000130232 001__ 130232 000130232 005__ 20241125101200.0 000130232 0247_ $$2doi$$a10.1016/j.ceramint.2023.06.206 000130232 0248_ $$2sideral$$a135491 000130232 037__ $$aART-2023-135491 000130232 041__ $$aeng 000130232 100__ $$0(orcid)0000-0002-2464-5626$$aSanz-Felipe, Ángel$$uUniversidad de Zaragoza 000130232 245__ $$aModeling optical amplification in Er/Yb-codoped integrated Bragg gratings 000130232 260__ $$c2023 000130232 5060_ $$aAccess copy available to the general public$$fUnrestricted 000130232 5203_ $$aBragg gratings inscribed in active waveguides combine very efficient reflective properties with the amplifying capability of rare-earths, which may lead to large amplification and lasing performance. However, the response of these photonic structures highly depends on the grating parameters and working conditions, so modeling their behavior and dependences becomes fundamental. In this work, a numerical method has been implemented to simulate the optical power propagation along an Er/Yb-codoped integrated waveguide Bragg grating as a function of its most relevant operational parameters. The results obtained show the optimal conditions to maximize its performance as a highly amplifying reflector, but also its capability as a monolithic laser. In addition, the modeling results adequately match experimental values measured in fs-laser written structures in Er/Yb-codoped phosphate glass, supporting the accuracy of the numerical method developed and its usefulness for further optimizing these promising photonic structures. 000130232 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E44-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-108598GB-I00/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-112770RB-C21 000130232 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000130232 590__ $$a5.1$$b2023 000130232 592__ $$a0.938$$b2023 000130232 591__ $$aMATERIALS SCIENCE, CERAMICS$$b3 / 31 = 0.097$$c2023$$dQ1$$eT1 000130232 593__ $$aElectronic, Optical and Magnetic Materials$$c2023$$dQ1 000130232 593__ $$aCeramics and Composites$$c2023$$dQ1 000130232 593__ $$aSurfaces, Coatings and Films$$c2023$$dQ1 000130232 593__ $$aMaterials Chemistry$$c2023$$dQ1 000130232 593__ $$aProcess Chemistry and Technology$$c2023$$dQ2 000130232 594__ $$a9.4$$b2023 000130232 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000130232 700__ $$aAriza, Rocío 000130232 700__ $$0(orcid)0000-0002-3867-2182$$aBenedicto, David$$uUniversidad de Zaragoza 000130232 700__ $$aMacias-Montero, Manuel 000130232 700__ $$0(orcid)0000-0001-8431-0003$$aVallés, Juan A.$$uUniversidad de Zaragoza 000130232 700__ $$aSolís, Javier 000130232 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada 000130232 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica 000130232 773__ $$g49, 24 (2023), 41281-41287$$pCeram. int.$$tCeramics International$$x0272-8842 000130232 8564_ $$s1313267$$uhttps://zaguan.unizar.es/record/130232/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/semantics/openAccess 000130232 8564_ $$s1008071$$uhttps://zaguan.unizar.es/record/130232/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/semantics/openAccess 000130232 909CO $$ooai:zaguan.unizar.es:130232$$particulos$$pdriver 000130232 951__ $$a2024-11-22-12:11:28 000130232 980__ $$aARTICLE