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1 Introduction

The study of the Riccati differential equations goes back to the early days of modern mathe-
matical analysis, since such equations represent one of the simplest types of nonlinear ordinary
differential equations (hereafter ODEs) and consequently Riccati equations play an important
rôle in physics, mathematics and engineering sciences. The usual first-order Riccati equation
appears as a reduction from a linear second-order ordinary differential equation when taking
into account its invariance under dilations according to Lie recipe (the inverse property is
called the Cole–Hopf transformation). Such correspondence between first-order Riccati equa-
tions and second-order linear ODEs can be beautifully manifested through their solutions. For
example, if one solution of a linear second-order ODE is known, then any other solution can
be obtained by means of a quadrature (i.e. a simple integration), and the same property holds
true for the usual first-order Riccati equation, but with two quadratures. Moreover, when
three solutions are known, no quadrature is necessary. The first-order Riccati equation is a
prototypical example of (systems of) differential equations admitting a superposition rule, also
called Lie systems [1, 2]. This is why some authors [3] have considered it as the first step in
the study of (systems of) nonlinear differential equations.
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The second-order Riccati equation has also become of a paramount importance in recent
years, mainly because of its connection with integrable ODEs. It is known that the second-
order Riccati equations are related to a large class of integrable ordinary differential equations
of anharmonic oscillators, viz. the Ermakov–Pinney, Normalised Ermakov–Pinney, Neumann
type systems, etc. [4, 5, 6, 7, 8, 9, 10]. The second-order Riccati equation has been studied in
[11] from a geometric perspective and it has been proved to admit two alternative Lagrangian
formulations, both Lagrangians being of a non-natural class (neither potential nor kinetic
term). A more geometric approach can be found in [12] where the theory of Darboux polyno-
mials, the extended Prelle-Singer methods, (pre-)symplectic forms, or Jacobi multipliers, are
used.

Higher-order Riccati equations can be obtained by reduction from Matrix Riccati equations
[13, 14]. Not only first-order Riccati equation but also higher-order Riccati differential equa-
tions can be linearised via Cole–Hopf transformation (i.e. they appear as a reduction from
linear differential equations when taking into account the dilation symmetry).

The study of higher-order Riccati equations [12] was also carried out from the perspective
of the theory of Darboux polynomials and the extended Prelle-Singer methods. Higher-order
Riccati equations play the rôle of Bäcklund transformations for integrable partial differential
equations of order higher than that of the KdV equation. In fact Grundland and Levi [15,
16] constructed the Bäcklund transformations of several integrable systems from higher-order
Riccati equations. Such Bäcklund transformations are closely related to many important
integrability properties such as the inverse scattering method, the Painlevé property, Lax
pairs, and an infinite number of conservation laws [17].

In the study of differential equations one finds cases that are in some sense solvable, or
integrable, and this enables one to study their dynamical behaviours using Lie theoretic meth-
ods [18, 19]. They often admit different geometric and Hamiltonian formulations. Integrable
systems are a fundamental class of explicitly solvable dynamical systems of current interest in
mathematics and physics. One notable example is the so called Ermakov–Milne–Pinney equa-
tion [20, 21, 22, 23, 24, 25]: in 1950 Pinney presented in a one-page paper [25] the solution of
the differential equation

y′′ + ω2(x)y =
1

y3
, (1.1)

where the symbol y′′ denotes the second derivative with respect to the independent variable
x. He gave the general solution of (1.1) in the form

y(x) = (Aφ2
1 + 2B φ1 φ2 + C φ2

2)1/2, (1.2)

where y1 = φ1(x) and y2 = φ2(x) are any two linearly independent solutions of the associated
linear differential equation y′′+ω2(x)y = 0, and A,B and C are related according to B2−AC =
1/W 2 with W being the constant Wronskian of the two linearly independent solutions φ1 and
φ2. Ermakov [23] introduced the above linear differential equation as an additional auxiliary
equation to the second-order differential equation (1.1) to define a system of two second-order
differential equations, and found an invariant when multiplying by an integrating factor and
obtained an invariant after integration with respect to x.
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The solutions of Painlevé’s Second Equation (or Painlevé II)

y′′ = α + xy + 2y3, α ∈ R, (1.3)

are meromorphic functions on the plane [26, 27]. It is known (see e.g. the papers by Gromak
[28] and [29], and also [30]) that every transcendental solution w of (1.3) has infinitely many
poles with residue +1 and also with residue −1, except when α = ±1/2 and w is also a solution
of the Riccati equation (see [27, 30])

dw

dx
= ±x

2
± w2.

In this paper we derive the Painlevé II, as well the second-order second degree Painlevé II
equation [31, 32] using Riccati hierarchy, which is in turn connected to the Virasoro stabilizer
set or projective connection. The second-order second degree Painlevé II is also known as
Jimbo-Miwa equation [32] and plays an important rôle in random matrix theory [33].

1.1 Motivation and plan

As indicated above, our main goal is to study higher-order Riccati equations in various direc-
tions. In particular, we focus onto the geometrical aspects of the Riccati sequence. At first
we explore its connection to the stabilizer set of the Virasoro orbit, also known as the projec-
tive vector field equation. There are many papers devoted to Virasoro algebra and projective
connection on S1, but very few papers discuss about their relations to nonlinear oscillator-like
equations, Riccati chains and (second-order) Painlevé equations. This paper provides a rela-
tionship between the stabilizer set of the Virasoro orbit and second-order Riccati equations.
Many papers (for example, [34, 35, 36]) have been written to elucidate the interaction between
the geodesic flow on the Bott–Virasoro group (see for example, [37, 38, 39]) and integrable
partial differential equations, especially the KdV type systems, but very few articles deal with
finite-dimensional systems.

Some of the main questions to be discussed in this paper can be summarized in the following
points:

• Relation of Riccati equation with the Virasoro algebra.

The Virasoro group plays a very important rôle in integrable systems. It is known that
the Virasoro group serves as the configuration space of the KdV and the Camassa-Holm
equations and these equations can be regarded as equations of the geodesic flows related
to different right-invariant metrics on this group. In other words, they have the same
symmetry group. Recall that the Virasoro group is a one-dimensional central extension of
the group of smooth transformations of the circle. In this work, we focus on the integrable
dynamical systems related to the stabilizer set of the Virasoro orbit. In fact the Ermakov–
Milne–Pinney equation, which describes the time-evolution of an isotonic oscillator (also
sometimes called pseudo-oscillator) – i.e. an oscillator with inverse quadratic potential
– is the first and foremost example of this class. It is also known [34, 35] that the entire
(coupled) KdV family is connected to the Euler-Poincaré formalism of the (extended)
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Bott–Virasoro group. This connection can be extended to the super Bott–Virasoro group
[40].

The second-order Riccati equation has a nice geometric interpretation in terms of Vi-
rasoro orbit [7, 8]. Vector fields f(x) d/dx ∈ X(S1) associated to the stabilizer set of
Virasoro orbit are called projective vector fields and the corresponding differential equa-
tion satisfied then by the function f is called the projective vector field equation [41, 42].
The second-order Riccati equations are associated to these differential equations. In fact,
solutions of a large class of 0+1 dimensional integrable systems can be expressed in terms
of the global and local projective vector fields.

• Analysis of the infinitesimal symmetries of the standard Riccati equation.

This study is presented by making use of a geometric approach. It is proved that these
symmetries are related to the solutions of the projective vector field equation.

• Study of the relation of the second-order Riccati equation with Painlevé equations.

There are a certain number of properties relating the second-order Riccati equation
with some other equations of the mathematical physics as the Airy equation [43] or
the Ermakov–Milne–Pinney equation [23, 24, 25]. Moreover, the second-order Riccati
equation is also related to some of the Painlevé-Gambier equations and this can be used
to find the solutions of Painlevé’s Second Equation (or Painlevé II) for special values of
the parametres.

The paper is organised as follows. Section 2 is a short presentation from a geometric per-
spective of properties of first- and higher-order Riccati equations and their relations with linear
equations and nonlinear superposition rules and to show many properties among solutions of
Hill equation [44] and related ones, in particular the projective vector field equation, and to
point out the possibility of of extending such results to connect Hill equation to solutions of
Reid type equations [45], Thomas equations [46], Gambier equation [47] and Kummer–Schwarz
equations [48, 49]. In Section 3 we give a concise introduction to Virasoro orbit, stabilizer set
and projective connections. Section 4 is devoted to study the infinitesimal symmetries of
standard Riccati equation and their relations with the solutions of the projective vector field
equation. In particular we relate the projective vector field equation to the second-order Riccati
equation and show how both equations admit a Lax formulation. We elucidate in Section 5 the
connection between the ordinary Painlevé II and second-order second degree Painlevé II equa-
tions with the Virasoro orbit. Special examples as Airy equation giving rise to a second-order
Riccati equation and a Painlevé equation are given.

2 First-order and higher-order Riccati equations

Our main goal is to explore the higher-order Riccati equations, but before giving the formal
description of higher-order Riccati equations and Riccati chain, a short introduction may be
helpful. So we start our journey by giving a short introduction to first-order Riccati equation.
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The usual Riccati equation

u′ = f(x) + g(x)u+ h(x)u2, (2.1)

is a first-order nonlinear differential equation with a quadratic non-linearity. The solutions of
the Riccati equation are free from movable branch points and can have only movable poles
[47, 50, 51]. This Riccati equation is the simplest nonlinear differential equation admitting
a nonlinear superposition rule for expressing the general solution in terms of three particu-
lar solutions. The linear fractional transformation (or change of variables from the passive
viewpoint)

ū =
a(x)u+ b(x)

c(x)u+ d(x)
, ad− bc = 1 , (2.2)

transforms each Riccati equation into another one (see e.g. [52]). In order to solve a Riccati
equation by quadratures, it is enough to know one particular solution, because this allows
us to reduce the problem to carry out two quadratures, while when two particular solutions
are known the problem can be reduced to a new differential equation solvable by just one
quadrature, and finally, if three particular solutions u1(x), u2(x), u3(x), are known, we can
construct all other solutions u without use of any further quadrature [2]. This is carried out
by using the property that the cross-ratio of four solutions of (2.1) is a constant, i.e. for any
other solution u(x), there is a real number k such that:

u(x)− u1(x)

u(x)− u2(x)
= k

u3(x)− u1(x)

u3(x)− u2(x)
, (2.3)

where k is an arbitrary constant characterising each particular solution. For instance u1(x)
corresponds to k = 0, u3 corresponds to k = 1 and u2(x) is obtained in the limit of k →∞.

It was shown by Lie and Scheffers [53] that the Riccati equation is essentially the only first-
order nonlinear ordinary differential equation of which possesses a nonlinear superposition rule
which comes from the preceding relation:

u = Φ(u1, u2, u3; k) =
u1(u3 − u2) + k u2(u1 − u3)

u3 − u2 + k (u1 − u3)
,

i.e. if u1(x), u2(x) and u3(x) are solutions of (2.1), then for any real value k,

u(x) =
u1(x)(u3(x)− u2(x)) + k u2(x)(u1(x)− u3(x))

u3(x)− u2(x) + k (u1(x)− u3(x))
,

is another solution and each solution is of this form for an appropriate choice of k. The
particular solution u2 appears as the limit k →∞.

Therefore the general solution u(x) is non-linearly expressed in terms of three generic
particular solutions, u1(x), u2(x) and u3(x), and a constant parameter k.

Remark also that a first-order Riccati differential equation (2.1) with h(x) of constant sign
on an open set, is related by means of the relation

u = −1

h

y′

y
⇐⇒ y = exp

(
−
∫ x

h(ζ)u(ζ) dζ

)
(2.4)
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to a homogeneous linear second-order differential equation

y′′ + a1(x)y′ + a0(x)y = 0, (2.5)

with

a1 = −g − h′

h
, a0 = f h. (2.6)

This relation (2.4) is not a change of coordinates or transformation, but for any real number
λ, the functions y and λ y have associated the same function u. Conversely, given the linear
second-order differential equation (2.5), for any nonvanishing function h, (2.4) reduces (2.5) to
the Riccati equation (2.1) with coefficients determined by (2.6).

In a similar way, consider the following nonlinear second-order differential equation on an
open set I [3]:

u′′ +
[
β0(x) + β1(x)u

]
u′ + α0(x) + α1(x)u+ α2(x)u2 + α3(x)u3 = 0 , x ∈ I ⊂ R, (2.7)

where we suppose that α3(x) > 0, ∀x ∈ I, and the two functions β0, β1, are not functionally
independent of α’s functions, but satisfy

β0 =
α2√
α3

− α′3
2α3

, β1 = 3
√
α3 .

In particular, the case β0 = α1 = α2 = 0, α3 = 1, β1 = 3, i.e. u′′ + 3uu′ + α0(x) + u3 = 0, was
studied in Davis and Ince books [3, 47] and will be more carefully considered in next sections,
while that of β0 = α0 = α1 = α2 = 0, β1 = 1, i.e. u′′+uu′+α3(x)u3 = 0, was studied by Leach
and coworkers [9, 54] who proved that only the case α3(x) = 1/9 is linearisable. . Moreover, it
possesses an eight-dimensional Lie algebra of (infinitesimal) symmetries and is fully integrable.

An important property is that, as indicated in [11], the nonlinear second-order differential
equation (2.7) can be related to a linear third-order differential equation

y′′′ + a2(x)y′′ + a1(x)y′ + a0(x)y = 0 (2.8)

by means of

u(x) =
1√
α0(x)

y′(x)

y(x)
. (2.9)

The equation (2.7) is a second-order generalisation of the usual first-order Riccati equation
and, because of this, is usually known as second-order Riccati equation [11]: it is a nonlinear
equation whose general solution can be expressed in terms of solutions of a linear third-order
differential equation. Conversely, if we start with the linear third-order differential equation
(2.8), then we can get an associate nonlinear second-order differential equation by introducing
the appropriate reduction of order. Although the complete induction proof has already been
given in an unpublished paper by one of us [8], we prefer to narrate it for the completeness of
this survey.

One can go further and define j-order Riccati equations as those appearing as a reduction of
a linear (j+1)-order differential equation [12]. More specifically, given the differential equation
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y(n) = dny/dxn = 0, its invariance under dilations suggests, according to Lie recipe, to look for a
new variable z such that the dilation vector field y ∂/∂y becomes (1/k)∂/∂z, the factor k being
purely conventional (we often put k = 1). Then y = ekz, up to an irrelevant factor, and with
this change of variable, the linear differential equation y(n) = 0, for n > 1, becomes Rn−1(u) = 0
with u =′ z and R the differential operator R = (D + k u). In fact, when D = d/dx, we have
that e−kzDekz = D+k u, and then we can prove by complete induction that y(n) = k ekzRn−1(u)
(see [12]): the property is true for n = 1, because y′ = k z′ ekz = k ekz u = k ekz R0(u), and if
the property is true till n = j, it also holds for n = j + 1, because

Dj+1y = D(y(j)) = D(k ekzRj−1(u)) = k ekz(D + k u)Rj−1(u) = k ekz Rj(u).

Therefore, Lie recipe applied to the invariant under dilations differential equation y(n) = 0
transforms such an equation into R(n−1)(u) = 0. The first terms of such sequence, called
Riccati sequence, are

R0(u) = u, R1(u) = u′ + k u2, R2(u) = u′′ + 3k u u′ + k2u3, (2.10)

R3(u) = u′′′ + 4k u u′′ + 3k u′2 + 6k2 u2 u′ + k3 u4, (2.11)

R4(u) = u(iv) + 5k u u′′′ + 10k u′u′′ + 15k2 uu′2 + 10k2 u2u′′ + 10k3 u3u′ + k4u5, . . . (2.12)

and for the general linear differential equation of order n,

a0(x)y +
n∑
j=1

aj(x) y(j) = 0, an(x) = 1, (2.13)

the change of variable y = ekz leads to the reduced equation for u = z′

a0(x) +
n∑
j=1

aj(x)Rj−1(u) = 0, an(x) = 1.

The explicit solutions of the second, third and fourth order terms of the Riccati sequence
can be found in [55].

3 Projective vector field, Virasoro algebra, and second-

order Riccati equation

Let Ω1 = T ∗S1 be the cotangent bundle of a circle S1. Since S1 is diffeomorphic to the 1-
dimensional Lie group U(1), if we remove the point corresponding to the neutral element of
U(1), and the corresponding one on S1, then there exists a natural coordinate x, defined up
to a factor by the canonical coordinate, which we can fix such that the domain of the chart
is (0, 2π). This Ω1 is a trivial real line bundle on S1. Similarly, let Ωm denote the m-fold
tensor product of Ω1. The local coordinate expression of a section of Ωm, usually called tensor
density, is given by s(x) = g(x) (dx)m, where (dx)m is a shorthand notation for the tensorial
product of m times dx. The set Γ(Ωm) of such sections is a free C∞(S1)-module, a natural

8



local basis being given by (dx)m, and in this sense such sections are described in such a natural
coordinates by functions on S1, that however do not transform as functions under a change of
coordinates (see e.g. [56] for more details. A vector field on S1 is of the form

Xf = f(x)
d

dx
∈ X(S1), (3.1)

where f(x) is a function on S1 (i.e. a 2π–periodic function on the real line). Note however
that taking into account that LXfdxm = mf ′ dxm, where f ′ denotes the derivative of f and
m ∈ N, we see that the infinitesimal action of Xf on a section s = g(x) (dx)m of Ωm is given
by (see e.g. [41])

LXf s = (fg′ +mf ′g)(dx)m, (3.2)

where LXf is the Lie derivative with respect to the vector field Xf given by (3.1).
Sometimes it is convenient to use the above mentioned identification of a section with its

component, a function, and then the Lie derivative when acting on sections of Ωm expressed
in terms of functions, denoted L(m)

Xf
, is written, according to (3.2) as

L(m)
Xf

= f(x)
d

dx
+mf ′(x). (3.3)

This really means that if s = ψ(x) (dx)m, then

LXf s =

(
f(x)

dψ

dx
+mf ′(x)ψ(x)

)
(dx)m = (L(m)

Xf
ψ) (dx)m.

There is a natural symmetric bilinear map Γ(Ωm1) × Γ(Ωm2) → Γ(Ωm1+m2) given by the
usual commutative product of tensor densities,

(f(x)(dx)m1 , g(x)(dx)m2) 7→ f(x)g(x)(dx)m1+m2 .

In particular, for m = 0, Γ(Ω0) = C∞(S1), and (3.3) remains valid for m = 0, L(0)
Xf

= LXf .
We can, at least formally, extend the values of the index m to the set of integer numbers,
m ∈ Z, or even to rational numbers, m ∈ Q, and then the product by elements of Γ(Ω0) is
the external composition law of the module structure. Note that the elements of Γ(Ω−1) when
multiplied by those of Γ(Ωm) look like an inner contraction with a vector field and in this sense
Γ(Ω−1) is to be identified with X(S1) (i.e. we can denote the tangent bundle τS1 : TS1 → S1

as Ω−1 (≡ TS1)). The transformation property under changes of coordinates of elements of
Ω−1 coincides with that of elements of X(S1).

Note also that when Xg = g(x)d/dx ∈ Ω−1, then putting m = −1 in (3.3) we get the usual
expression:

LXfXg = [Xf , Xf ] =

[
f(x)

d

dx
, g(x)

d

dx

]
= (f g′ − g f ′) d

dx
. (3.4)

We will denote Ω±1/2 the ‘square root’ of the tangent and cotangent bundle of S1 respec-
tively. The respective sections of such bundles will be of the form s = ψ(x)dx±

1
2 ∈ Γ(Ω±

1
2 ).
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Another remarkable property is that the C∞(S1)-module Γ(Ωm) of sections of the m-fold
tensor product bundle Ωm has a natural structure of a Poisson algebra with the commuta-
tive product given by the above usual product of tensor densities and the Poisson algebra
commutator given by the Rankin–Cohen bracket [57, 58]{

f(x)(dx)m1 , g(x)(dx)m2
}

=
(
m1 f(x)g′(x)−m2 f

′(x)g(x)
)
(dx)m1+m2+1,

which is also known as first transvectant.
The group Diff (S1) acts on Γ(Ωm), as given by

Φ∗(f(x)(dx)m) = f(Φ(x))(Φ′(x))m(dx)m,

for Φ ∈ Diff (S1). The ‘Lie algebra’ of such a group is identified with the Lie algebra given in
X(S1) by the commutator of vector fields, i.e. [Xf1 , Xf2 ] = (f1f

′
2 − f2f

′
1)d/dx, and acts on the

C∞(S1)-module Γ(Ωm) by the Lie derivative given in (3.2).
The theory of projective connections on the circle has much to do with the theory of Riccati

equations we are dealing with. We will use the following definition of a projective connection
[56] and corresponds to the case n = 2 in [59]:

Definition 1 A projective connection on the circle is a R-linear second-order differential op-
erator

∆ : Γ(Ω−
1
2 ) −→ Γ(Ω

3
2 ) (3.5)

such that:

1. The principal symbol of ∆ is the identity.

2.

∫
S1

(∆s1)s2 dx =

∫
S1

s1(∆s2) dx, for all pairs of sections s1, s2 ∈ Γ(Ω−
1
2 ).

Let us take s = ψ(x)(dx)−
1
2 ∈ Γ(Ω−

1
2 ), and then a linear second-order differential operator

on such space of sections is such that ∆s ∈ Γ(Ω3/2) is locally described by [56]:

∆s = (aψ′′ + b ψ′ + c ψ) (dx)
3
2 , (3.6)

where a, b and c are real functions. The first condition in the definition of projective connection
implies that for ∆ to be a projective connection it must be a = 1, and, on the other hand, the
second condition implies that b = 0. Hence each projective connection can be identified with
a Hill operator [44, 60]

∆v =
d2

dx2
+ v(x), (3.7)

where v is an arbitrary function on S1 (i.e. a periodic function on R). The differential equation

∆vψ = 0⇐⇒ d2ψ

dx2
+ v(x)ψ = 0, (3.8)

is called Hill equation.
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Definition 2 Given a projective connection on the circle with associated Hill operator

∆v =
d2

dx2
+ v(x), (3.9)

a vector field Xf ∈ X(S1) is called projective vector field with respect to the projective connection
∆v when it leaves invariant the projective connection, i.e.

L(3/2)
Xf

∆vs = ∆v(L(−1/2)
Xf

s), (3.10)

for all s ∈ Γ(Ω−
1
2 ), where L(m)

Xf
is the expression for the Lie derivative with respect to Xf given

by (3.3).

The characterisation of projective vector fields with respect to a given projective connection
is given in the following theorem (see [41]) which we repeat here for the sake of completeness:

Theorem 1 Xf ∈ Γ(Ω−1) is a projective vector field with respect to the projective connection
(3.9) if and only if (see [41]) f is a solution of the third-order linear differential equation called
projective vector field equation:

y′′′ + 4v y′ + 2v′ y = 0. (3.11)

Proof.- In fact, if s = ψ(x)(dx)−
1
2 ∈ Γ(Ω−

1
2 ), then

∆vs = (ψ′′ + v ψ) (dx)3/2,

and therefore,

L(3/2)
Xf

∆vs =

[
f(ψ′′′ + v′ ψ + v ψ′) +

3

2
f ′(ψ′′ + v ψ)

]
(dx)3/2.

On the other side,

L(−1/2)
Xf

s =

(
f ψ′ − 1

2
f ′ ψ

)
(dx)−

1
2 ,

and thus,

∆v(L(−1/2)
Xf

s) =
[(

d2

dx2
+ v
)

(f ψ′ − 1
2
f ′ ψ)

]
(dx)3/2

=
(
f ψ′′′ + 3

2
f ′ ψ′′ + v f ψ′ − 1

2
(v f ′ + f ′′′)ψ

)
(dx)3/2.

Consequently,

L(3/2)
Xf

∆vs−∆v(L(−1/2)
Xf

s) =

(
v′ f +

3

2
v f ′ +

1

2
f ′′′ +

1

2
v f ′
)
ψ (dx)3/2,

from where we see that the invariance condition (3.10) implies that f is a solution of the
differential equation (3.11). This is the reason why equation (3.11) is called projective vector
field equation.

11



�
Each solution of the projective vector field equation provides a local projective vector field,

while a global solution of the equation with the mentioned periodicity condition defines a
global projective vector field.

It will be proved in next subsection that these projective vector fields can alternatively be
seen to be the elements generating the stability subalgebra of the point (−1, v (dx)2) of the
Virasoro orbit of the corresponding v (see next Subsection).

Sometimes v in (3.9) is replaced by k v, where k ∈ R, and then equation (3.11) becomes:

y′′′ + 4k v y′ + 2k v′ y = 0. (3.12)

It is also to be remarked that the projective vector field equation (3.11) also appears in
the search for first–order differential operators Q = α(x) + β(x)d/dx leaving invariant the set
of solutions of Hill equation (3.8). In fact it was shown in [61] that β must be a solution of
(3.11), and then α must be equal to 1

2
β′ + C where C is any constant.

3.1 Virasoro algebra and projective vector field equation

Let Diff+(S1) be the group of orientation preserving diffeomorphisms of the circle S1. We
represent an element of Diff+(S1) as a diffeomorphism Φ(ei x) = eif(x) where f : R −→ R is
a function such that (a) f ∈ C∞(R), (b) f(x + 2π) = f(x) + 2π, (c) f ′(x) > 0. Therefore
the tangent space TidDiff+(S1) is the set of elements f(x) d/dx ∈ X(S1) with f a periodic
differentiable function such that f ′(x) > 0. Note however that under a change of coordinates
f does not change as a function but as the coordinate of a vector field.

The group Diff+(S1) is endowed with a smooth manifold structure based on the Fréchet
space C∞(S1). Its Lie algebra g = diff(S1) is the real linear space X(S1) endowed with the
usual bracket of vector fields: If Xfi = fi(x)d/dx ∈ X(S1) for i = 1, 2, then

[Xf1 , Xf2 ] = (f1 f
′
2 − f2 f

′
1)
d

dx
.. (3.13)

The natural action of Diff+(S1) induces its adjoint action on X(S1), and correspondingly
diff(S1) acts on X(S1) by the adjoint representation of the Lie algebra diff(S1) as indicated in
(3.4) and (3.13).

The complexification XC(S1) of X(S1) has elements V = f(θ) ∂
∂θ

, with f a complex periodic
function. The linear hull of the set generated by the the element of XC(S1) is

εk = i eikx
∂

∂x
, k ∈ Z,

for which the following commutation relations hold:

[εk, εl] =

[
ieikx

∂

∂x
, ieilx

∂

∂x

]
= (k − l)εk+l,

is a real Lie algebra called Witt algebra.
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One can build a non-trivial 2-cocycle corresponding to Gelfand-Fuks by integration, and
known as the Bott-Virasoro cocycle. Consider an orientation-preserving diffeomorphism σ :
S1 → S1, and let S1 be endowed with the flat volume form µ = dx. Under a diffeomorphism
x 7→ σ(x) we get

(σ∗(µ))x = d(σ(x)) = σ′(x)dx = elog(σ′(x))µ ≡ eT [σ−1]µ.

This yields a C∞(S1)-valued twisted derivative, also known as 1-cocycle

T [σ−1](x) = log(σ′(x)). (3.14)

We define the Bott-Thurston-Virasoro 2-cocycle [62] using the twisted derivative.

Definition 3 The Bott-Thurston-Virasoro 2-cocycle on Diff(S1) is defined as

c(σ1, σ2) =
1

2

∫
S1

T [σ1] dT [σ1 ◦ σ2], (3.15)

where d denotes the differential of functions on the circle.

Using two important properties, namely,

T [σ1 ◦ σ2] = T [σ1] + T [σ2] ◦ σ−1
2 , (3.16)

T [σ1] ◦ σ1 = −T [σ−1
1 ], (3.17)

we can prove that ∫
S1

T [σ1]dT [σ1 ◦ σ2] =

∫
S1

T [(σ1 ◦ σ2)−1]dT [σ−1
2 ]. (3.18)

Hence we can write this 2-cocycle in a more known form

B(σ1, σ2) =
1

2

∫
S1

log(σ1 ◦ σ2)′ d log(σ′2) =
1

2

∫
S1

T [(σ1 ◦ σ2)−1] dT [σ−1
2 ]. (3.19)

We call this 2-cocycle Bott-Thurston-Virasoro cocycle, Bott-Virasoro cocycle, or simply Bott
cocycle.

3.1.1 Bott-Virasoro cocycle to Gelfand-Fuchs cocycle and Virasoro algebra

The group Diff+(S1) has non-trivial central extensions by the Abelian group U(1), the Bott–

Virasoro group D̂iff+(S1). Recall that a central extension is given by an exact sequence of
groups

1 // U(1)
j // D̂iff+(S1) π // Diff+(S1) // 1,

where j(U(1)) lies in the centre of D̂iff+(S1). Choosing a normalised (local) section ξ for π we
see that if σ1, σ2 ∈ Diff+(S1), then ξ(σ1 ◦ σ2) differs from the product of ξ(σ1) and ξ(σ2) in an
element eic(σ1,σ2) of j(U(1)). The associativity property is equivalent to the condition:

c(σ1 ◦ σ2, σ3) + c(σ1, σ2) = c(σ1, σ2 ◦ σ3) + c(σ2, σ3).
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which corresponds to the cocycle condition for the map eic : Diff+(S1)×Diff+(S1)→ U(1).
Changing the section ξ amounts to modify the cocycle eic by a coboundary eiζ (i.e. a

cocycle for which there exists a map eiτ : Diff+(S1)→ U(1) such that ζ(σ1, σ2) = τ(σ1 ◦ σ2)−
τ(σ1)− τ(σ2))). Then, c is replaced by c̄(σ1, σ2) = c(σ1, σ2) + ζ(σ1, σ2).

More explicitly, the Bott–Virasoro group D̂iff+(S1) is defined by the central extension of
Diff+(S1) by U(1), determined by the Bott cocycle eic [63, ?] where the map

c : Diff+(S1)×Diff+(S1) −→ R

is given by [35]:

c(σ1, σ2) =
1

2

∫
S1

log[(σ1 ◦ σ2)′] d log |σ′2|,

for σi ∈ Diff+(S1). This cocycle satisfies the normalization condition c(σ1, σ
−1
1 ) = 0. The

cocycle can also be written as

c(σ1, σ2) =
1

2

∫
S1

log(σ′1 ◦ σ2) d log |σ′2|,

because using the chain rule we have (σ1 ◦ σ2)′ = (σ′1 ◦ σ2)σ′2 and then,

1

2

∫
S1

log(σ1 ◦ σ2)′ d log |σ′2| =
1

2

∫
S1

log(σ′1 ◦ σ2) d log |σ′2|+
1

2

∫
S1

log(σ′2) d log |σ′2|,

and an integration by parts shows that the last term vanishes as a consequence of the period-
icity.

Note that

c(σ1 ◦ σ2, σ3) =
1

2

∫
S1

log(σ1 ◦ σ2 ◦ σ3)′ d log |σ′3| =
1

2

∫
S1

log(σ′1 ◦ σ2 ◦ σ3) d log |σ′3|+ c(σ2, σ3),

and similarly,

c(σ1, σ2 ◦σ3) =
1

2

∫
S1

log(σ1 ◦σ2 ◦σ3)′ d log |σ2 ◦σ′3| =
1

2

∫
S1

log(σ′1 ◦σ2 ◦σ3) d log |σ′3|+c(σ1, σ2),

from where the cocycle condition follows. If (t, σ) denotes the product j(t)ξ(σ) the composition

law in D̂iff(S1) is
(t1, σ1) · (t2, σ2) = (t1 + t2 + c(σ1, σ2), σ1 ◦ σ2).

There is a corresponding non-trivial central extension of the Lie algebra X(S1) by the
trivial Lie algebra R that is called the Virasoro algebra and denoted vir – i.e. we have a
central extension

0 // R // vir // X(S1) // 0.

More specifically, the elements of vir can be identified with pairs (real number, 2π-periodic
function). In other words, the 2π-periodic function is the component of an element of the set
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X(S1), which is known to be endowed with a Lie algebra structure. The corresponding cocycle
ζ : X(S1)× X(S1)→ R is given by

ζ(Xf , Xg) =

∫
S1

f ′g′′ dx,

where Xf = f(x) ∂/∂x and Xg = g(x) ∂/∂x. Obviously, ζ(Xf , Xg) = −ζ(Xg, Xf ) as a sim-
ple integration by parts shows, because of the periodicity of functions f and g and f ′ g′′ =
d

dx
(f ′ g′)− g′ f ′′.

Proposition 1 The Bott-Virasoro cocycle is the integral of the Gelfand-Fuchs cocycle in the
sense

ζ(Xf , Xg) =
d2

dt ds
(c(φt, ϕs))|s=t=0 −

d2

dt ds
(c(ϕs, φt))|s=t=0 , (3.20)

where φt and ϕs are the flows of the vector fields Xf and Xg, respectively.

Proof.- Taking into account that

d

dt
(c(φt, ϕs))|t=0 =

1

2

∫
S1

(log′(φ0 ◦ ψs)′)(f ◦ ϕs)′d logϕ′s =
1

2

∫
S1

(f ′ ◦ ϕs)d logϕ′s,

and
d

ds

(
1

2

∫
S1

(f ′ ◦ ϕs)d logϕ′s

)
s=0

=
1

2

∫
S1

f ′ dg′,

and similarly for the other term, we find that

ζ(Xf , Xg) =
1

2

∫
S1

(f ′ dg′ − g′ df ′) =

∫
S1

f ′g′′ dx.

�

Therefore the commutator in vir takes the form[
(a,Xf ), (b,Xg)

]
= (ζ(Xf , Xg), [Xf , Xg]) =

(∫
S1

f ′g′′ dx, (fg′ − gf ′) d
dx

)
.

The dual linear space vir∗ can be identified to the set {(µ, v (dx)2) | µ ∈ R, v ∈ C∞(S1)}.
In fact, an element (µ, v (dx)2) maps linearly vir into the set of the real numbers as follows:

〈(µ, v (dx)2), (a,Xf )〉 = a µ+

∫
S1

f(x) v(x) dx,

and conversely, each linear map from vir into R can be represented as such a pair (µ, v (dx)2).
The remarkable point is that if ad (a,Xf ) is the image under the adjoint representation of

the element (a,Xf ) of the Virasoro algebra vir and ad ∗(a,Xf ) is the adjoint element, then

ad ∗(a,Xf )(1, v (dx)2) =

(
0,

1

2
f ′′′ + 2v f ′ + v′ f

)
.
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In fact, it follows from the definition

〈ad ∗(a,Xf )(µ, v (dx)2), (b,Xg)〉 = 〈(µ, v (dx)2), ad (a,Xf )(b,Xg)〉

=

〈
(µ, v (dx)2),

(∫
S1

f ′g′′dx, [Xf , Xg]

)〉

= µ

∫
S1

f ′g′′+

∫
S1

v(fg′ − f ′g)dx =

∫
S1

(µf ′′′ − 2v f ′ − v′f)g(x)dx,

and then
ad ∗(a,Xf )(µ, v (dx)2) = (0, µ f ′′′ − 2v f ′ − v′ f) .

Hence we see that the stability Lie algebra of the point (−1/2, v (dx)2) relative to the action
defined by ad ∗ on its dual is given by a vector field Xf ∈ X(S1) such that f is a solution of the
third-order differential equation (3.11), which is the projective vector field equation. We have
recovered the projective vector field equation from the point of view of the coadjoint orbit of
the Virasoro algebra.

3.2 Projective vector field equation and its structure

The projective vector field equation (3.11) is a linear differential equation and therefore invari-
ant under the dilation vector field. Lie recipe amounts to introduce a new dependent variable
z instead of y in such a way that the dilation vector field D = y ∂/∂y has the form D = ∂/∂z
(i.e. y = Cez, for any constant C), and then

y′ = Cz′ ez , y′′ = C(z′′ + z′2)ez , y′′′ = C(z′′′ + 3z′z′′ + z′3)ez , C 6= 0. (3.21)

Note that z′ = y′/y, no matter of the value of C 6= 0. The important point is that the
differential equation transformed from (3.11) does not depend on the variable z but on its
derivatives and then the order of the differential equation (3.11) can be reduced by one just
by introducing the new variable u = z′ and so we obtain the second-order differential equation
for u,

u′′ + 3uu′ + u3 + 4vu+ 2v′ = 0 , (3.22)

which is a second-order Riccati equation, called projective second-order Riccati equation.
The purpose of this section is to set up a geometrical formulation of such nonlinear second-

order ODEs (3.22) in terms of the projective vector field equation (3.11) (see e.g. [59, 65]).

Proposition 2 Let ψ1 and ψ2 be two linearly independent solutions of the second-order dif-
ferential equation

ψ′′ + k v ψ = 0 . (3.23)

Then, the three-dimensional linear space of solutions of the linear third-order differential equa-
tion

y′′′ + 4k v y′ + 2k v′ y = 0 (3.24)

is spanned by the functions ψ2
1, ψ2

2, and ψ1ψ2.
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Proof.- If ψ1 and ψ2 are two linearly independent solutions of the equation (3.23) then
taking derivatives we obtain that

ψ′′′1 + kv ψ′1 + kv′ ψ1 = 0 , ψ′′′2 + kv ψ′2 + kv′ ψ2 = 0 .

Now, if we make use of these two equations, then the following third-order derivative

D3(ψiψj) = ψ′′′i ψj + 3ψ′′i ψ
′
j + 3ψ′iψ

′′
j + ψiψ

′′′
j ,

can be rewritten as follows

D3(ψiψj) = −(kv ψ′i + kv′ ψi)ψj − 3kv ψiψ
′
j + 3ψ′i(−kv ψj)− ψi(kv ψ′j + kv′ ψj),

that after simplification it becomes

D3(ψiψj) = −k[2v′ ψiψj + 4v(ψ′iψj + ψiψ
′
j)] .

We have therefore obtained

D3(ψiψj) + 4kv(ψ′iψj + ψiψ
′
j) + 2k v′(ψiψj) = 0 ,

what proves that the three functions fij = ψiψj, i, j = 1, 2, are solutions of (3.24). Finally, the
Wronskian of these three functions is given by

W [ψ2
1, ψ1ψ2, ψ

2
2] = 2(ψ1 ψ

′
2 − ψ2 ψ

′
1)3 .

Therefore, as {ψ1, ψ2} is a fundamental set of solutions of the linear second-order equation
(3.23), the functions ψ2

1, ψ2
2 and ψ1ψ2 are linearly independent and they span the linear space

of solutions of (3.24). comments?
�

Remark: The result of the preceding Proposition 1 is an example of a particular case of
those in which the general solution of a linear third-order ODE can be obtained from those
of a linear second-order ODE. This problem has been studied, for example, by Singer in [66]:
Example 1.4 therein, Airy equation, is a special case of Proposition 1.

Remark: The usual Schrödinger equation for the determination of stationary states is of
the same type as Hill equation where the function v is not periodic but a generic function
v(x) = E − V (x), but the symmetry properties of both equations are the same ones.

Proposition 3 Suppose ψ is a solution of a second-order linear differential equation

ψ′′ + v1ψ
′ + v2ψ = 0. (3.25)

Then y = ψ2 is a solution to the third-order linear differential equation

y′′′ + 3v1y
′′ + (v′1 + 4v2 + 2v2

1)y′ + (2v′2 + 4v1v2)y = 0, (3.26)

where v1 and v2 are functions of x.
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Proof.- The proof is essentially based on the fact that y, y′, y′′, y′′′ are all linear combinations
of ψ2, ψψ′ ψ′2. We obtain

y′′ = 2
(
(ψ′)2 − v1ψψ

′ − v2ψ
2
)
,

y′′′ = 2
(
v2

1ψψ
′ + v1v2ψ

2 − v′1ψψ′ − v′1ψ2 − 3v1ψ
′2 − 4v2ψψ

′).
One can obtain the result using all these expressions.

�.

Corollary 1 Let v2 = −1
2
v′1 − 1

4
v2

1. Then the coefficients of equation (3.26) are expressed in
terms of (higher-order) Riccati equations

v′1 + 4v2 + 2v2
1 = −v′1 + v2

1 =

(
− d

dx
+ v1

)
v1, (3.27)

2v′2 + 4v1v2 = −
(
v′′1 + 3v1v

′
1 + v3

1

)
= −

(
d

dx
+ v1

)2

v1. (3.28)

Proof.- By direct computation.
�

Proposition 4 1. Let f be a solution of the projective vector field equation (3.11). Then
the function u such that k u = f ′/f (where k 6= 0) is a particular solution of the following
second-order Riccati equation:

u′′ + 3k u u′ + k2u3 + 4kv u+ 2k v′ = 0 . (3.29)

2. Suppose that u1(x) is a solution of the Riccati equation

ζ ′ + kζ2 + k v = 0 . (3.30)

Then the function u = 2u1 is a solution of the second-order Riccati equation (3.29).

Proof.- 1. The equation (3.12) is invariant under dilations, and then we can choose an adapted
coordinate for which dilations generator is (1/k)∂/∂z (i.e. we use a function z instead of y
such that y = ekz), and then using the expressions analogous to (3.21)

y′ = kz′ ekz , y′′ = (kz′′ + k2z′2)ekz , y′′′ = (kz′′′ + 3k2z′z′′ + k3z′3)ez , (3.31)

the differential equation that we obtain does not depend on z but on its derivatives, z′, z′′

and z′′′, and if we define u = z′, it becomes (3.29), which is a generalization of the nonlinear
oscillator equation. Here the coefficients are fixed by the projective vector field equation. In
other words, the new reduced equation can be rewritten as

R2(u) + 4vR0(u) + 2v′ = 0,

where the functions Rk are defined in Section 2.
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2. First, we note that if u1 satisfies (3.30), then the derivative of relation

u′1 + ku2
1 + kv = 0, (3.32)

leads to the following second-order relation

u′′1 + 2ku1 u
′
1 + kv′ = 0 . (3.33)

On the other side, putting u = 2u1 in the left hand side of (3.29) we obtain

u′′ + 3ku u′ + k2u3 + 4kv u+ 2k v′ = 2u′′1 + 12ku1 u
′
1 + 8k2u3

1 + 8ku1 v + 2kv′,

and therefore taking into account (3.33):

u′′ + 3ku u′ + k2u3 + 4kv u+ 2k v′ = −2(2ku1u
′
1 + kv′) + 12ku1u

′
1 + 8k2u3

1 + 8ku1v + 2k v′,

which simplifying terms reduces to

u′′ + 3ku u′ + k2u3 + 4kv u+ 2k v′ = 8ku1(u′1 + k u2
1 + k v),

from where using (3.32) on the right hand side we obtain the result of the Proposition.
This shows a relationship among solutions of the ordinary Riccati equation (3.30) and those

of the related second-order Riccati equation (3.29).

3.3 Global projective vector field and integrable ODEs

Since the solution space of the projective vector field equation is spanned by ψ2
1, ψ2

2, and ψ1ψ2,
an arbitrary solution of the projective vector field equation is given by [59]

Ψ = Aψ2
1 + 2Bψ1ψ2 + Cψ2

2, (3.34)

an arbitrary linear combination of basis vectors. This is periodic when ψ1 and ψ2 are periodic,
and hence it is a global solution of the projective vector field equation as a consequence of the
existence of global solutions of the Hill equation. This Ψ is called the global projective vector
field [56].

Milne–Pinney equation is a second-order differential equation that can be written, together
with a harmonic oscillator equation, as a system of two first-order differential equations and
it turns out to be a Lie system (see e.g. [22]). The same is true for the Hill equation (or
equivalently for the harmonic oscillator with a time-dependent frequency). As the Vessiot-
Guldberg Lie algebra of both equations is the same we can determine a mixed superposition
rule allowing to write the general solution of Pinney equation in terms of two independent
solutions of Hill equation (see [22]). More explicitly, the following superposition rule was
proved in [24, 25]:

Proposition 5 If ψ1 and ψ2 satisfy Hill’s equation – i.e. they are periodic solutions of (3.8),
i.e.

d2ψi
dx2

+ v(x)ψi = 0, i = 1, 2, (3.35)
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then the square root ψ of the function Ψ given by (3.34), which, as indicated above, is a solution
of the projective vector field equation, that is, ψ =

√
Aψ2

1 + 2Bψ1ψ2 + Cψ2
2, with A, B and C

arbitrary real numbers, is a periodic function satisfying the Milne–Pinney equation

ψ′′ + v(x)ψ =
σ

ψ3
, (3.36)

with σ = AC −B2.

Note also that we can consider the nonlinear second-order differential equation [67]

f f ′′ − 1

2
f ′2 + 2v f 2 − σ

2
= 0, (3.37)

which with the change of variable f = −ψ2/2 becomes (3.36). As it will be pointed out later
on, this is so because the function Φ(f, f ′, f ′′) = f f ′′− 1

2
f ′2 + 2v f 2 is a first integral of (3.11).

Moreover, taking derivative with respect to x at equation (3.37) we see that a solution of such
equation is a solution of the projective vector field equation (3.11).

In a similar way, we can consider the second-order Kummer-Schwarz equation:

1

2

f ′′

f
− 3

4

(
f ′

f

)2

+ σf 2 + v = 0,

which is a particular case of the second-order Gambier equation [68] and it was recently anal-
ysed in [48] from the perspective of Lie theory. It has been proved to be a Lie system associated
with a Vessiot-Guldberg Lie algebra isomorphic to sl(2,R), and therefore admitting a nonlinear
superposition rule [1]. But as in the case of Milne-Pinney equation we can also find a mixed
superposition rule in terms of solutions of Hill equation. More explicitly, the solution is given
by

f(x) = (Aψ2
1 + 2Bψ1ψ2 + Cψ2

2)−1, (3.38)

where ψ1 and ψ2 satisfy the Hill’s equation and B2 = AC −σW−2, where W is the Wronskian
determinant of both solutions, W = W [ψ1, ψ2] [48].

It has also been proved in [45] that if ψ1 and ψ2 satisfy Hill’s equation, with ψ2(x0) 6= 0,
and W denotes the Wronskian, W = W [ψ1, ψ2], then for each nonzero real number m, such
that 0 6= m 6= 1, the function

Ψ =

(
ψm1 +

c

(m− 1)W 2
ψm2

)1/m

, c ∈ R,

satisfies the differential equation

y′′ + v(x)y = c
(ψ1ψ2)m−2

y2m−1
.

There is a clear difference with respect to the preceding case of Milne–Pinney equation because
now the right-hand side of equation depends on the functions ψ1 and ψ2.
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This result was generalised in [69] where it is shown that if ψ1 and ψ2 are linearly indepen-
dent solutions of the linear homogeneous second-order differential equation

y′′ + r(x) y′ + q(x) y = 0,

then the function
Ψ = (Aψm1 +Bψm2 )1/m

is a solution of the Reid type equation

y′′ + r(x) y′ + q(x) y = AB(m− 1)(ψ1ψ2)m−2 W 2

y2m−1
,

where W is as before the Wronskian of the two functions ψ1 and ψ2.
Moreover, if we set ψ = (ψ1ψ2)k/2 then ψ satisfies Thomas equation [46]

y′′ + r(x)y′ + kq(x)y = (1− l)y
′2

y
− 1

4
kW 2y1−4l, kl = 1, (3.39)

where W denotes the Wronskian of the two solutions. We can recover reduced Gambier
equation (or Painlevé-Gambier XXVII equation) [47] for special values of m.

One must note that for r(x) = 0, Thomas equation (3.39) is reduced to

y′′ +
q(x)

l
y = (1− l)y

′2

y
− 1

4l
W 2y1−4l, (3.40)

this becomes the Pinney equation (1.1) for l = 1 and W 2 = −4k. Setting, instead, l = −1/2,
q = 2c, where c is some constant, then (3.40) reduces to Kummer-Schwarz (KS2) equation

y′′ =
3

2

y′2

y
+
W 2

2
y3 − 2c y. (3.41)

The KS2 equation is of interest mainly on account of its relationship with other differential
equations of physical and mathematical interest. For instance, when y > 0 the change of
variables z = 1/

√
y transforms the KS2 equation into an Ermakov–Milne–Pinney equation

z′′ − c z = −W
4z3

.

Moreover, it can be shown that the non-local transformation dz/dt = ζ maps the KS2 equation
to a particular variant of the third-order Kummer-Schwarz equation which is closely related
with Schwarzian derivatives. Indeed if {u1, u2} is a basis of the linear space of solutions of the
second-order equation ü− 2cu = 0, then the Kummer-Schwarz equation has a general solution
of the form [48]

ζ(t) = (Au2
2 +Bu1u2 + Cu2

1)−1, B2 − AC = W 2. (3.42)
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4 Invariants, prolongations and Riccati equation

For a geometric approach to a partial differential equation in m independent variables and one
dependent variable u, we must consider the space M × V = {(x, u) | x ∈ M,u ∈ V }, where
M = Rm and V = R. Suppose that G is a Lie group acting on some open subset N ⊆M ×V ,
by Φ : G × N → Φ(N) ⊆ M × V . Then the transformation Φg : N → Φ(N) ⊆ M × V , for
g ∈ G, is

Φg(x, u) = (x̄, ū), g ∈ G,
and a hypersurface given by u = u(x) in N is transformed into another one, ū = ū(x̄), where
(x, u) ∈ Φg(N).

An infinitesimal transformation is given by (see e.g. [70])

x̄ = x + ε f(x, u) + ϑ(ε2),
ū = u+ ε η(x, u) + ϑ(ε2),

wich can be understood as the infintesimal flow of the vector field in M × V

X = f i(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
. (4.1)

We restrict ourselves to the case of ordinary differential equations (i.e. m = 1) and then
M = R. A (may be local) smooth section σ for the projection π : M×V →M defines a smooth
function u = u(x), by means of σ(x) = (x, u(x)) and then for each natural number k ∈ N it
induces a function u(k) = pr(k)u, called the k-th prolongation of u, where pr(k)u : R −→ Rk+1

is the curve whose components are the derivatives of u of orders from 0 to k. The total
space M × V (k+1) ⊆ Rk+2, the coordinates of which represent the independent variable x, the
dependent variable u and the derivatives of u to order k, is called the k-th order jet space of
the underlying space M × V , sometimes denoted Jkπ.

Similarly, a vector field on N ⊂M × V given in local coordinates by

X = f(x, u)
∂

∂x
+ η(x, u)

∂

∂u
, (4.2)

admits a k-th-order prolongation. We are only interested in the first-order prolongation [70].
Note that if we consider the corresponding infinitesimal transformation (4.1), then

dū

dx̄
= (Dη − uxDf) = ηx + (ηu − fx)ux − fuu2

x, (4.3)

where ηx = ∂η/∂x, ηu = ∂η/∂u, ux = du/dx = u(1), and similarly, for fx and fu, with D being
given by

D =
∂

∂x
+ ux

∂

∂u
.

It follows directly from

dū

dx̄
=

d(u+ ε η + ϑ(ε2))

d(x+ εf + ϑ(ε2))
=
ux + (ηx + ηuux)ε+ ϑ(ε2)

1 + (fx + fuux)ε+ ϑ(ε2)

= ux + ε (Dη − uxDf) + ϑ(ε2) = ux + (ηx + (ηu − fx)ux − fuu2
x) ε+ ϑ(ε2).

This provides us with the following well-known definition of first-order prolongation of X [70]:
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Definition 4 The prolongation pr(1)(X) of the vector field X ∈ X(N) with local expression
(4.2) is the vector field on J1π given by

pr(1)(X) = X(1) = f(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ (Dη − uxDf)

∂

∂ux
. (4.4)

These prolongations will play a relevant rôle in the search for symmetries of differential equa-
tions as it is shown in next Subsection, where the first-order Riccati equation is used as an
example.

The vector field (4.2) is projectable when fu ≡ 0, and then (4.4) reduces to

pr(1)(X) = X(1) = f(x)
∂

∂x
+ η(x, u)

∂

∂u
+ (Dη − uxf ′(x))

∂

∂ux
. (4.5)

4.1 Infinitesimal symmetries of standard Riccati equation and pro-
jective vector field equation

The first-order differential equation for the function u, (D − u)u = v(x), namely,

u′ = u2 + v(x), (4.6)

where u′ = ux and v is now a given function, usually called standard Riccati equation, is a
particular case of the general Riccati equation:

u′ = a2(x)u2 + a1(x)u+ a0(x) , (4.7)

for a2(x) = 1, a1(x) = 0 and a0(x) = v(x). The solutions of such non-autonomous differential
equation (4.6) are given by the integral curves of the vector field on R2

X =
∂

∂x
+ (u2 + v(x))

∂

∂u
. (4.8)

An infinitesimal Lie symmetry of such differential equation is represented by a projectable
vector field on R2,

Y = f(x)
∂

∂x
+ η(x, u)

∂

∂u
, (4.9)

such that there exists a function τ satisfying

[Y,X] = τ X, (4.10)

because then the solutions of the differential equation (4.6) are transformed under the flow of
the vector field Y into solutions, up to a reparametrisation. In other words, the vector field Y
preserves the 1-dimensional distribution generated by X.

Taking into account that

[f∂x + η∂u, ∂x + (u2 + v)∂u] = −(Xf)∂x +
(
fvx + 2η u− ∂xη − (u2 + v)∂uη

)
∂u,
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we find that the symmetry condition implies that τ = −Xf = −fx, and that f and η are
related as follows:

∂xη + (u2 + v)∂uη − fvx − 2η u = (u2 + v) fx . (4.11)

We can alternatively consider the given differential equation (4.6) as defining a 2-dimensional
submanifold in R3, with local coordinates (x, u, u(1)), defined by zero level set of the constant
rank map φ : R3 → R, φ(x, u, u(1)) = u(1) − u2 − v(x), that is,

Σ = φ−1(0) = {(x, u, u(1)) | u(1) − u2 − v(x) = 0}. (4.12)

The first-order prolongation of the vector field Y given by (4.9) is

Y (1) = pr(1)(Y ) = f(x)
∂

∂x
+ η(x, u)

∂

∂u
+
(
ηx(x, u) + u(1)η(x, u− u(1)fx(x)

) ∂

∂u(1)
, (4.13)

and when we consider the symmetry condition, which is but the tangency condition Y (1)φ|Σ =
0, we find

Y (1)(u(1) − (u2 + v(x)))|u(1)=u2+v(x) = 0 , (4.14)

and more explicitly,

∂xη(x, u) + (u(1)∂uη(x, u)− fx(x)u(1))|u(1)=u2+v(x) = f(x)vx(x) + 2η(x, u)u , (4.15)

which reproduces (4.11).
We can now establish the following relationship among symmetries of the standard Riccati

equation and solutions of the projective vector field equation.

Proposition 6 The standard Riccati equation (4.6) remains invariant with respect to the first
prolongation pr(1)Y of the vector field (4.9), provided that the function f satisfies the projective
vector field equation.

Proof.- Note first that if Y is an infinitesimal symmetry of X as indicated in (4.10), then
for each function g(x), Y + g(x)X is also an infinitesimal symmetry of X, i.e. we can replace
simultaneously f by g + f and η by η + g(u2 + v(x)), and then ηuu will change to ηuu + 2g
and we can restrict us to the case ηuu = 0. Consequently, once that f is fixed in (4.11) we can
try to determine an affine function η (i.e. of the form η(x, u) = k(x)u + h(x), satisfying such
symmetry condition. Then the functions k and h must satisfy:

kx(x)u+ hx(x) + (u2 + v(x))(k(x)− fx(x)) = f(x)vx(x) + 2u(k(x)u+ h(x)),

and therefore

u2(k(x) + fx(x)) + u(2h(x)− kx(x)) + f(x)vx(x) + v(x)(fx(x)− k(x))− hx(x) = 0.

This shows first that we must choose k(x) = −fx(x) – i.e. the function η is such that

η(x, u) = −fx(x)u+ h(x),
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and using such an expression for η(x, u) in the symmetry condition (4.11) we find

u(fxx(x) + 2h(x)) + f(x) vx(x) + 2v(x)fx(x)− hx(x) = 0,

which shows that we should choose h such that h = −1
2
fxx(x), and then replacing h by this

value in the preceding equation we find that f must be such that

1

2
fxxx(x) + 2v(x)fx(x) + f(x) vx(x) = 0 ,

and hence, as indicated in [56], f is a solution of the projective vector field equation (3.11).
Remark: One would obtain the same result if one starts from a more general differential

equation u′ = a2(x)u2 + a1(x)u + a0(x). In this case u must be expressed in terms of a2, a1

and a0 and their derivatives.

4.2 Integrals of motion and other dynamical features

A constant of the motion, or simply an integral of the motion, for a system of ODE’s

dyi
dx

= Xi(x, y1, · · · , yn) i = 1, · · · , n (4.16)

is a non-constant differentiable function Φ(x, y1, · · · , yn) that retains a constant value on any
integral curve of the system. This means that its derivative with respect to x vanishes on the
solution curves:

dΦ

dx
= 0⇒ ∂Φ

∂x
+
∑
i

∂Φ

∂yi

dyi
dx

= 0 =⇒ D̃[Φ] = 0, (4.17)

where the vector field on Rn+1

D̃ :=
∂

∂x
+
∑
i

Xi
∂

∂yi

is called the material or total derivative. For an autonomous system and a first integral
independent of x, this reduces to

DΦ =
∑
i

Xi
∂Φ

∂yi
= 0 (4.18)

where

D =
∑
i

Xi
∂

∂yi

is just the vector field on Rn associated with the given autonomous system. The x-independent
integrals of motion are usually called first-integrals.

Higher-order differential equations can be written as an associated system of first-order
differential equations and then the constants of motion for such system are called constants
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of motion for the higher-order differential equation. As an instance the projective vector field
equation (3.11) can be written as the linear system on R3

dy

dx
= w

dw

dx
= a

da

dx
= −4vw − 2v′y

and then the function Φ(x, y, w, a) = 2v(x)y2 − 1
2
w2 + ya is a constant of the motion, because

the vector field

X =
∂

∂x
+ w

∂

∂y
+ a

∂

∂w
− (4vw + 2v′y)

∂

∂a

is such that XΦ = 0. This fact was pointed out in relation to (3.37). The constant of motion
can also be rewritten as

Φ(x, y, y′, y′′) = 2v(x)y2 − 1

2
y′2 + y y′′,

which is a constant of the motion for the projective vector field equation (3.11). This shows
that a nonvanishing function is solution of the projective vector field equation (3.11) if and only
if there exists a constant C such that the function is solution of the second-order differential
equation

y′′ = −2v(x) y +
y′2

2y
+ C.

When C = 0 this equation is invariant under dilations and therefore its order can be reduced
as indicated in Subection 3.2 by putting u = y′/y.

With an analogous procedure one can compute the first-integrals of similar type for a
third-order differential equation. For example, for the first-integral of the stationary Calogero-
Degasperis-Ibragimov-Shabat equation [71].

y′′′ + 3y2 y′′ + 9y y′2 + 3y4y′ = 0, (4.19)

it has associated a vector field

X = w
∂

∂y
+ a

∂

∂w
− (3y2a+ 9yw2 + 3y4w)

∂

∂a
,

and the function
Φ(y, w, a) = 2ay + 6y3w + y6 − w2

is such that XΦ = 0, and therefore is constant of motion. The corresponding function given
by

Φ(y, y′, y′′) = y
(
2y′′ + (6yy′ + y4)y

)
− y′2,

which leads to the family of differential equations

f
(
2fxx + (6ffx + f 4)f

)
− fx2 = C.

The remarkable point here is that one can interpret equation (4.19) in terms of the stabilizer
set of the coadjoint action. The function y = f(x) is a solution of (4.19) if and only if

ad ∗
f d
dx

(3ffx + (1/2)f 4)dx2 = 0.
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5 Second-order Riccati equation, Painlevé II and higher

Painlevé type equations

Second-order second degree equations of Painlevé type appear in mathematical physics (for
example, [72, 73]) and were studied mainly by Bureau [74]. The same problem was revis-
ited much later by Cosgrove [75, 76], in collaboration with Scoufis [31], who, by restricting
somewhat the scope, were able to produce a complete classification of integrable subcases.
The question of the derivation of integrable second-order second-degree systems related to the
Painlevé equations (a bottom-up approach, compared to the Cosgrove-Scoufis top-down one)
was addressed by Sakka and Mugan [77, 78]. The second degree equations are also important in
determining transformation properties of the Painlevé equations. In this section we elucidate
its connection with the second-order Riccati equation.

Consider once again the linear third-order equation (3.11), i.e. the projective vector field
equation, and the corresponding second-order Riccati equation (3.22).

Let us define for each function f the functions

u1 =
f ′

f
, u2 =

f ′′

f
− 1

2

(
f ′

f

)2

+ w, (5.1)

where w is an arbitrary but fixed function. Then,

u′1 =
d

dx

(
f ′

f

)
=
f ′′

f
−
(
f ′

f

)2

= u2 −
1

2
u2

1 − w. (5.2)

Moreover,

u′2 =
f ′′′

f
− f ′′ f ′

f 2
− u1u

′
1 + w′,

and if we use the definition of u2 given in (5.1) to write

f ′′

f
= u2 +

1

2
u2

1 − w,

we see that when f is a solution of (3.11), then

f ′′′

f
= −4v u1 − 2v′,

and

u′2 = −4v u1 − 2v′ − u1

(
u2 +

1

2
u2

1 − w
)
− u1u

′
1 + w′

that is,

u′2 = −4v u1 − 2v′ + u1(w − u2)− u1

(
u′1 +

1

2
u2

1

)
+ w′.
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Consequently, using (5.2) we see that such functions u1 and u2 satisfy the system of differential
equations 

u′1 = u2 −
1

2
u2

1 − w ,

u′2 = 2(w − 2v)u1 − 2u1u2 − 2v′ + w′.

(5.3)

Conversely, if (u1, u2) is a solution of this system, then f(x) = exp
(∫ x

u1(ζ) dζ
)

is a solution
of (3.11), because, by definition of f ,

f ′

f
= u1,

f ′′

f
=

d

dx

(
f ′

f

)
+

(
f ′

f

)2

= u′1 + u2
1 = u2 +

1

2
u2

1 − w,

and

f ′′′

f
=

d

dx

(
f ′′

f

)
+
f ′′ f ′

f 2
= u′2 + u1u

′
1 − w′ + u1

(
u2 +

1

2
u2

1 − w
)

= u′2 − w′ + 2u1(u2 − w),

from here we see that

f ′′′ + 4v f ′ + 2v′ f

f
= u′2 − w′ + 2u1(u2 − w) + 4v u1 + 2v′

and the second differential equation of the system (5.3) shows that f is solution of (3.11).
On the other side, the very essence of the differential equation (3.22) is that it is obtained as

a system of two coupled first-order differential equations. One starts from a first-order Riccati
equation u′1 = u2− 1

2
u2

1−w like the first equation in the system (5.3), where w is an arbitrary
differentiable function of the independent variable x, and then couple u1 to u2 through a linear
differential equation on u2 involving u1, the second differential equation in (5.3).

We can also express these two equations in terms of u2. After rearranging the second
equation of (5.3 we obtain

u1 =
1

2

u′2 + 2v′ − w′

w − 2v − u2

. (5.4)

Therefore, if we define a new function K(x) by

K = ±(u2 − w + 2v), (5.5)

we can write

u1 = −1

2

K ′

K
.

We can express the first equation of (5.3) in terms of K and substitute u2 by w − 2v ±K
and we obtain

K ′′ =
5

4

K ′2

K
+ 4vK ∓ 2K2. (5.6)

A more amenable form is obtained when we substitute K = −1/p, and then

p′′ =
3

4

p′2

p
− 4vp∓ 2. (5.7)
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This is a reduced Gambier equation or G5 equation in Gambier’s classification [79].

Remarks: (a) If we assume v to be a constant, v = α
4
, then the second-order Riccati

equation (3.22) reduces to the modified Emden equation

u′′ + 3uu′ + u3 + αu = 0, (5.8)

which therefore can be obtained from the pair of differential equations{
u′1 = u2 − 1

2
u2

1 − w,
u′2 = (2w − α)u1 − 2u1u2 + w′.

Equation (5.8) is a very well-known integrable system.

(b) The projective second-order Riccati equation (3.22) can be related to the family of
Ermakov–Milne–Pinney equations [23, 24, 25]

Ψ′′ + vΨ =
σ

Ψ3
, (5.9)

where σ is some constant. In fact, such a one-parameter family is described by the third-order
differential equation obtained by elimination of the parameter σ,

(Ψ3Ψ′′ + vΨ4)′ = 0. (5.10)

This differential equation is invariant under dilations and Lie recipe for reduction amounts
to define a new variable ζ such that Ψ = e

1
2
ζ (i.e. u = ζ ′ = 2Ψ′/Ψ), and then replacing

Ψ′

Ψ
=

1

2
u,

Ψ′′

Ψ
=

1

2
u′ +

1

4
u2,

Ψ′′′

Ψ
=

1

2
u′′ +

3

4
uu′ +

1

8
u3,

in the equation (5.10) of the family

Ψ3Ψ′′′ + 3Ψ2Ψ′Ψ′′ + 4vΨ3Ψ′ + v′Ψ4 = 0,

we obtain the second-order differential equation (3.22). This immediately yields our result.
�

The projective vector field equation (3.11) admits a Lax formulation in the following sense.
Given a function f we define a pair of matrices P and Q as follows:

P =

(
f ′/2 −

∫ x
v(ζ)f ′(ζ) dζ

−f −f ′/2

)
, Q =

(
0 v
−1 0

)
, (5.11)

for which

QP =

(
−vf −vf ′/2
−f ′/2

∫ x
v(ζ)f ′(ζ) dζ

)
, PQ =

(∫ x
v(ζ)f ′(ζ) dζ vf ′/2
f ′/2 −vf

)
.
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Then, the matrices P and Q are a Lax pair, that is,

P ′ + [Q,P ] = 0, (5.12)

if and only if f is a solution of the integro-differential equation

f ′′ + 2v f + 2

∫ x

v(ζ)f ′(ζ) dζ = 0,

and taking derivatives we find that f is a solution of the projective vector field equation (3.11).
The corresponding Lax formulation for the projective second-order Riccati equation (3.22)

will be given by the same matrix Q and

P =

(
1
2
ue

∫ x u(ζ) dζ −
∫ x

v(ζ)u(ζ)e
∫ ζ u(ζ′) dζ′ dζ

−e
∫ x u(ζ) dζ −1

2
ue

∫ x u(ζ) dζ

)
,

and then the matrices P and Q are a Lax pair if and only if u is a solution of the integro-
differential equation

(u′ + u2 + 2v) exp

∫ x

u(ζ) dζ + 2

∫ x

v(ζ)u(ζ) exp

∫ ζ

u(ζ ′) dζ ′ dζ = 0.

Now, taking derivative with respect to x we find

(u′′ + 2uu′ + 2v′) exp

∫ x

u(ζ) dζ + u(u′ + u2 + 2v) exp

∫ x

u(ζ) dζ + 2uve

∫ x

u(ζ) dζ

= 0,

and simplifying the common factor we obtain the projective second-order Riccati equation
(3.22).

Remark: The equation (5.12) has a nice geometric interpretation in terms of the coadjoint
action of loop algebra [80, 81]. The loop group C∞(S1, G) is the group of smooth functions
on the circle S1 with values on real semi-simple Lie group G. Its Lie algebra C∞(S1, g) has a
central extension provided by the Kac-Moody cocycle

ω(A,B) =

∫
S1

〈
A(x),

dB(x)

dx

〉
dx.

The coadjoint representation of the extended loop algebra is given by

ad ∗(a, P )(b,Q) =
(

0, [P,Q] + b
dP (x)

dx

)
,

for any P,Q ∈ C∞(S1, g) and a, b ∈ R. The equation (5.12) is the stabilizer set of the coadjoint
orbit confined to hyperplane b = −1. Thus once again we obtain an equation which can be
interpreted in terms of stabilizer orbit.
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5.1 Painlevé II, Bäcklund transformation and second-order Riccati
equation

We wish to discuss the integrable class of Painlevé II equation; in other words, we are interested
in the rational solutions for integer valued parameter α of the Painlevé II equation and their
explicit characterisation in terms of the Airy function Ai. It is worth to note that half-integer
valued parameter of the Riccati equation are also characterised by the Airy function. Here the
Painlevé II equation (PII) is an ordinary nonlinear second-order differential equation with a
parameter α,

u′′ = 2u3 + xu+ α. (5.13)

This equation has exactly one rational solution for α being an arbitrary integer and has no
rational solution if α is not an integer [28, 82, 83]. It admits a Bäcklund transformation
(u, α) 7→ (u,−α), which clearly maps rational solutions into rational solutions.

Consider now the Airy differential equation

ψ′′ + xψ = 0. (5.14)

It is clear that this Airy differential equation is a particular instance of the Hill’s equation (3.8)
for the special choice v(x) = x. The following proposition elucidates the relation between PII
and second-order Riccati, which has appeared in [8, 84].

Proposition 7 1.- If ψ is a solution of the Airy equation

ψ′′ + xψ = 0,

then the function u1 = ψ′/ψ satisfies the Riccati equation u′ + u2 + x = 0.
2.- The second-order equation obtained by derivation from such Riccati equation for the

function u = λu1 is the Painlevé II equation

u′′ =
2

λ2
u3 + 2xu− λ, (5.15)

which after a rescaling becomes the Painlevé II equation

Proof.- 1.- It suffices to use the expression (2.13) for reduction recipe with n = 2, a0(x) = x,
a1(x) = 0 and a2(x) = 1, (i.e. R1(u)+xR0(u) = 0), and the expressions (2.10), then u1 = ψ′/ψ
is a solution of

u′ + u2 + x = 0.

2.- Note that the function u = λu1 satisfies the differential equation u′ = −u2

λ
− λx and

therefore, deriving with respect to x we find that the second-order Riccati differential equation
satisfied by the function u = λu1 is

u′′ = −2u

λ

(
−u

2

λ
− λx

)
− λ =

2u3

λ2
+ 2xu− λ.
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If we now consider a new independent variable x̄ = µx with 0 6= µ ∈ R, the differential
equation is transformed into

d2u

dx̄2
=

2u3

µ2λ2
+ 2

x̄

µ3
− λ

µ2
,

and by choosing the parameters λ and µ as µ3 = 2 and λ = µ−1 we see that the differential
equation becomes a Painlevé II type differential equation (5.13) with α = 1/2:

d2u

dx̄2
= 2u3 + x̄ u− 1

2
.

This proves that the second-order Riccati equation can be brought back to ‘standard Painlevé
II’ by an appropriate scaling.

�
Under the map x→ −x, it takes the form of a similar equation but with the opposite sign,

that is, i.e. if ψ is a solution of the Airy differential equation

ψ′′ − xψ = 0,

then u1 = λψ′/ψ satisfies the differential equation

u′′ =
2

λ2
u3 − 2xu− λ, (5.16)

that can be transformed into a Painlevé II equation with an appropriate change of independent
variable as before.

Remark: The Painlevé transcendents (P-II – P-VI) possess Bäcklund transformations which
map solutions of a given Painlevé equation into solutions of the same Painlevé equation, but
with different values of the parameters. Therefore two Painlevé equations for α = 2 and
α = −2 are connected by Bäcklund transformations.

Remark: Considering ψ′′±(x/2)ψ = 0 we can also relate Painlevé II equations for parameters
α = ∓2 and these are connected by the Bäcklund transformations.

Remark: If y = f(x) is a solution of the differential equation (3.11), then for a given real
number β the function y = f(x) is a solution of the differential equation

y′′′ + 4v̄ y′ + 2v̄′ y + 6βy y′ = 0, (5.17)

with v̄ = v − β f . Now if the function f is positive and define the positive function ψ by
f = ψ2, then as

f ′ = 2ψ ψ′, f ′′ = 2ψ′2 + 2ψ ψ′′, f ′′′ = 6ψ′ ψ′′ + 2ψ ψ′′′,

we see that ψ is then a solution of

2y y′′′ + 6y′ y′′ + 8v̄ y y′ + 2v̄′ y2 + 12β y3y′ = 0,

which can be rewritten as
(y′′ y3 + v̄ y4 + β y6)′ = 0,
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i.e. there exists a constant σ such that ψ is a solution of the differential equation

y′′ + v̄ y + β y3 =
σ

y3
.

For the particular case v̄ = x/2, that means that ψ is a solution of the Ermakov-Painlevé II
equation. Conte showed how one can transform it to Painlevé II (see e.g. [85]).

Remark: Let us briefly describe the connection between Painlevé II hierarchy and our ap-
proach. We proved that the solutions of the the projective vector field equation generate
the stability algebra of Virasoro orbit. In other words, instead of considering the symplectic

structure defined by O1 = ∂x and the Hamiltonian function
1

3!
u3 − 1

2
u2
x, i.e.

ut =
∂

∂x

(
δ

δu

[
1

3!
u3 − 1

2
u2
x

])
=

∂

∂x

(
1

2
u2 + uxx

)
= uux + uxxx,

we consider the second Hamiltonian structure of the KdV equation

O2 = ∂3
x +

2

3
u ∂x +

1

3
ux. (5.18)

together with the Hamiltonian density
1

2
u2. Using ‘frozen Lie-Poisson structure’ we can define

the first Hamiltonian structure of the KdV equation too. This satisfies famous Lenard scheme

∂xHn+1 =

(
∂3
x +

2

3
u ∂x +

1

3
ux

)
Hn, (5.19)

where

H1 = u, H2 =
u2

2
, H3 =

1

3!
u3 − 1

2
u2
x, · · ·

are the conserved densities. The mKdV hierarchy is obtained from the KdV hierarchy through
Miura map u = vx − v2. The second Painlevé hierarchy is given recursively by Joshi from the
modified KdV hierarchy [86]

P n
II(u, βn) ≡

(
d

dx
+ 2v

)
Jn(ux − u2)− xu− βn = 0, (5.20)

where βn are constants and Jn is the operator defined by the first and second Hamiltonian
structures of the KdV equation

∂xJn+1(u) = (∂3
x + 4u∂x + 2ux)Jn(u),

with J1(u) = u.

We must recall that the solution of projective vector field equation is governed by the
solutions of Hill’s equation. Let (ψ1, ψ2) be the solution of the latter then the solution of the
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former equation is given by (ψ2
1, ψ1ψ2, ψ

2
2). This is called Veronese embedding, where (ψ1, ψ2)

is the homogeneous coordinates of P1. The morphism ϕ : P1 → Pd given by

ϕ([ψ1 : ψ2]) = [ψd1 : ψd−1
1 ψ2 : · · · : ψ1ψ

d−1
2 ψ2 : ψd2 ,

is called the d-Veronese embedding.

Using the higher Veronese embedding we study the solutions of the higher-order projective
vector field equations, which in turn yields higher-order Riccati equation.

Lemma 1 Let ψ1 and ψ2 be two linearly independent solutions of Hill’s equation. Then,
(a) The differential equation

y(iv) + 10vy′′ + 10v′y′ + (9v2 + 3v′′)y = 0 (5.21)

traces out a four-dimensional space of solutions spanned by {ψ3
1, ψ

2
1ψ2, ψ1ψ

2
2, ψ

3
2}.

(b) The differential equation

y(v) + 20vy′′′ + 30v′y′′ + 18v′′y′ + 64v2y′ + 4v′′′y + +64vv′y = 0 (5.22)

traces out a five-dimensional space of solutions spanned by {ψ4
1, ψ

3
1ψ2, ψ

2
1ψ

2
2, ψ1ψ

3
2, ψ

4
2}.

Proof.- By a direct lengthy computation.
�

Using the standard Cole–Hopf transformation u = y′/y we obtain the third-order and
fourth-order Riccati equations associated to these equations, respectively, which are, according
to (2.12) given by

u′′′ + 4uu′′ + 3u′2 + 6u2 u′ + 10v u′ + u4 + 10v u2 + 10v′ u+ 9v2 + 3v′′ = 0, (5.23)

and

u(iv) + 5u v′′′ + 10u′u′′ + 15uu′2 + 10u2u′′ + 10u3u′ + u5 + 20v(u′′ + 3uu′ + u3)
+ 30v′(u′ + u2) + 18v′′u+ 64v2u+ 4v′′′ + 64vv′ = 0.

Note that if we put v = 0 then, all these equations form a Riccati hierarchy.

5.2 Higher Riccati equations and higher-order Painlevé class sys-
tems

One can easily check that the third-order Riccati equation (5.23) can be transformed by setting
z = u2 into a special case of the Chazy equation XII, given by

z′′′ + 10zz′′ + 9z′2 + 36z2z′ + 20z4 = 0. (5.24)

Recently Ablowitz et al [87, 88] studied a general class of Chazy equation, defined as

u′′′ − 2uu′′ + 3u′2 = α(6u′ − u2)2, (5.25)
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where α is a real number. The particular case α = 1/16 was mentioned in [76] and that of

α =
4

36− n2
, i.e.

u′′′ − 2uu′′ + 3u′2 =
4

36− n2
(6u′ − u2)2. (5.26)

has a singled value general solution. More explicitly, this equation was first written down and
solved by Chazy [89, 90] and is known today as the generalized Chazy equation. Clarkson and
Olver showed that a necessary condition for the equation (52) to possess the Painlevé property
is that the coefficient must be α = 4

36−n2 with 1 < n ∈ N, provided that n 6= 6. It has been
further shown in [91] that the cases n = 2, 3, 4 and 5, correspond to the dihedral triangle,
tetrahedral, octahedral and icosahedral symmetry classes.

Proposition 8 If ū is a solution of the third Riccati equation

u′′′ + 3u′2 + 4uu′′ + 6u2u′ + u4 = 0, (5.27)

then, using x̄ = −x as independent variable, the function u = 2u1 satisfies

u′′′ − 2uu′′ + 3u′2 =
1

8
(6u′ − u2)2. (5.28)

Proof.- In fact, if ū is a solution (5.27) then u = 2 ū is solution of

u′′′ +
3

2
v′2 + 2uu′ +

3

2
u2 u′ +

1

8
u4 = 0,

and with the mentioned change of independent variable,

u′′′ − 3

2
v′2 − 2uu′ +

3

2
u2 u′ − 1

8
u4 = 0,

which can be rewritten as in (5.28).
�

Remark: The Chazy IV equation

u′′′ = −3uu′′ − 3u′2 − 3u2u′ (5.29)

is a derivative of the second-order Riccati equation or second member of the Riccati chain
given in (2.10) with k = 1.

We are able to construct fourth-order equations of the Painlevé class family, derived by
Bureau [74]. The Painlevé classification of the class of differential equations of the 4-th-order
first and second degree was studied by Cosgrove [75, 76]. The subcase which will be relevant
here is the Bureau symbol P1.

Cosgrove presented the results of the Painlevé classification for fourth-order differential
equations where the Bureau symbol is P1. He gave a long list of the equations F-VII – F-
XVIII in this category. Six equations, denoted by F-I, F-II, ..., F-VI, have Bureau symbol P2.
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It is worth to note that all the cases with symbols P3 and P4 were found to violate a standard
Painlevé test, they admit non-integer resonances.

We derive the following different equations from the list of Cosgrove on the Painlevé clas-
sification of fourth-order equations with Bureau symbol P1.

Proposition 9 The following two equations follow from the higher order Riccati equations

F-XII u(iv) = −4uu′′′ − 6u2u′′ − 4u3u′ − 12uu′2 − 10u′u′′

F-XVI u(iv) = −5uu′′′ − 10u′uv′′ − 15uu′2 − 10u2u′′ − 10u3u′ − u5

+ A(x)(u′′′ + 4uu′′ + 3u′2 + 6u2u′ + u4) +B(x)(u′′ + 3uu′ + u3(x))
+ C(x)(u2 + u′) +D(x)u+ E(x) = 0.

Proof.- A) The F-XII fourth-order equations with Bureau symbol P1 follows directly from
the expressions (2.12) for the fourth-order Riccati R4(u) = 0 and the third-order Riccati
R3(u) = 0 equations (also known as Burgers higher-order flows) by means of the relation

F-XII : R4(u)− uR3(u) = 0.

B) The F-XVI fourth-order equations with Bureau symbol P1 is the combination of all
higher-order Riccati equations.

�

5.3 Second degree Painlevé II equation

We have seen in the earlier section how Painlevé II is connected to second-order Riccati or
projective vector field equation. In this section we carry out this investigation further to
incorporate the second degree Painlevé II equation [92, 93, 94].

The Hamiltonian of the standard Painlevé II equation u′′ = 2u3 + xu+ α is given by

H(x, u, w) =
w2

2
−
(
u2 +

x

2

)
w −

(
α +

1

2

)
u, (5.30)

where u and w play the rôle of coordinate and momentum, i.e. the Poisson bivector field is

given by
∂

∂u
∧ ∂

∂w
. The Hamiltonian equations of motion yield a set of Riccati equations

u′ =
∂H

∂w
= w − u2 − x

2
,

w′ = −∂H
∂u

= 2uw + α +
1

2

. (5.31)

This system was studied by Morales [95] who proved that for α ∈ Z the system is not integrable
by means of rational first integrals.

In fact, taking derivative with respect to x at the first equation, using for w the value

obtained form it, i.e. w = u′ + u2 +
x

2
, and replacing w′ by the value given by the second

equation we obtain

u′′ = 2u
(
u′ + u2 +

x

2

)
+ α +

1

2
− 2uu′ − 1

2
= 2u3 + ux+ α,
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and therefore the function u satisfies the Painlevé II type differential equation (5.13).
Now, if u(x) and w(x) are solutions of the system (5.31), the function h(x) defined by

h(x) = H(x, u(x), w(x)) is such that

h′(x) =
∂H

∂x
(x, u(x), w(x)) = −w(x)

2
, h′′(x) = −w

′(x)

2
= −1

2

(
2u(x)w(x) + α +

1

2

)
,

and then one easily check that

(h′′(x))
2

+ 4 (h′(x))
3

+ 2h′(x) (xh′(x)− h(x))− 1

4

(
α +

1

2

)2

= 0. (5.32)

Conversely, if a function h(x) satisfies the relation (5.32), then the functions

u(x) =
1

2

h′′(x)

h′(x
+

(
α +

1

2

)
1

4h′(x)
, w(x) = −2h′(x)

are solutions of the system (5.31).
Observe that the right hand side of the expression

−2h′ = w = u′ + u2 +
x

2
(5.33)

is the term appearing from the reduction of the linear second-order differential Hill equation

y′′+
x

2
y = 0 when considering Lie recipe of invariance under dilations, i.e. u = y′/y. Therefore,

the following Hill’s equation

y′′ +
(

2h′(x) +
x

2

)
y = 0, (5.34)

leads by Lie recipe reduction from dilation symmetry to the preceding equation.
Note that the solution u can be found directly from the function h, the expression using

the second expression in (5.31):

u =
2h′′ + α +

1

2
4h′

. (5.35)

Thus we can extract several important information about the Painlevé II equation from
the second-order projective Riccati and the projective vector field equation.

6 Outlook

It is well known that several celebrated integrable PDEs, like KdV equation, Camassa-Holm
equation and many other integrable systems are connected to the coadjoint orbit of the Vira-
soro. In particular, their configuration space is the Virasoro group and these two integrable
systems can be regarded as equations of the geodesic flow associated to different right-invariant
metrics on this group. All these well known integrable PDEs have hierarchical structures and
these are also associated to the Virasoto orbit.
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Kirillov interpreted the stabilizer of a point in the coadjoint orbit of the Virasoro algebra.
in terms of the second Hamiltonian operator of the KdV equation. Geometrically this turns out
to be the projective vector field equation. Earlier we have seen that this stabilizer set harvest
many well-known finite-dimensional integrable systems, like C. Neumann system, Ermakov-
Pinney equation, Kummer-Schwarz equation etc. etc.

There are many papers addressing the connection between infinite-dimensional integrable
systems and Virasoro orbit, but very few of them have discussed the finite-dimensional inte-
grable systems. In this paper we discussed this subject quite elaborately. We showed that the
higher-order Riccati plays a key role in this development.

The standard Riccati equation and its higher-order generalisations play a very important
rôle in mathematical physics and dynamical systems. The second and higher-order Riccati
equations also play a relevant rôle in integrable ODEs, Painlevé and Chazy equations. It has
been shown [12] that the use of geometrical techniques to deal with the elements of the Riccati
equation is very efficient to unveil some previously hidden aspects of such equations. The
novelty of this article is to study higher-order Riccati equations and various other connected
integrable ODEs using coadjoint orbit method of Virasoro algebra. In particular, we have
given the geometric description of the higher-order Riccati equations using the stabilizer set
of the Virasoro orbit or projective vector field equation. We have also explored the geometric
connections between the higher-order Riccati equations and Painlevé type equations. It would
be interesting to extend our study to coupled Riccati equations, how they are connected to
the stabilizer set of the extended Virasoro orbit or superconformal orbit. All the coupled KdV
equations and two-component Camassa-Holm equation’s configuration space is the extended
Virasoro group and all these systems can be regarded as equations of the geodesic flow associ-
ated to different right-invariant metrics. One can check that the stabilier set of the coadjoint
orbit of the coextended Virasoro algebra is a coupled ordinary differential equation. We wish
to investigate the coupled integrable ODEs associated to this stabilizer orbit.

The application of these differential geometric methods to deal with multicomponent sys-
tems and their integrability is a very interesting subject to be studied. Hence, several inter-
esting issues connected to this paper ought to be addressed in future, we have only hit the tip
of the iceberg. We hope to answer some of these questions in forthcoming papers.
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[62] Guieu, L., Roger, C., L’algébre et le groupe de Virasoro, Publications du CRM, (Université
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