000130312 001__ 130312
000130312 005__ 20240209144724.0
000130312 0247_ $$2doi$$a10.1016/j.ijhydene.2018.09.119
000130312 0248_ $$2sideral$$a108622
000130312 037__ $$aART-2018-108622
000130312 041__ $$aeng
000130312 100__ $$0(orcid)0000-0001-7115-9025$$aGarcía, L.$$uUniversidad de Zaragoza
000130312 245__ $$aInfluence of operating variables on the aqueous-phase reforming of glycerol over a Ni/Al coprecipitated catalyst
000130312 260__ $$c2018
000130312 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130312 5203_ $$aA systematic study focused on the aqueous-phase reforming of glycerol has been carried out in order to analyze the influence of several operating variables (system pressure, reaction temperature, glycerol content in feed, liquid feeding rate and catalyst weight/glycerol flow rate ratio) on the gas and liquid products. A continuous flow bench scale installation and a Ni/Al coprecipitated catalyst were employed. The system pressure was varied from 28 to 40 absolute bar, the reaction temperature was analyzed from 495 to 510 K, the glycerol content in the feed was studied from 2 to 10 wt%, the liquid feeding rate was changed from 0.5 to 3.0 mL/min and the catalyst weight/glycerol flow rate ratio varied from 10 to 40 g catalyst min/g glycerol. The main gas products obtained were H2, CO2 and CH4, while the main liquid products were 1, 2-propanediol, ethylene glycol, acetol and ethanol. A W/mglycerol ratio of 40 g catalyst min/g glycerol, 34 bar, 500 K, 5 wt% glycerol and 1 mL/min, resulted in a high yield to H2 (6.8%), the highest yield to alkanes (10.7%), the highest 1, 2-propanediol yield (0.20 g/g glycerol) and the highest ethylene glycol yield (0.11 g/g glycerol). The highest acetol yield (0.06 g/g glycerol) was obtained at 34 bar, 500 K, 5 wt% glycerol, 20 g catalyst min/g glycerol and 3 mL/min.
000130312 536__ $$9info:eu-repo/grantAgreement/ES/AEI-FEDER/CTQ2017-86893-R
000130312 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130312 590__ $$a4.084$$b2018
000130312 591__ $$aCHEMISTRY, PHYSICAL$$b48 / 147 = 0.327$$c2018$$dQ2$$eT1
000130312 591__ $$aENERGY & FUELS$$b31 / 103 = 0.301$$c2018$$dQ2$$eT1
000130312 591__ $$aELECTROCHEMISTRY$$b8 / 26 = 0.308$$c2018$$dQ2$$eT1
000130312 592__ $$a1.1$$b2018
000130312 593__ $$aEnergy Engineering and Power Technology$$c2018$$dQ1
000130312 593__ $$aRenewable Energy, Sustainability and the Environment$$c2018$$dQ1
000130312 593__ $$aFuel Technology$$c2018$$dQ1
000130312 593__ $$aCondensed Matter Physics$$c2018$$dQ1
000130312 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130312 700__ $$aValiente, A.$$uUniversidad de Zaragoza
000130312 700__ $$0(orcid)0000-0002-7179-3031$$aOliva, M.$$uUniversidad de Zaragoza
000130312 700__ $$0(orcid)0000-0002-2924-3095$$aRuiz, J.$$uUniversidad de Zaragoza
000130312 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, J.$$uUniversidad de Zaragoza
000130312 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000130312 7102_ $$12002$$2X$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Técnica. Lab. y Talleres
000130312 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000130312 773__ $$g43, 45 (2018), 20392-20407$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000130312 8564_ $$s594973$$uhttps://zaguan.unizar.es/record/130312/files/texto_completo.pdf$$yPostprint
000130312 8564_ $$s1447013$$uhttps://zaguan.unizar.es/record/130312/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130312 909CO $$ooai:zaguan.unizar.es:130312$$particulos$$pdriver
000130312 951__ $$a2024-02-09-14:44:03
000130312 980__ $$aARTICLE