000130336 001__ 130336
000130336 005__ 20240319081020.0
000130336 0247_ $$2doi$$a10.1039/d1dt04335h
000130336 0248_ $$2sideral$$a131500
000130336 037__ $$aART-2022-131500
000130336 041__ $$aeng
000130336 100__ $$0(orcid)0000-0001-9340-5952$$aGuzmán, Jefferson
000130336 245__ $$aDehydrogenation of formic acid using iridium-NSi species as catalyst precursors
000130336 260__ $$c2022
000130336 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130336 5203_ $$aUsing a low loading of the iridium(III) complexes [Ir(CF3SO3)(κ2-NSiiPr)2] (1) (NSiiPr = (4-methylpyridin-2-yloxy)diisopropylsilyl) and [{Ir(κ2-NSiMe)2}2(μ-CF3SO3)2] (2) (NSiMe = (4-methylpyridin-2-yloxy)dimethylsilyl) in the presence of Et3N, it has been possible to achieve the solventless selective dehydrogenation of formic acid. The best catalytic performance (TOF5 min ≈ 2900 h−1) has been achieved with 2 (0.1 mol%) and Et3N (40 mol% to FA) at 373 K. Kinetic studies at variable temperatures show that the activation energy of the 2-catalyzed process at 353 K is 22.8 ± 0.8 kcal mol−1. KIE values of 1.33, 2.86, and 3.33 were obtained for the 2-catalyzed dehydrogenation of HCOOD, DCOOH, and DCOOD, respectively, in the presence of 10 mol% of Et3N at 353 K. These data show that the activation of the C–H bond of FA is the rate-determining step of the process. A DFT mechanistic study for the catalytic cycle involving hydride abstraction from the formate anion by the metal, assisted by a molecule of formic acid, and heterolytic H2 formation has been performed. Moreover, the presence of Ir-formate intermediates was identified by means of NMR studies of the catalytic reactions in thf-d8 at 323 K. In all the cases, the decomposition of the catalyst to give unactive crystalline iridium NPs was observed.
000130336 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E42-20R$$9info:eu-repo/grantAgreement/ES/MCIU/PGC2018-099383-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-099136-A-I00
000130336 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130336 590__ $$a4.0$$b2022
000130336 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b7 / 42 = 0.167$$c2022$$dQ1$$eT1
000130336 592__ $$a0.79$$b2022
000130336 593__ $$aInorganic Chemistry$$c2022$$dQ1
000130336 594__ $$a7.1$$b2022
000130336 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130336 700__ $$0(orcid)0000-0001-9352-6922$$aUrriolabeitia, Asier$$uUniversidad de Zaragoza
000130336 700__ $$0(orcid)0000-0001-5823-7965$$aPolo, Víctor$$uUniversidad de Zaragoza
000130336 700__ $$aFernández-Buenestado, Marta
000130336 700__ $$0(orcid)0000-0003-3144-5320$$aIglesias, Manuel
000130336 700__ $$0(orcid)0000-0002-0497-1969$$aFernández-Álvarez, Francisco J.$$uUniversidad de Zaragoza
000130336 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000130336 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000130336 773__ $$g51, 11 (2022), 4386-4393$$pDalton Trans.$$tDalton Transactions$$x1477-9226
000130336 8564_ $$s467821$$uhttps://zaguan.unizar.es/record/130336/files/texto_completo.pdf$$yPostprint
000130336 8564_ $$s2428994$$uhttps://zaguan.unizar.es/record/130336/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130336 909CO $$ooai:zaguan.unizar.es:130336$$particulos$$pdriver
000130336 951__ $$a2024-03-18-16:03:17
000130336 980__ $$aARTICLE