000130322 001__ 130322
000130322 005__ 20240124152850.0
000130322 0247_ $$2doi$$a10.1007/3418_2020_52
000130322 0248_ $$2sideral$$a124192
000130322 037__ $$aART-2020-124192
000130322 041__ $$aeng
000130322 100__ $$0(orcid)0000-0002-0497-1969$$aFernández-Alvarez, Francisco J.$$uUniversidad de Zaragoza
000130322 245__ $$aIridium-Catalyzed Homogeneous Hydrogenation and Hydrosilylation of Carbon Dioxide
000130322 260__ $$c2020
000130322 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130322 5203_ $$aThe knowledge of the potential of transition metal-based complexes as catalysts for the reduction of CO2 has grown significantly over the last few decades. This chapter focuses on the progress made during recent years in the field of homogeneous iridium-catalyzed reduction of CO2 by using hydrogen and/or silicon hydrides as reducing agents, comparing them with homogeneous catalysts based on other transition metals. The reported studies on iridium-catalyzed CO2 reduction processes show that an important point to keep in mind when designing a catalyst is the nature of the reducing agent (hydrogen, hydrosilanes, and/or hydrosiloxanes). Thus, iridium(III) half-sandwich complexes with 4, 4'-dihydroxy-bipyridine (DHBP) or 4, 7-dihydroxy-1, 10-phenanthroline (DHPT) ligands, and iridium(III)-PNP pincer complexes have proven to be excellent catalysts for the hydrogenation of CO2 to formic acid. However, Ir(III)-NSiNMe (NSiN = fac-bis-(4-methylpyridine-2-yloxy)methylsilyl) and Ir(III)-NSiMe (NSiMe = 4-methylpyridine-2-yloxydimethylsilyl) species are not stable under hydrogen atmosphere but are effective catalysts for the reduction of CO2 with hydrosiloxanes to silylformate under solvent-free conditions and moderate CO2 pressures and temperatures. Moreover, while using iridium(III)-DHBP half-sandwich complexes, high CO2 and H2 pressures are required to achieve the catalytic CO2 hydrogenation to methanol; Ir-NSiMe species catalyze the reduction of CO2 to methoxysilane with hydrosiloxanes under low CO2 pressure.
000130322 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130322 590__ $$a1.311$$b2020
000130322 591__ $$aCHEMISTRY, ORGANIC$$b42 / 57 = 0.737$$c2020$$dQ3$$eT3
000130322 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b36 / 45 = 0.8$$c2020$$dQ4$$eT3
000130322 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130322 700__ $$0(orcid)0000-0001-7154-7239$$aOro, Luis A.$$uUniversidad de Zaragoza
000130322 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000130322 773__ $$g69 (2020), 303-324$$pTop. organomet. chem.$$tTopics in organometallic chemistry$$x1436-6002
000130322 8564_ $$s481103$$uhttps://zaguan.unizar.es/record/130322/files/texto_completo.pdf$$yPostprint
000130322 8564_ $$s502917$$uhttps://zaguan.unizar.es/record/130322/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130322 909CO $$ooai:zaguan.unizar.es:130322$$particulos$$pdriver
000130322 951__ $$a2024-01-24-15:03:02
000130322 980__ $$aARTICLE