000130223 001__ 130223
000130223 005__ 20241125101153.0
000130223 0247_ $$2doi$$a10.1021/acs.jpca.2c06708
000130223 0248_ $$2sideral$$a133185
000130223 037__ $$aART-2023-133185
000130223 041__ $$aeng
000130223 100__ $$aVin, Nicolas
000130223 245__ $$aA combined experimental and modeling study on isopropyl nitrate pyrolysis
000130223 260__ $$c2023
000130223 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130223 5203_ $$aAlkyl nitrates thermally decompose by homolytic cleavage of the weak nitrate bond at very low temperatures (e.g., around 500 K at reaction times of a few seconds). This provides the opportunity to study the subsequent chemistry of the initially formed radical (or its subsequent pyrolysis products, if unstable) and nitrogen dioxide at such mild conditions. In this work this idea is applied to isopropyl nitrate (iPN) pyrolysis, which is studied in a tubular reactor at atmospheric pressure, temperatures ranging from 373 to 773 K, and residence times of around 2 s. At the experimental conditions, iPN decomposition starts at 473 K with O–N bond fission producing isopropoxy radical (i-C3H7O) and NO2. i-C3H7O is rapidly converted to acetaldehyde (CH3CHO), which is the most abundant product detected, and methyl radicals. Other major products detected are formaldehyde (CH2O), methanol (CH3OH), nitromethane (CH3NO2), NO, methane, formamide (CHONH2), and methyl nitrite (CH3ONO). Four literature nitrogen chemistry models─three of those augmented with iPN specific reactions─have been tested for their ability to predict the iPN decomposition and product profiles. The mechanism by the Curran group performs best, but it still underpredicts the observed high formaldehyde and methanol yields. A rate analysis indicates that the branching ratio of the reaction between methyl radicals and nitrogen dioxide is of significant importance. Based on recent theoretical and experimental data, new rate expressions for the two reactions CH3 + NO2 → CH3O + NO and CH3 + NO2 + He → CH3ONO2 + He are calculated and incorporated in the kinetic models. It is shown that this change clearly improves the predictions, although additional work is needed to achieve good agreement between calculated and measured species profiles.
000130223 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/RTI2018-098856-B-I00
000130223 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130223 590__ $$a2.7$$b2023
000130223 592__ $$a0.604$$b2023
000130223 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b12 / 40 = 0.3$$c2023$$dQ2$$eT1
000130223 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ2
000130223 591__ $$aCHEMISTRY, PHYSICAL$$b111 / 178 = 0.624$$c2023$$dQ3$$eT2
000130223 593__ $$aMedicine (miscellaneous)$$c2023$$dQ2
000130223 594__ $$a5.2$$b2023
000130223 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130223 700__ $$0(orcid)0000-0003-0501-7605$$aCarstensen, Hans-Heinrich
000130223 700__ $$aHerbinet, Olivier
000130223 700__ $$aBourgalais, Jérémy
000130223 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, María Ujué$$uUniversidad de Zaragoza
000130223 700__ $$aBattin-Leclerc, Frédérique
000130223 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000130223 773__ $$g127, 9 (2023), 2123-2135$$pJ. phys. chem., A Mol. spectrosc. kinet. environ. gen. theory$$tJOURNAL OF PHYSICAL CHEMISTRY A$$x1089-5639
000130223 8564_ $$s4999145$$uhttps://zaguan.unizar.es/record/130223/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000130223 8564_ $$s2900269$$uhttps://zaguan.unizar.es/record/130223/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000130223 909CO $$ooai:zaguan.unizar.es:130223$$particulos$$pdriver
000130223 951__ $$a2024-11-22-12:08:02
000130223 980__ $$aARTICLE