 000130191 260__ $$c2023 000130191 5060_ $$aAccess copy available to the general public$$fUnrestricted 000130191 5203_ $$aSpatial coherence of light sources is usually obtained by using the classical Young’s interferometer. Although the original experiment was improved upon in successive works, some drawbacks still remain. For example, several pairs of points must be used to obtain the complex coherence degree (normalized first-order correlation function) of the source. In this work, a modified Mach–Zehnder interferometer which includes a pair of lenses and is able to measure the spatial coherence degree is presented. With this modified Mach–Zehnder interferometer, it is possible to measure the full 4D spatial coherence function by displacing the incoming beam laterally. To test it, we have measured only a 2D projection (zero shear) of the 4D spatial coherence, which is enough to characterize some types of sources. The setup has no movable parts, making it robust and portable. To test it, the two-dimensional spatial coherence of a high-speed laser with two cavities was measured for different pulse energy values. We observe from the experimental measurements that the complex degree of coherence changes with the selected output energy. Both laser cavities seem to have similar complex coherence degrees for the maximum energy, although it is not symmetrical. Thus, this analysis will allow us to determine the best configuration of the double-cavity laser for interferometric applications. Furthermore, the proposed approach can be applied to any other light sources. 000130191 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E44-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113303GB-C22 000130191 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000130191 590__ $$a3.1$$b2023 000130191 592__ $$a1.04$$b2023 000130191 591__ $$aOPTICS$$b37 / 119 = 0.311$$c2023$$dQ2$$eT1 000130191 593__ $$aAtomic and Molecular Physics, and Optics$$c2023$$dQ1 000130191 594__ $$a6.6$$b2023 000130191 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000130191 700__ $$0(orcid)0000-0001-7930-272X$$aLobera, J.$$uUniversidad de Zaragoza 000130191 700__ $$0(orcid)0000-0003-1183-7052$$aRoche, E. M. 000130191 700__ $$0(orcid)0000-0002-8451-0942$$aLopez, A. M.$$uUniversidad de Zaragoza 000130191 700__ $$0(orcid)0000-0003-1955-6714$$aPalero, V.$$uUniversidad de Zaragoza 000130191 700__ $$0(orcid)0000-0003-2639-3562$$aAndres, N.$$uUniversidad de Zaragoza 000130191 700__ $$0(orcid)0000-0001-5935-897X$$aArroyo, M. P.$$uUniversidad de Zaragoza 000130191 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada 000130191 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac. 000130191 773__ $$g48, 12 (2023), 3127-3130$$pOpt. lett.$$tOptics Letters$$x0146-9592 000130191 8564_ $$s1285480$$uhttps://zaguan.unizar.es/record/130191/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2024-06-30 000130191 8564_ $$s3032200$$uhttps://zaguan.unizar.es/record/130191/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2024-06-30 000130191 909CO $$ooai:zaguan.unizar.es:130191$$particulos$$pdriver 000130191 951__ $$a2024-11-22-12:02:02 000130191 980__ $$aARTICLE