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Estudio tridimensional mediante el Método 

de Elementos Finitos del efecto de las 

pantallas magnéticas cilíndricas aplicadas a 

conductores de sección rectangular 

 

RESUMEN 

 

En este trabajo se han desarrollado modelos tridimensionales de pletinas conductoras y 

pantallas cilíndricas con el objetivo de observar cómo las líneas de campo magnético son 

reorientadas y poder generalizar los resultados, y hacer una parametrización. El destino final 

del estudio son los instrumentos de medida de corriente eléctrica basados en sensores de 

efecto Hall y magnetoresistivos. También podría pensarse en aplicaciones en las que las barras 

conductoras de los sistemas trifásicos transportan corrientes de muy alta intensidad donde las 

interacciones mutuas pueden provocar efectos indeseados. 

Para el cálculo numérico de los modelos tridimensionales se ha utilizado el Método de los 

Elementos Finitos. Las simulaciones son magnetostáticas, por lo que se han despreciado los 

efectos tanto pelicular como de proximidad. Se ha empleado el programa TOSCA contenido en 

el conjunto de programas OPERA 3D de Vector Fields. 
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1. Introducción general al problema y el Método de los 

Elementos Finitos  

En el presente documento analizo modelos tridimensionales de núcleos y pantallas 

magnéticas, y de forma específica, cómo el factor de forma de las pletinas conductoras 

modifica y determina las líneas de campo magnético y los problemas consecuentes al 

apantallamiento de éstas. Parto del trabajo previo realizado en su tesis por el doctor Antonio 

Usón, del Departamento de Ingeniería Eléctrica de la Universidad de Zaragoza [USO_07], en el 

cual se abarcan muchas de las diferentes posibilidades en torno al estudio numérico mediante 

el Método de los Elementos Finitos (MEF) aplicado al análisis de instrumentos de medida de 

corriente eléctrica. En su documento, su intención no era otra sino proponer soluciones al 

error cometido por los aparatos de metrología eléctrica (pinzas amperimétricas) mediante la 

modelización virtual de estos reduciendo en lo posible la construcción de prototipos y 

utilización del laboratorio. 

Con su trabajo como punto de partida, he analizado pletinas conductoras de diferentes 

dimensiones, parametrizadas según un factor de forma geométrico y cómo se ve afectado el 

apantallamiento magnético según dicho factor de forma, es decir, las proporciones 

geométricas de la pletina conductora. Utilizando diferentes materiales ferromagnéticos para el 

apantallamiento, se aprecian notorias divergencias entre los resultados, para concluir cómo la 

geometría de las secciones de los conductores tiene un peso fundamental sobre las líneas de 

campo producidas por el tránsito de la corriente y cómo pueden modificarse con estructuras 

de apantallamiento pasivo 

Para la realización de los modelos y su correspondiente resolución numérica, se ha utilizado el 

programa comercial OPERA-3D, comercializado por la empresa Vector Fields, Ltd., el cual 

proporciona potentes herramientas tanto para la realización de modelos tridimensionales 

como en procedimiento numérico. Para lo primero, el módulo Modeller o pre-procesador ha 

sido el elegido y para el cálculo numérico, TOSCA, que fue originalmente creado por C.W. 

Trowbridge y J. Simkim [SIM 79] y permite la resolución de problemas magnetoestáticos. Por 

último, en cuanto al análisis de los resultados, visualización y conclusión, se ha utilizado el 

Post-Procesador insertado en OPERA-3D. Cabe añadir que todo análisis en el presente trabajo 

es magneto-estático, por lo que no se tiene en cuenta el posible efecto de las corrientes 

parásitas u otros factores derivados de la variación temporal del campo magnético. Los 

conductores serán siempre rectos, perpendiculares al plano de la pantalla y de longitud 

infinita. 

 

 

 

 

 



Estudio tridimensional mediante el MEF del efecto de pantallas magnéticas cilíndricas aplicadas a conductores de sección 
rectangular 

 

5 
 

f c  6

f c  8 f c  1 0

a = 4 mm.

b = 4 0 mm.

a = 5 mm.

b = 30 mm.

a = 5 mm.

b = 4 0  mm.

2.   Geometría del campo magnético y el factor de forma 

2.1.  Introducción al problema y geometría de las pletinas conductoras 

En este trabajo, basado en la geometría de los conductores rectangulares (pletinas 

conductoras), he definido el factor principal inherente a éstas y sobre el que girará todo el 

estudio: el factor de forma (FC), cantidad adimensional que me permitirá realizar un estudio 

paramétrico. En el caso de una geometría conductora rectangular no se conoce solución 

analítica al campo magnético, de tal manera que el MEF es la herramienta que arroja luz sobre 

los diferentes casos. 

El término apantallamiento no es el más adecuado, ya que por la Ley de Ampère, el 

debilitamiento o disminución de las líneas de campo más allá de la pantalla pasiva es 

imposible, al proceder de una corriente eléctrica que circula por el interior. No obstante, lo 

que pretenderé demostrar en mi trabajo es que dichas líneas de campo pueden reorientarse 

concéntricamente mediante el uso de una pantalla magnética. Una aplicación final del estudio 

sería, por ejemplo, la simplificación del tratamiento de la señal en instrumentos que miden la 

corriente con arrays de sensores magnéticos situados en aire alrededor de los conductores, 

como las descritas en [BAZ_00]. 

Por otra parte, el FC de las pletinas, al que numéricamente denominaré Nf, queda establecido 

como la relación entre las dos dimensiones del perfil del conductor,  

    
                   (1) 

con a la longitud de la arista menor y b la longitud de la arista mayor. 

En mi trabajo considero así tres pletinas con sus correspondientes factores de forma a 

estudiar: 30 mm x 5 mm (Nf =6), 40 mm x 5 mm (Nf  = 8) y 40 mm x 4 mm (Nf  = 10). 

 

 

 

 

 

 

 

 

 

 

Fig 1 Visualización transversal de la superficie conductora de los diferentes modelos de pletina. 
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2.2.  Líneas de campo magnético y criterio de deformación 

2.2.1.  Estudio teórico de la deformación de las líneas de campo magnético 

El primer punto es establecer un criterio de deformación de las líneas de campo magnético 

creado por la corriente eléctrica circulando a través de los distintos conductores, para los 

diferentes casos. Esto se realizó mediante la comparativa entre la geometría del campo 

magnético creado por un alambre recto (conductor filiforme) y la geometría del campo creado 

por las pletinas conductoras, ambos a la intensidad de 1 A. Si tomamos una línea circular de 

radio R, observamos que en el primer caso, el vector H sólo tiene componente tangencial a esa 

línea; en el segundo caso, y como consecuencia de la forma elíptica que adoptan las líneas de 

campo, aparece una componente normal de H que debilita la componente tangencial a esa 

misma circunferencia. La desviación típica de una muestra de valores procedentes del cociente 

entre la componente tangencial debida a la pletina y la componente tangencial creada por el 

conductor filiforme nos servirá como indicador de la deformación de la línea de campo 

magnético. 

Con el propósito de evaluar las deformaciones inherentes al FC de las pletinas de las líneas de 

campo magnético respecto de su forma ideal (conductor filiforme), tengo en cuenta las dos 

componentes, que juntas constituyen el vector H (intensidad de campo magnético) y que nos 

servirán para comprobar las diferencias entre el conductor ideal y la pletina rectangular: 

- La componente tangencial a la línea teórica de H, circunferencia de radio R = 60 mm, 

Htang, creada por una intensidad de corriente unitaria I = 1 A. 

 

- La componente normal Hnorm en idénticas circunstancias al caso tangencial. 

El valor de referencia de Htang se puede calcular mediante la ley de Ampère, [RES 70]  

  
 

   
         (2) 

 con lo cual tenemos un valor teórico de 2.6526 A/m. 

 

 

 

 

 

 

 

Fig 2. Esquema de campo magnético creado por un conductor filiforme. Sin deformación teórica en las líneas de 

campo. 
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En el caso ideal del conductor filiforme, como apreciamos en la figura 2, sin deformación de las 

líneas de campo, tenemos que: 

 

   Htang 

  |H|      |H| = |Htang| 

   Hnorm = 0  (A/m) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Esquema de campo magnético creado por una pletina conductora rectangular (azul) respecto al ideal (rojo). 

La deformación en las líneas de campo teóricas, pasando de una forma circular a otra elipsoidal, es notable. 

 

 

En el caso de la pletina rectangular, tal como se aprecia en la figura 3 superior, donde las líneas 

de campo presentan forma elipsoidal, tenemos ambas componentes: 

 

   Htang 

  |H|     |H| > |Htang|   

   Hnorm 

 



Estudio tridimensional mediante el MEF del efecto de pantallas magnéticas cilíndricas aplicadas a conductores de sección 
rectangular 

 

8 
 

2.2.2.  Estudio numérico de la deformación de las líneas de campo magnético 

Para comprobar que el resultado teórico esperado de referencia (en el caso filiforme) coincide 

con el modelo realizado en OPERA 3D, se resolvió un problema en el que se tomaron 360 

valores de una línea de campo (circunferencia) a 60 mm del centro, donde se alojaba el 

conductor de 1x1 mm. Se obtuvo un valor uniforme del módulo de H, |H|= 2.6526 A/m, a lo 

largo de todos los puntos de la circunferencia. 

 

 

 

 

 

 

 

 

 

 

Fig 4.  Modelo tridimensional de pletina conductora 5x40. 

Por otra parte, para demostrar mediante el MEF la deformación de las líneas de campo, realicé 

tres simulaciones en Opera 3D con los tres modelos de pletinas diferentes de FC 6, 8 y 10 

respectivamente, como se observa en la Fig. 1. Se tomaron 360 puntos a lo largo de una 

circunferencia de referencia de R = 60 mm, una intensidad de 1 A en la pletina y una longitud 

de está de 2 metros (para más detalles sobre las características del modelo, ver Anexo 1) En las 

siguientes gráficas se observa la variación del módulo de H respecto del ángulo ϕ. Los valores 

obtenidos de desviación típica se encuentran  en la Tabla  1, resultados en los que se constata 

el aumento de la desviación típica conforme el FC se va incrementando. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tabla 1. Desviaciones típicas para cada modelo de pletina conductora. 

 

 

Pletina 5x30 -> FC 6 5x40 -> FC 8 4x40 -> FC 10 

Desviación Típica 0,01429 0,02578 0,02593 
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En las figuras siguientes se muestra la variación del módulo de H respecto de para cada una 

de las tres pletinas estudiadas. 

 

 

 

 

 

 

 

 

Fig 5.  Curva del módulo de H a lo largo de una circunferencia a 60 mm de la pletina conductora de 5x30. 

 

 

 

 

 

 

 

 

Fig 6.  Curva del módulo de H a lo largo de una circunferencia a 60 mm de la pletina conductora de 5x40. 

 

 

 

 

 

 

 

 

Fig 7.  Curva del módulo de H a lo largo de una circunferencia a 60 mm de la pletina conductora de 4x40. 
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Los resultados que se muestran en las figuras se ajustan al valor teórico proporcionado por la 

Ley de Ampère si establecemos una media, como se ve en la recta teórica. Se aprecia la 

fluctuación debida a la geometría, subiendo en la base A (punto en los que el conductor, con 

su densidad de corriente propia, se encuentra más cerca de la circunferencia) y bajando en el 

punto medio de la altura B, lugar más alejado del perímetro respecto a la circunferencia.  

No obstante, para afianzar los resultados suministrados por el programa de análisis 

tridimensional, he decidido contrastar la información con otro conocido programa de estudio 

magnético, FEMM. En este caso realizo un estudio bidimensional del problema con el fin de 

observar y poder mostrar detalladamente cómo las líneas de campo son deformadas por el FC 

de la pletina conductora. 

 

 

 

 

 

 

 

Fig. 8  Líneas de campo |B| deformadas por el FC de la pletina y su densidad (en color). Pletina de 5x40 mm. 

Simulado bidimensionalmente en FEMM 2D. 

 

Se aprecia notablemente la deformación de las líneas de campo por la geometría rectangular 

del perfil de la pletina. Ajustadas al contorno de la pletina en las proximidades de la pletina, 

mientras que conforme se alejan de ésta, van retornando a su forma circular original, fuera del 

efecto debido a un FC distinto a la unidad 

Si comparamos en un ejemplo los resultados obtenidos mediante el estudio tridimensional 

(Opera 3D) con los obtenidos mediante el bidimensional (FEMM 2D), se aprecia la 

concordancia de valores, en ambos casos, que se confirman en las gráficas de la variación del  

campo magnético según el ángulo ϕ ( figuras 9 y 10)  
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Fig 9.  Curva del módulo de H a lo largo de una circunferencia a 60 mm de la pletina conductora de 5x40 en FEMM 

2D. 

 

 

 

 

 

 

 

 

Fig 10.  Curva del módulo de H a lo largo de una circunferencia a 60 mm de la pletina conductora de 5x40 en 

Opera 3D. 

 

A continuación pasaré a describir el trabajo realizado para  estudiar cómo el apantallamiento 

magnético puede ayudar a corregir estas desviaciones en las direcciones de los campos 

magnéticos. 

 

 

 

 

 



Estudio tridimensional mediante el MEF del efecto de pantallas magnéticas cilíndricas aplicadas a conductores de sección 
rectangular 

 

12 
 

Y

REXT
Rs



PantallaH

H

T

X

H
60mm

IRs

t

Z

X

h

3.   Efecto del apantallamiento magnético 

3.1.  Descripción  del problema y  metodología empleada 

De acuerdo con el desarrollo presentado en el documento [USO_07], el término 

apantallamiento magnético quizás no sea el más adecuado en el caso presente, dado que la 

propia Ley de Ampère hace imposible el debilitamiento de forma pasiva en posiciones 

exteriores a la pantalla de campos magnéticos procedentes de corrientes eléctricas circulando 

por conductores que se encuentran dentro de la pantalla. No obstante, lo que sí ocurre, según 

describe P.N. Miljanic en [MIL 97], es que una pantalla cilíndrica reorienta las líneas de campo 

magnético creadas por conductores interiores situados fuera del eje de simetría de la pantalla, 

haciéndolas concéntricas a ella, lo que es extrapolable a este estudio, cambiando el concepto 

de excentricidad respecto al eje de simetría por la geometría no filiforme de la sección del 

conductor, es decir, su factor de forma. 

La utilización del Método de los Elementos Finitos para el cálculo de las distribuciones de 

campo magnético en el exterior de estas pantallas puede ser muy útil para prever mejoras en 

los errores de medida de corriente que incorporen pantallas interiores. 

Partiendo del criterio del FC establecido en el apartado 2.1 de este documento, se realizarán 

simulaciones incorporando pantallas cilíndricas de pared muy delgada de diferentes 

materiales, tanto lineales como no lineales.  Observaré el efecto para diferentes valores de 

permeabilidad magnética (en el caso de las pantallas lineales) o para diversos valores de 

intensidad de corriente (en el caso de las pantallas no lineales). 

 

 

 

 

 

 

 

 

 

 

Fig 11. Esquema de disposición geométrica del modelo con pantalla magnética. 
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Las especificaciones de la pantalla magnética para todos los modelos son las siguientes: Radio 

interior Rs = 53 mm, espesor t= 0.265 mm, altura h = 40mm. Lss características de los modelos 

se detallan en profundidad en el Anexo 1. 

Como ya se introdujo en el apartado 2.1, el criterio tomado para estudiar y comparar el 

comportamiento de las pantallas magnéticas de los diferentes materiales a la hora de rectificar 

las desviaciones del campo magnético producidas por el FC de la pletina ha sido el cociente 

    Htang / Href (3) 

es decir, el valor de la componente tangencial a la circunferencia exterior a la pantalla del 

vector intensidad de campo magnético, Htang , respecto al mismo valor producido en el mismo 

punto por el conductor de referencia, filiforme y a 1 Amperio, que coincide con su módulo. La 

desviación típica del conjunto de valores obtenidos nos indica el grado de discrepancia entre 

ambos, y por ende, cuán rectificado ha sido el campo magnético por la pantalla. 

Como se aprecia en [USO_07], se han de tomar valores de dos componentes: 

 

- La componente tangencial de H creada por una corriente eléctrica que circula por la 

pletina rectangular de longitud infinita centrada en el origen a lo largo de una 

circunferencia externa a la pantalla de radio 60 mm obtenido mediante el MEF. 

 

- El módulo de H creado por una corriente eléctrica que circula por un conductor 

filiforme de longitud infinita centrado en el origen a lo largo de una circunferencia 

externa a la pantalla de radio 60 mm obtenido mediante la Ley de Ampère. 

 

El cociente entre ambas se alejará de la unidad a medida que se deforme la línea de campo 

magnético, ergo la desviación típica, ʋ, será mayor cuanto mayor sea la dispersión entre los 

valores, y con ello la deformación. 

 

 

3.2.  Pantallas magnéticas de material lineal 

En el primero de los casos trabajé con pantallas magnéticas de material lineal al que yo mismo 

establecía la permeabilidad magnética, en un amplio rango, para estudiar su efecto. A 

diferencia de los casos con materiales no lineales, en este la Intensidad fue fijada a 1 Amperio 

para todas las permeabilidades relativas. 

Para cada una de las pletinas de FC 6, 8 y 10 se simularon 8 pantallas de permeabilidades 

relativas diferentes: 500, 1000, 2500, 5000, 7500, 10000, 50000 y 100000. 

Los valores de las deviaciones típicas obtenidas (ʋ), se encuentran  en la Tabla 2: 
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Tabla 2.  Valores de desviación típica obtenidos mediante simulaciones lineales 

 

Si representamos la desviación típica obtenida para el vacío y para una permeabilidad relativa 

de 1000 y de 5000 en función del factor de forma, observamos cómo a mayor factor de forma, 

la deformación de las líneas de campo es mayor, pero también cómo el efecto de la pantalla 

atenúa ese deformación, ver Figura 12. Un punto de esta gráfica común a todas las 

permeabilidades es el (1, 0), ya que a un factor de forma 1, le corresponde una desviación 

típica igual a cero [USO_07]. 

 

 

 

 

 

 

 

 

 

 

Fig 12. Variación de la desviación desviación típica en función de la permeabilidad relativa para una pletina de 5x30. 

 

A continuación se muestran las gráficas correspondientes a cada pletina conductora 

individualmente, en la que se aprecia la línea de tendencia de sus valores a medida que la 

permeabilidad relativa se incrementa. La línea obtenida se ajusta muy bien a una línea teórica 

similar en los tres casos. 

 

 

                    Permeabilidad Relativa (µ)

Pletinas 1 500 1000 2500 5000 7500 10000 50000 100000

5x30 (FC 6) 0,01429 0,00650 0,00452 0,00276 0,00202 0,00176 0,00162 0,00128 0,00124

5x40 (FC 8) 0,02578 0,01171 0,00814 0,00495 0,00362 0,00314 0,00289 0,00227 0,00219

4x40 (FC 10) 0,02593 0,01177 0,00818 0,00498 0,00364 0,00316 0,00291 0,00228 0,00220
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Fig 13. Variación de la desviación desviación típica en función de la permeabilidad relativa para una pletina de 5x30. 

 

 

 

 

 

 

 

 

 

Fig 14. Variación de la desviación desviación típica en función de la permeabilidad relativa para una pletina de 5x40. 

 

 

 

 

 

 

 

 

Fig 15. Variación de la desviación desviación típica en función de la permeabilidad relativa para una pletina de 4x40. 
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Los resultados obtenidos con las tres pletinas son coherentes y muestran un descenso de la 

desviación típica conforme aumenta la permeabilidad del material de la pantalla. Las líneas de 

campo son rectificadas en puntos exteriores aproximándose más a su forma circular conforme 

aumenta la permeabilidad. En los tres casos la curva puede aproximarse a una única función 

potencial de la forma: 

  ʋ= 0,0261µ-1,157        (4) 

 

Para poder comprobar la validez de esta expresión, debería observarse la tendencia en 

pletinas de FC distintas a las analizadas, ya que es un resultado que puede ayudar a la 

parametrización. 

 

3.3.  Pantallas magnéticas de material no lineal 

3.3.1.  Pantalla de acero al silicio Si-Iron 

Una vez observado el comportamiento de las pantallas magnéticas en materiales cuyas curvas 

de magnetización son lineales, vamos a estudiar el mismo problema para un material de curva 

no lineal, como es el acero al silicio, Si-Iron. En la figura inferior se puede observar su curva B-H 

correspondiente. 

 

 

 

 

 

 

 

 

Fig 16. Curva de magnetización B-H del acero al silicio Si-Iron. 

 

Para este caso, de condiciones de modelado idénticas a los anteriores (descritas en el Anexo 

1), se sometió a los tres diferentes modelos de pletinas conductoras a variaciones de corriente 

para observar el comportamiento a lo largo de varios puntos de su curva de magnetización. Las 

intensidades que se hicieron circular por las pletinas conductoras fueron 25 A, 100 A, 250 A y 

500 A. Por lo tanto, según el criterio establecido previamente para las desviaciones típicas, se 

obtuvo la siguiente tabla en función de la pletina y la intensidad de corriente. 
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Pletinas 25 100 250 500

5x30 (FC 6) 0,0029 0,0029 0,0029 0,0135

5x40 (FC 8) 0,0030 0,0053 0,0053 0,0241

4x40 (FC 10) 0,0030 0,0053 0,0053 0,0242

     Intensidad de corriente (A)               
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Tabla 3.  Valores de desviación típica para pantallas con pared de material Si-Iron 

 

 

A continuación se muestran las gráficas correspondientes a cada pletina conductora, donde se 

aprecia la línea de tendencia de sus valores a medida que la intensidad de corriente aumenta. 

Se han representado también los valores obtenidos partiendo de los resultados lineales. Para 

calcularlos he estimado el valor del módulo de H en el interior de la pantalla, lo que me 

permite conocer la permeabilidad a la que trabaja el material de la pantalla. Con este valor de 

permeabilidad puedo estimar un valor de desviación típica mediante los resultados de la 

Tabla 2. 

 

 

 

 

 

 

 

 

 

 

Fig 17. Variación de la desviación típica en función de la permeabilidad relativa para una pletina de 5x30. 
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Fig 18. Variación de la desviación típica en función de la permeabilidad relativa para una pletina de 5x40. 

 

 

 

 

 

 

 

 

 

 

 

Fig 19. Variación de la desviación típica en función de la permeabilidad relativa para una pletina de 4x40. 
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Pletinas 25 100 250 500

5x30 (FC 6) 0,0022 0,0090 0,0051 0,0051

5x40 (FC 8) 0,0040 0,0166 0,0250 0,0259

4x40 (FC 10) 0,0041 0,0164 0,0248 0,0260

     Intensidad de corriente (A)               

3.3.2.  Pantalla de Trafoperm 

El otro material empleado en las simulaciones ha sido el trafoperm [VAC_13], un acero 

empleado en la construcción de transformadores En la figura 20 se muestra la curva de 

magnetización de este material. 

 

 

 

 

 

 

 

 

Fig 20. Curva de magnetización B-H del trafoperm. 

 

 

Los valores obtenidos para la desviación típica en cada pletina y para cada valor de corriente se 

encuentran en la Tabla 4. 

Las gráficas correspondientes a las  pletinas conductoras e FC 6, 8 y 10 se muestran en las 

Figura 21, Figura  22 y Figura 23, respectivamente. 

 

 

 

 

 

Tabla 4.  Valores de desviación típica para pantallas con pared de material trafoperm. 
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Fig 21. Variación de la desviación desviación típica en función de la permeabilidad relativa para una pletina de 5x30. 

 

 

 

 

 

 

 

 

Fig 22. Variación de la desviación desviación típica en función de la permeabilidad relativa para una pletina de 5x40. 

 

 

 

 

 

 

 

 

 

Fig 23. Variación de la desviación desviación típica en función de la permeabilidad relativa para una pletina de 4x40. 
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Los resultados de las simulaciones lineales muestran una divergencia con los resultados 

teóricos cuyo origen asocio a la curva de magnetización. Las simulaciones se han repasado y el 

material de la pared presenta la permeabilidad esperada para el valor de H creado por la 

corriente interior. El valor teórico de la permeabilidad del Si-Iron para una corriente de I 

=500 A es de 800. En el trafoperm las parejas de valores a partir de 1000 A/m  no están 

caracterizadas, por lo que asocio error al valor estimado de permeabilidad. El resultado de 

estas comprobaciones, valor de la permeabilidad relativa en puntos interiores  a la pantalla, las 

muestro en las Figura 24 (caso de Si-Iron) y Figura 25 (caso del Trafoperm). También es posible 

que el espesor t de la pantalla pueda afectar a los resultados, ya que no he podido mallar con 

elementos muy pequeños lo que puede originar errores de cálculo. 

 

 

 

 

 

 

 

 

Fig 24. Fluctuación de la permeabilidad relativa en el interior de la pantalla de Si Iron a 500 A. 

 

 

 

 

 

 

 

 

Fig 25. Fluctuación de la permeabilidad relativa en el interior de la pantalla de trafoperm a 500 A. 
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4.   Conclusiones 

En este trabajo he desarrollado modelos tridimensionales de pantallas magnéticas y  

demostrado cómo afectan a la forma de las líneas de campo magnético creadas por corrientes 

eléctricas circulando por pletinas conductoras. He realizado simulaciones donde el material de 

la pantalla presentaba una permeabilidad constante y otras con materiales no lineales. 

El uso de este tipo de pantallas puede ser de utilidad para simplificar y mejorar instrumentos 

de medida de corriente basados en sensores magnéticos como los sensores de efecto Hall o 

magnetorresitivos.  

Ha quedado por realizar una comprobación experimental de los resultados, que me 

permitieran validar las simulaciones numéricas, siendo esta la primera tarea futura a realizar. 

También es importante la perfecta caracterización de los materiales magnéticos, así como 

disponer de equipos informáticos capaces de gestionar bases de datos mayores que las que yo 

he generado.  Una limitación con la que me he encontrado es la del mallado de la pantalla, al 

ser esta de espesor muy pequeño respecto al resto de magnitudes de mi problema, lo que 

exigía un tamaño de elemento muy pequeño y un incremento notable en el número de nudos 

del modelo.   

Otra labor futura es continuar la parametrización del problema con la intención de generalizar 

los resultados.   
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Anexo 1. Modelo de OPERA-3D utilizado en el documento 

Nombre del archivo: Simulación_Opera_Pantalla.OPCB  

Background: Potencial reducido. Aire. Dimensiones (coordenadas en mm) -500 < x < 500; 0 < y 

< 500 ; 0 < z < 1000. DSL = 1, MES = 50, ET = lineal, Simetrías positiva OXY, negativa OXZ. 

Surroundings_II: Potencial reducido. Aire. Cilindro centrado en el origen, altura = 2000 mm, 

radio = 500 mm. DSL = 2, MES = 30, ET = lineal. 

Surroundings_I: Potencial total. Aire. Cilíndro centrado enel origen, altura = 300 mm, radio = 

100 mm. DSL = 3, MES = 10, ET = lineal. 

Air_Int_Ext: Potencial total, aire, cilíndrica, centrado en el origen, de altura 280 mm y radio 80 

mm. DSL = 4, MES = 5, ET = lineal. 

Shielding_01: Potencial total, capa de material ferromagnético cilíndrica, centrada en el origen, 

radio 53 mm, espesor 0,265 mm, y altura 40 mm. En las dos superficies curvas se define un 

backward-layering con 1 capa de 0,1*layer. DSL = 5, MES = 1, ET = lineal. 

Wire_Case: Potencial reducido. Aire. Cilíndro, centrado el origen, radio = 5 mm, altura = 2000 

mm. DSL = 6, MES = 5, ET = cuadrático.  

Wire_Ext_Case_2R1: Potencial reducido. Aire. Cilíndro, de eje paralelo al eje Z. radio = 5 mm, 

altura = 2000 mm. DSL = 6, MES = 5, ET = cuadrático.  

Database: Simulación_Opera_Pantalla. 01.  

Condiciones de contorno: en la celda backgroundse imponen condiciones de contorno 

tangenciales en las caras paralelas a los planos OXY y OXZ, y condiciones de contorno normales 

para las caras paralelas a OYZ.  

Tiempo de ejecución por simulación: 2 h 40 m en Intel i5, 3.2 GHz por núcleo de procesador, 

procesador de 4 núcleos, 8 Gigas de RAM, Windows 7 Enterprise, Opera 15.1 RS, TOSCA 

versión 10.506 


