000130334 001__ 130334
000130334 005__ 20240319081012.0
000130334 0247_ $$2doi$$a10.1021/acs.inorgchem.2c01973
000130334 0248_ $$2sideral$$a130795
000130334 037__ $$aART-2022-130795
000130334 041__ $$aeng
000130334 100__ $$aGómez España, Alejandra
000130334 245__ $$aSynthesis and characterization of Ir-(k2-NSi) Species Active toward the solventless hydrolysis of HSiMe(OSiMe3)2
000130334 260__ $$c2022
000130334 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130334 5203_ $$aThe reaction of [IrH(Cl)(κ2-NSitBu2)(coe)] (1) with 1 equiv of PCy3 (or PHtBu2) gives the species [IrH(Cl)(κ2-NSitBu2)(L)] (L = PCy3, 2a; PHtBu2, 2b), which reacts with 1 equiv of AgOTf to afford [IrH(OTf)(κ2-NSitBu2)(L)] (L = PCy3, 3a and PHtBu2, 3b). Complexes 2a, 2b, 3a, and 3b have been characterized by means of NMR spectroscopy and HR-MS. The solid-state structures of complexes 2a, 2b, and 3a have been determined by X-ray diffraction studies. The reversible coordination of water to 3a, 3b, and 4 to afford the corresponding adduct [IrH(OTf)(κ2-NSitBu2)(L)(H2O)] (L = PCy3, 3a-H2O; PHtBu2, 3b-H2O; coe, 4-H2O) has been demonstrated spectroscopically by NMR studies. The structure of complexes 3b-H2O and 4-H2O have been determined by X-ray diffraction studies. Computational analyses of the interaction between neutral [NSitBu2]• and [Ir(H)L(X)]• fragments in Ir-NSitBu2 species confirm the electron-sharing nature of the Ir–Si bond and the significant role of electrostatics in the interaction between the transition metal fragment and the κ2-NSitBu2 ligand. The activity of Ir-(κ2-NSitBu2) species as catalysts for the hydrolysis of HSiMe(OSiMe3)2 depends on the nature of the ancillary ligands. Thus, while the triflate derivatives are active, the related chloride species show no activity. The best catalytic performance has been obtained when using complexes 3a, with triflate and PCy3 ligands, as a catalyst precursor, which allows the selective obtention of the corresponding silanol.
000130334 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E42-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-099383-B-I00$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/RED2018-102387-T$$9info:eu-repo/grantAgreement/ES/MINECO/PID2019-106184GB-I00
000130334 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000130334 590__ $$a4.6$$b2022
000130334 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b5 / 42 = 0.119$$c2022$$dQ1$$eT1
000130334 592__ $$a0.997$$b2022
000130334 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000130334 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ1
000130334 593__ $$aInorganic Chemistry$$c2022$$dQ1
000130334 594__ $$a8.0$$b2022
000130334 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130334 700__ $$0(orcid)0000-0002-7063-1292$$aGarcía Orduña, Pilar
000130334 700__ $$0(orcid)0000-0001-9340-5952$$aGuzmán, Jefferson
000130334 700__ $$aFernández, Israel
000130334 700__ $$0(orcid)0000-0002-0497-1969$$aFernández Álvarez, Francisco J.$$uUniversidad de Zaragoza
000130334 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000130334 773__ $$g61, 41 (2022), 16282-16294$$pInorg. chem.$$tInorganic Chemistry$$x0020-1669
000130334 8564_ $$s5061195$$uhttps://zaguan.unizar.es/record/130334/files/texto_completo.pdf$$yVersión publicada
000130334 8564_ $$s2801903$$uhttps://zaguan.unizar.es/record/130334/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130334 909CO $$ooai:zaguan.unizar.es:130334$$particulos$$pdriver
000130334 951__ $$a2024-03-18-15:13:42
000130334 980__ $$aARTICLE