000130329 001__ 130329
000130329 005__ 20240424134302.0
000130329 0247_ $$2doi$$a10.1007/s10569-014-9583-2
000130329 0248_ $$2sideral$$a89129
000130329 037__ $$aART-2015-89129
000130329 041__ $$aeng
000130329 100__ $$0(orcid)0000-0002-7620-4523$$aCasanova, D.
000130329 245__ $$aLattice-preserving Flower Constellations under J2 perturbations
000130329 260__ $$c2015
000130329 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130329 5203_ $$a2D Lattice Flower Constellations (2D-LFCs) are stable in the Keplerian model. This means that a flower constellation maintains its structure (the lattice) at any instant of time. However, this is not necessarily true when the J2 harmonic is included in the gravitational potential of the Earth. This paper deals with the new theory of Lattice-preserving Flower Constellations, which shows how 2D-LFC can be designed in such a way that the relative displacement of the orbital parameters of its satellites is invariant even under the presence of the J2 effect. This is achieved following two different procedures: the first consists of the modification of the semi-major axis of all the satellites in a 2D-LFC slightly to control their orbital period, and the second consists of the modification of the values for the eccentricity and inclination, so that the perturbations result in motion that still preserves the lattice of the flower constellation. The proposed theory of Lattice-preserving Flower Constellations validates the theory of 3D Lattice Flower Constellations and has a wide range of potential applications.
000130329 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ESP2013-44217-R$$9info:eu-repo/grantAgreement/ES/UZ/CUD2013-15
000130329 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130329 590__ $$a1.594$$b2015
000130329 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b34 / 101 = 0.337$$c2015$$dQ2$$eT2
000130329 591__ $$aASTRONOMY & ASTROPHYSICS$$b37 / 62 = 0.597$$c2015$$dQ3$$eT2
000130329 592__ $$a1.025$$b2015
000130329 593__ $$aModeling and Simulation$$c2015$$dQ1
000130329 593__ $$aMathematical Physics$$c2015$$dQ1
000130329 593__ $$aSpace and Planetary Science$$c2015$$dQ2
000130329 593__ $$aAstronomy and Astrophysics$$c2015$$dQ2
000130329 593__ $$aApplied Mathematics$$c2015$$dQ2
000130329 593__ $$aComputational Mathematics$$c2015$$dQ2
000130329 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130329 700__ $$0(orcid)0000-0001-9744-5732$$aAvendaño, M.
000130329 700__ $$0(orcid)0000-0003-4859-7224$$aTresaco, E.
000130329 773__ $$g121, 1 (2015), 83-100$$pCelest. mech. dyn. astron.$$tCelestial Mechanics and Dynamical Astronomy$$x0923-2958
000130329 8564_ $$s691567$$uhttps://zaguan.unizar.es/record/130329/files/texto_completo.pdf$$yPostprint
000130329 8564_ $$s1265070$$uhttps://zaguan.unizar.es/record/130329/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130329 909CO $$ooai:zaguan.unizar.es:130329$$particulos$$pdriver
000130329 951__ $$a2024-04-24-13:40:45
000130329 980__ $$aARTICLE