000130213 001__ 130213
000130213 005__ 20241125101149.0
000130213 0247_ $$2doi$$a10.1002/hlca.202300010
000130213 0248_ $$2sideral$$a133681
000130213 037__ $$aART-2023-133681
000130213 041__ $$aeng
000130213 100__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000130213 245__ $$aIonic liquid crystalline calixarene with photo-switchable proton conduction
000130213 260__ $$c2023
000130213 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130213 5203_ $$aWe have developed a new strategy for the preparation of a light-responsive ionic liquid crystal (LC) that shows photo-switchable proton conduction. The ionic LC consists of a bowl-shaped calix[4]arene core ionically functionalized with azobenzene moieties. The non-covalent architectures were obtained by the formation of ionic salts between the carboxylic acid group of an azo-derivative and the terminal amine groups of a calixarene core. The presence of ionic salts results in a hierarchical self-assembly process that extends to the formation of a nanostructured lamellar LC arrangement (smectic A phase). In this LC phase, the ionic LC calixarene is able to display proton conductive properties, since the ionic nanosegregated areas (formed by the ionic pairs) generate the continuous channels that favor proton transport. The optical and photo-responsive properties were studied by UV-Vis spectroscopy, demonstrating that the azobenzene moieties of the ionic LC undergo reversible (E)-to-(Z) isomerization by irradiation with UV light. Interestingly, this (E)-to-(Z) photoisomerization results in a decrease of the proton conductivity values since the bent-shaped (Z)-isomer disrupts the lamellar LC phase. This isomerization process is totally reversible and leads to an ionic LC material with unique photo-switchable proton conductive properties.
000130213 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-17R$$9info:eu-repo/grantAgreement/ES/MCIU/PGC2018-097583-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2021-122882NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031154-I
000130213 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130213 590__ $$a1.5$$b2023
000130213 592__ $$a0.557$$b2023
000130213 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b155 / 231 = 0.671$$c2023$$dQ3$$eT3
000130213 593__ $$aDrug Discovery$$c2023$$dQ2
000130213 593__ $$aOrganic Chemistry$$c2023$$dQ2
000130213 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ2
000130213 593__ $$aInorganic Chemistry$$c2023$$dQ2
000130213 593__ $$aCatalysis$$c2023$$dQ3
000130213 593__ $$aBiochemistry$$c2023$$dQ3
000130213 594__ $$a3.0$$b2023
000130213 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130213 700__ $$aMarín, Iván$$uUniversidad de Zaragoza
000130213 700__ $$0(orcid)0000-0001-5816-7960$$aBarberá, Joaquín$$uUniversidad de Zaragoza
000130213 700__ $$0(orcid)0000-0001-7056-3181$$aMarcos, Mercedes
000130213 700__ $$0(orcid)0000-0001-9866-6633$$aSerrano, José L.$$uUniversidad de Zaragoza
000130213 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000130213 773__ $$g106, 5 (2023), e202300010 [8 pp.]$$pHelv. chim. acta$$tHELVETICA CHIMICA ACTA$$x0018-019X
000130213 8564_ $$s654937$$uhttps://zaguan.unizar.es/record/130213/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2024-02-23
000130213 8564_ $$s2502627$$uhttps://zaguan.unizar.es/record/130213/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2024-02-23
000130213 909CO $$ooai:zaguan.unizar.es:130213$$particulos$$pdriver
000130213 951__ $$a2024-11-22-12:06:08
000130213 980__ $$aARTICLE