000130230 001__ 130230
000130230 005__ 20241125101155.0
000130230 0247_ $$2doi$$a10.1016/j.jmbbm.2023.105968
000130230 0248_ $$2sideral$$a134633
000130230 037__ $$aART-2023-134633
000130230 041__ $$aeng
000130230 100__ $$aHenderson, Bradley S.
000130230 245__ $$aModeling fatigue failure in soft tissue using a visco-hyperelastic model with discontinuous damage
000130230 260__ $$c2023
000130230 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130230 5203_ $$aSoft tissue is susceptible to injury from single high-magnitude static loads and from repetitive low-magnitude fatigue loads. While many constitutive formulations have been developed and validated to model static failure in soft tissue, a modeling framework is not well-established for fatigue failure. Here we determined the feasibility of using a visco-hyperelastic damage model with discontinuous damage (strain energy-based damage criterion) to simulate low- and high-cycle fatigue failure in soft fibrous tissue. Cyclic creep data from six uniaxial tensile fatigue experiments of human medial meniscus were used to calibrate the specimen-specific material parameters.
The model was able to successfully simulate all three characteristic stages of cyclic creep, and predict the number of cycles until tissue rupture. Mathematically, damage propagated under constant cyclic stress due to timedependent viscoelastic increases in tensile stretch that in turn increased strain energy. Our results implicate solid viscoelasticity as a fundamental regulator of fatigue failure in soft tissue, where tissue with slow stress
relaxation times will be more resistant to fatigue injury. In a validation study, the visco-hyperelastic damage model was able to simulate characteristic stress-strain curves of pull to failure experiments (static failure) when using material parameters curve fit to the fatigue experiments. For the first time, we’ve shown that a viscohyperelastic discontinuous damage framework can model cyclic creep and predict material rupture in soft tissue, and may enable the reliable simulation of both fatigue and static failure behavior from a single constitutive formulation.
000130230 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130230 590__ $$a3.3$$b2023
000130230 592__ $$a0.748$$b2023
000130230 591__ $$aENGINEERING, BIOMEDICAL$$b53 / 123 = 0.431$$c2023$$dQ2$$eT2
000130230 593__ $$aMechanics of Materials$$c2023$$dQ1
000130230 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b32 / 53 = 0.604$$c2023$$dQ3$$eT2
000130230 593__ $$aBiomaterials$$c2023$$dQ2
000130230 593__ $$aBiomedical Engineering$$c2023$$dQ2
000130230 594__ $$a7.2$$b2023
000130230 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130230 700__ $$aCudworth, Katelyn F.
000130230 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefanía$$uUniversidad de Zaragoza
000130230 700__ $$aLujan, Trevor J.
000130230 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000130230 773__ $$g144 (2023), 105968 [12 pp.]$$pJ. mech. behav. boomed. mater.$$tJournal of the Mechanical Behavior of Biomedical Materials$$x1751-6161
000130230 8564_ $$s338753$$uhttps://zaguan.unizar.es/record/130230/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000130230 8564_ $$s804702$$uhttps://zaguan.unizar.es/record/130230/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000130230 909CO $$ooai:zaguan.unizar.es:130230$$particulos$$pdriver
000130230 951__ $$a2024-11-22-12:09:04
000130230 980__ $$aARTICLE