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Analytical theories based on Lie-Deprit transforms are used to obtain families of

periodic orbits for the problem of an orbiter around the Moon. Low and moderately high

orbit models are analyzed. Equilibria of the normalized equations of motion provides

the representation of a global portrait of families of frozen orbits depending on values of

the inclination, eccentricity and semimajor axis. By means of the inverse transformation

it is possible to refine the initial conditions for frozen orbits of a simplified model; these

initial conditions may be used as starter of numerical continuation methods when more

complex models are considered.

I. Introduction

T
he problem of finding periodic orbits about the Moon, natural satellites or asteroids is of current
interest because several space missions have the goal of orbiting around such bodies (see for in-

stance1–6 and references therein). Among the possible orbits, frozen orbits are especially useful; indeed,
frozen orbits are characterized by having constant eccentricity, inclination and pericenter direction on
the average, thus, they are very convenient for reconnaissance and science missions. Several procedures
are used to find frozen orbits, from brute force, that is, by zeroing Gauss equations and solving the
corresponding system, to more sophisticated methods like the grid-method,7 by Poincaré sections,8 by
numerical continuation of families of periodic orbits,9 or by averaging the Hamiltonian and finding the
equilibria of the reduced Hamiltonian. This last procedure is the one that we will use in this work; it has
been successfully used for finding frozen orbits for the zonal problem of an Earth artificial satellite10, 11

and to get insights on the so-called critical inclination.12

In general, for orbiters around the Moon, it is necessary to consider the third-body attraction, that
is, the Earth’s attraction, which means that time explicitly appears in the Hamiltonian. However, due to
the 1:1 resonance of the Moon, we can circumvent this difficulty by formulating the problem in a synodic
frame rotating with the Earth, which is assumed to move on a circular orbit about the Moon. The penalty
we must pay is the addition of a new term in the Hamiltonian due to the Coriolis effect. Thus, we deal
with a Hamiltonian characterized by the Kepler problem, the Moon’s gravitational potential, the Coriolis
term and the third-body attraction. A thorough analysis is needed concerning the contribution of each
term and their differences, as well as how we can scale the Hamiltonian. We shall see that the scaling
strongly depends on the altitude of the orbits, in such a way that for low orbit altitudes the influence
of the third body is almost negligible and consequently, we may approach this problem using the zonal
problem. However, for moderate altitudes we need to cope with all four terms. We give a brief description
on the Lie-Deprit transform used in our work, namely, the Delaunay normalization (Section III). The
analytical integration is done (by means of the symbolic-numeric environment MathATESAT 13) for both
cases, low and moderate altitude orbits (Section IV). Let us stress that we are not interested in obtaining
a complete analytical theory (as for instance those generated by de Saedeleer and Henrard14, 15) nor in
the generation of ephemerides, but to help in mission designing, where frozen orbits are of major interest;
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this is the main reason for including in the potential function only the zonal terms J2 and J7. Once the
analytical integration is made, we find a global picture of families of frozen orbits, depending on three
parameters: inclination, eccentricity and semimajor axis, which allows us the obtaining of approximate
frozen orbits for low (Section V and moderate (Section VI) altitudes. These almost frozen orbits can
the used as starters of a corrector procedure16 to get frozen orbits (Section VII) when more terms are
included in the problem.

II. Dynamical Model

We consider the motion of an orbiter about the Moon under its gravitational force and the third body
attraction due to the Earth under Hill hypothesis, that is, the Moon is in circular orbit about the Earth
and the orbiter in synchronization with the rotation of the Moon.

Let us consider a rotating reference frame Oxyz, centered on the Moon and such that the plane Oxy
coincides with the Moon’s equator and the Ox axis continuously points towards the Earth, which moves
in a circular orbit with radius ae synchronized with the rotation of the Moon. Let ω be the angular
velocity vector of the Moon; thus, the Hamiltonian is

H =
1

2
X · X − ω · (x × X) + VM + VE ,

were VM and VE are the gravitational potentials of the Moon and Earth respectively.
For the Moon we only take into account the zonal contribution, thus,

VM = −
µ

r
+

µ

r

∑

n≥2

α

r
JnPn (z/r) ,

with α the equatorial radius of the Moon, r = ‖x‖ the radial distance, µ the Gaussian constant for the
Moon, Jn the Moon harmonics coefficients, and Pn the Legendre polynomial of degree n.

The gravitational potential created by the Earth is (see e.g.17)

VE = −µe

(
1

‖xe − x‖
−

xe · x

‖xe‖3

)
, (1)

where µe = Gme, and since the orbit of the Earth is assumed to be circular, µe = Gme may be represented
as µe = ω2a3

e.
The first summand of this expression may be expanded as a series of Legendre polynomials as

µe

‖xe − x‖
=

µe

ae

[
1 +

(
r

ae

)2

− 2
r

ae
cosβ

]−1/2

=
µe

ae

∑

n≥0

(
r

ae

)n

Pn (cosβ) , (2)

with cosβ = xe · x/r ae = x/r.
Legendre polynomials are

P0(cosβ) = 1, P1(cosβ) = cosβ, P2(cosβ) = (−1 + 3 cosβ)/2, . . .

Note that the term containing P0 is constant, whereas the second summand of (1) cancels with the term
P1.

Since Legendre polynomials are bounded functions (|Pn(x)| ≤ 1, ∀x ∈ [−1, 1]), every term in (2) is
bounded by ω2r2(r/ae)

n−2, thus and because r ≪ ae we shall take only into consideration terms up to
P2, hence, the attraction of the third body is simply

VE =
ω2

2
(r2 − 3x2).
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Consequently, the Hamiltonian of the orbiter may be split into the sum

H = HK + HC + HZ + H3b, (3)

where HK corresponds to the Kepler problem, HC to the Coriolis effect, HZ to the zonal Moon potential
and H3b to the third-body attraction.

The above terms are

HK =
1

2
X · X −

µ

r
=

1

2

(
R2 +

Θ2

r2

)
−

µ

r
,

HC = −ω · (x × X) = −ω N,

HZ =
∑

n≥2

µ

r

(α

r

)n

JnPn(sin i sin(f + g)),

H3b =
ω2r2

2

(
1 − 3

[
cosh cos(f + g) − sin h sin(f + g) cos i

]2
)

,

where (r, θ, ν, R, Θ, N) are the polar-nodal canonical variables, i the inclination, f the true anomaly, g
the argument of the pericenter and h the nodal angle.

The above expression for the Hamiltonian is general; however, depending on the type of mission, some
simplifications may be introduced. As proved in18 the third body attraction is almost negligible for orbits
whose altitude is below 100 km, thus, for low orbits we take the Hamiltonian

Hl = H0 + ǫH1 (4)

with H0 = HK, ǫH1 = HZ, and the small parameter ǫ = J2. Note that we drop the term HC since the
nodal angle ν does not appear in the Hamiltonian, and hence its conjugate moment N is a first integral.

For altitudes higher than 100 km it is necessary to consider the third-body perturbation effect H3b, as
well as the Coriolis term HC since the nodal angle explicitly appears in H3b. Now, a new “Hamiltonian
scaling” is in order. Let n be the mean motion of the orbiter, assuming its orbit Keplerian; we then
introduce the small parameter ǫ = ω/n, and thus, after rearranging the terms, the Hamiltonian for
moderate altitudes (that is, a < 3α) may be written as

Hm = H0 + ǫH1 +
ǫ2

2
H2, (5)

with H0 = HK, ǫH1 = HC, and ǫ2 H2/2 = H3b +HZ. It was proved in3, 19 that the main contributors to
the global pictures of frozen orbits about the Moon are the J2 and J7 harmonic coefficients; this is the
reason why in our study we only consider these two harmonics in the zonal part HZ.

III. Lie Transforms for Hamiltonian Systems

Analytical theories have been widely used to obtain approximated solutions for the problem of the
Artificial Satellite Theory since the pioneering works of Brouwer,20, 21 Kozai,22 Garfinkel;23 many other
outstanding researchers have devoted a large effort to provide different solutions; new general pertur-
bations theories were invented24, 25 and even Symbolic Algebraic Processors were built with the aim of
computing automatically those theories (see e.g. Deprit26, 27 and references therein). It must be noted
that analytical theories can be used to obtain a deeper qualitative insight into the problem by determining
the phase flow evolution, equilibria, bifurcations, etc.11, 12

Let us give here a short description of the general algorithms of the Lie transforms and the one used
in this paper; for more details the reader is referred to the original work of Deprit,25 or to the tutorial.28
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A Lie transform of generator W is a near-identity canonical transformation ϕ : (y, Y ; ǫ) −→ (x, X),
such that x(y, Y ; ǫ) and X(y, Y ; ǫ) verify

dx

dǫ
=

∂W

∂X
,

dX

dǫ
= −

∂W

∂x
,

with initial conditions x(y, Y ; 0) = y and X(y, Y ; 0) = X.
Let us now consider a Hamiltonian that is a power series of the small parameter ǫ

H(x, X; ǫ) =
∑

n≥0

ǫn

n!
Hn(x, X) =

∑

n≥0

ǫn

n!
Hn,0(x, X), (6)

and a Lie transform whose generating function is the series

W (x, X; ǫ) =
∑

n≥0

ǫn

n!
Wn+1(x, X),

we may ask ourselves how this Hamiltonian is affected by the Lie transform.
In his famous paper, Deprit25 gave a method to build up the transformation term by term in a

recursive way by means of the so-called Lie triangle

Hi,j = Hi+1,j−1 +
∑

0≤k≤i

(
i

j

)
{Hk,j−1, Wi+1−k}, (7)

for i ≥ 0 and j ≥ 1, and where {−;−} stands for the Poisson bracket. This procedure makes the task of
automatizing the method simple.

The new Hamiltonian, denoted by K, is

K(y, Y ; ǫ) =
∑

n≥0

ǫn

n!
Kn(y, Y ) =

∑

n≥0

ǫn

n!
H0,n(y, Y ).

The generating function is normally not known, and it must be determined term by term by means of
the Eq. (7) in order the new Hamiltonian satisfies some predetermined conditions or requirements. The
generating function is thus obtained by solving the PDE (7) which may be put in the form of the so-called
homologic equation

L0(Wn) + Kn = H̃0,n, (8)

where H̃0,n collects all the terms known from the previous order and L0(−) is the Lie derivative operator,
i.e., L0(−) = {−,H0}.

Once the generating function W is obtained, the transformation is given by

x = y +
∑

n≥1

ǫn

n!
Ln

W (y), X = Y +
∑

n≥1

ǫn

n!
Ln

W (Y ), (9)

whereas the inverse transformation is

y = x +
∑

n≥1

ǫn

n!
Ln

(−W )(x), Y = X +
∑

n≥1

ǫn

n!
Ln

(−W )(X). (10)

It is necessary to determine the properties that the new Hamiltonian must satisfy. The main goal of
analytical theories is to reduce the original Hamiltonian by means of Lie transformations and in such a
way that the new Hamiltonian is simple enough, and ideally completely integrable, that is to say, that
the new Hamiltonian does not contain any angle, although this challenge is not always accomplished.
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From Eq. (8), the term H0 plays an outstanding role, since it is necessary to compute the Lie derivative
L0 with respect to it, thus, the simpler the expression of H0, the easier is to compute the Lie derivative.

In the Delaunay map (ℓ, g, h, L, G, H), the Keplerian Hamiltonian reads

H0 = −
µ2

2L2
(11)

The Lie derivative L0 : F 7→ {F ;H0} in the vector field generated by H0 is very simple indeed; it is
just the differential operator

L0 = n
∂

∂ℓ
with n =

µ2

L3
, (12)

and the PDE to be solved, at each order n of the transformation, according to (8) is

n
∂Wn

∂ℓ
+ Kn = H̃0,n.

It still remains to determine what we want to obtain after a Lie transformation. Ideally, we would like
to have a new Hamiltonian independent of some variables, which is known as a normalization, but this goal
not always is possible and usually it requires expansions in terms of the eccentricity (valid only for almost
circular orbits) or a big amount of symbolic computation. Deprit29, 30 introduced other transformations
dubbed simplifications that do not eliminate the variables, but convert the original Hamiltonian into
another one, simpler than the original, and to which normalization techniques may be applied; by so
doing, the amount of computation is reduced drastically. However, in our case, we do not need to use
these types of transformations.

Essentially, a Delaunay normalization31 consists of removing all the coordinates from the Hamiltonian
by means of Lie transforms. The kernel of the Lie derivative along the Hamiltonian flow of the pure Kepler
problem is

ker(L0) =
{

F (ℓ, g, h, L, G, H) | L0(F ) = 0
}
.

Consequently, as the Delaunay action L is an integral of H0, it generates an infinitesimal contact transfor-
mation.31 The purpose of this local map is to replace the perturbation R by R′ such that R′ ∈ ker (L0).
Then it appears that the symmetrization induced by the new Delaunay action L′ is obtained by elimi-
nating ℓ′ from the transformed Hamiltonian H′. As a side effect, the normalization of (3) allows for the
reduction of the number of degrees of freedom by one unit H ≡ H(g′, h′, G′, H ′).

IV. Analytical Integration

We are dealing with two Hamiltonians, Hl and Hm, depending on whether the satellite is at low or
moderate altitude. Although they are different each other, both Hamiltonians share some common parts.
Indeed, in both cases, the zero order Hamiltonian is the Kepler problem, H0 = HK . Thus, since the Lie
derivative is the one given in (12), to carry out the Delaunay normalization, the new Hamiltonian chosen
is the averaged Hamiltonian over the mean anomaly ℓ,

Kn =
1

2π

∫ 2π

0

H̃n dℓ; (13)

hence the homologic equation gives

Wn =
1

n

∫ (
H̃n −Kn

)
dℓ. (14)

The Delaunay normalization removes one degree of freedom since it makes the angle ℓ cyclic; hence,
its conjugate action L is an integral. After the Delaunay normalization the Hamiltonian corresponding to
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low orbit, Kl, has only one degree of freedom; it contains only one angle, the pericenter g; we only need
a first-order transformation and we stop the process of applying more Lie transforms to the Hamiltonian
Kl. On the contrary, for moderate altitudes, the normalized Hamiltonian Km has two degrees of freedom
since it contains the angles g and h. In this case, we need a second-order transformation, and to the new
Hamiltonian, we have to apply another normalization to eliminate the node h.

In the case of low altitude orbits (4), the first-order normalized Hamiltonian is

Kl = − µ2

2 L2 +
(
− J2 α2 µ4

2 L6 η3 + 3 J2 s2 α2 µ4

4 L6 η3

)

+
(

225225 e J7 s7 α7 µ9

8192 L16 η9 − 51975 e J7 s5 α7 µ9

1024 L16 η9 + 14175e J7 s3 α7 µ9

512 L16 η9

− 525 e J7 s α7 µ9

128 L16 η9 − 675675 e J7 s7 α7 µ9

4096 L16 η11 + 155925 e J7 s5 α7 µ9

512 L16 η11

− 42525 e J7 s3 α7 µ9

256 L16 η11 + 1575 e J7 s α7 µ9

64 L16 η11 + 1486485 e J7 s7 α7 µ9

8192 L16 η13

− 343035 e J7 s5 α7 µ9

1024 L16 η13 + 93555 e J7 s3 α7 µ9

512 L16 η13 − 3465 e J7 s α7 µ9

128 L16 η13

)
sin g

+
(
− 135135 e J7 s7 α7 µ9

16384 L16 η9 + 51975 e J7 s5 α7 µ9

4096 L16 η9 − 4725 e J7 s3 α7 µ9

1024 L16 η9

+ 315315 e J7 s7 α7 µ9

8192 L16 η11 − 121275 e J7 s5 α7 µ9

2048 L16 η11 + 11025 e J7 s3 α7 µ9

512 L16 η11

− 495495 e J7 s7 α7 µ9

16384 L16 η13 + 190575 e J7 s5 α7 µ9

4096 L16 η13 − 17325 e J7 s3 α7 µ9

1024 L16 η13

)
sin 3g

+
(

9009 e J7 s7 α7 µ9

16384 L16 η9 − 2079 e J7 s5 α7 µ9

4096 L16 η9 − 9009 e J7 s7 α7 µ9

8192 L16 η11

+ 2079 e J7 s5 α7 µ9

2048 L16 η11 + 9009 e J7 s7 α7 µ9

16384 L16 η13 − 2079 e J7 s5 α7 µ9

4096 L16 η13

)
sin 5g.

(15)

The generating function of the transformation is too long to be reproduced; it is composed of 467
terms. As usual, c = cos i, s = sin i and η2 = 1 − e2.

With respect to the Hamiltonian for moderate orbits (5), it contains second order terms, hence we
have to carry out the normalization over the mean anomaly ℓ up to the second order. The generating
function contains 687 terms, and the normalized Hamiltonian is given in the appendix.

As we already said, the momentum L is an integral of the normalized Hamiltonian, thus, we may drop
the first term (Kepler problem) and rearrange the terms in such a way that now the zero order term be
the Coriolis part (H0 = −ωH), and the rest will be the first order. (For sake of simplifying the notation
we still use Hn instead of Kn).

For this normalized Hamiltonian, the Lie operator is now

L0 = ω
∂

∂h
,

and thus, for the new Hamiltonian we simply choose the averaged Hamiltonian over the angle h. From
the homology equation, we get

K =
1

2π

∫ 2π

0

H dh, W =
1

ω

∫
(H −K) dh (16)

The new Hamiltonian is indeed of 1-DOF in the angle g, and there is no need of further Lie transforms,
since with 1-DOF we can explore the topology of the system. The generating function now contains 32
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summands, and the twice normalized Hamiltonian is

Kh = −Hω +
(

3 J2 s2 α2 µ4

8 L6 η3 − J2 α2 µ4

4 L6 η3

− 5 L4ω2

16 µ2 + 15 L4 s2ω2

32 µ2 + 3 L4 η2ω2

16 µ2 − 9 L4 s2 η2ω2

32 µ2

)

+
(

225225 e J7 s7 α7 µ9

16384 L16 η9 − 51975 e J7 s5 α7 µ9

2048 L16 η9 + 14175e J7 s3 α7 µ9

1024 L16 η9

− 525 e J7 s α7 µ9

256 L16 η9 − 675675 e J7 s7 α7 µ9

8192 L16 η11 + 155925 e J7 s5 α7 µ9

1024 L16 η11

− 42525 e J7 s3 α7 µ9

512 L16 η11 + 1575 e J7 s α7 µ9

128 L16 η11 + 1486485 e J7 s7 α7 µ9

16384 L16 η13

− 343035 e J7 s5 α7 µ9

2048 L16 η13 + 93555 e J7 s3 α7 µ9

1024 L16 η13 − 3465 e J7 s α7 µ9

256 L16 η13

)
sin g

+
(
− 135135 e J7 s7 α7 µ9

32768 L16 η9 + 51975 e J7 s5 α7 µ9

8192 L16 η9 − 4725 e J7 s3 α7 µ9

2048 L16 η9

+ 315315 e J7 s7 α7 µ9

16384 L16 η11 − 121275 e J7 s5 α7 µ9

4096 L16 η11 + 11025 e J7 s3 α7 µ9

1024 L16 η11

− 495495 e J7 s7 α7 µ9

32768 L16 η13 + 190575 e J7 s5 α7 µ9

8192 L16 η13 − 17325 e J7 s3 α7 µ9

2048 L16 η13

)
sin 3g

+
(

9009 e J7 s7 α7 µ9

32768 L16 η9 − 2079 e J7 s5 α7 µ9

8192 L16 η9 − 9009 e J7 s7 α7 µ9

16384 L16 η11

+ 2079 e J7 s5 α7 µ9

4096 L16 η11 + 9009 e J7 s7 α7 µ9

32768 L16 η13 − 2079 e J7 s5 α7 µ9

8192 L16 η13

)
sin 5g

+
(
− 3e2 L4 s2ω2

32 µ2 − 3 L4 s2ω2

8 µ2 + 3 L4 s2 η2ω2

8 µ2

)
cos 2g.

(17)

In short, after several transformations and a suitable rearranging of terms, the reduced Hamiltonian
(for both low and moderate altitude) is of the form

K(−, g,−; L, G, H) = M00 + M01 sin g + M03 sin 3g + M05 sin 5g + δ M02 cos 2g, (18)

where the symbol δ is a parameter that takes the value 0 for low altitude and 1 for moderate altitude
orbiter, and coefficients Mij may be identified from expressions (15) or (17) and depend on a, e, i, µ, α,
ω, J2 and J7, but once the fundamental constants are fixed, the coefficients depend only on three orbital
elements, namely, a, e and i.

The equations of motion of the Hamiltonian (18) are

dg

dt
=

∂K

∂G
= m00 + m01 sin g + m03 sin 3g + m05 sin 5g + δ m20 cos 2g,

dG

dt
= −

∂K

∂g
= m10 cos g + m30 cos 3g + m50 cos 5g + δ m02 sin 2g,

(19)

where mi,j are obtained directly from (18) by partial derivation.

V. Analysis for Low Altitude Orbits

Frozen orbits correspond to equilibria of the reduced system. In case of low altitude orbits, the system
under consideration is given by making δ = 0 in Eqs. (19). Thus, we have to make the right hand part
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of these equations equal zero and solve the corresponding system

m00 + m01 sin g + m03 sin 3g + m05 sin 5g = 0,

m10 cos g + m30 cos 3g + m50 cos 5g = 0.
(20)

In order to solve this system, we consider two separate cases, namely when cos g = 0 and when cos g 6= 0.

A. Case cos g = 0

The second equation holds when cos g = 0, that is, for g = π/2, 3π/2; thus, by replacing these values into
the first equation of (20), one equation results depending on three variables, i, a and e that is represented
as a 3-D surface in Figure 1. Points on this surface correspond to equilibria of the system (20), that is,
to frozen orbits.

Figure 1. Surface of frozen orbits for values of i, e and a and cos g = 0. Black color is the surface when
g = π/2, while the grey one is obtained for g = 3π/2.

From this figure, curves obtained for constant-a sections are very similar, thus, in order to go into
more detail, we fix a semi major axis a = α + 100 km, which indeed corresponds to low orbits. For
the chosen value of a, we plot the curve i versus e (see Fig. 2). The horizontal line at e = 0.054407 is
the limit for impact orbits. The higher the eccentricity is, the shorter is the distance at the pericenter,
and thus, for eccentricities bigger than e = 0.054407 the orbiter would impact with the Moon surface.
Both graphics in Fig. 2 represent the same section, but the one on the right shows less values of the
eccentricity. The solid line corresponds to g = π/2, whereas the dashed line is for g = 3π/2.

When comparing this map of frozen orbits with Fig. 1 given by Elipe and Lara,3 we see that they are
almost identical, but in Fig. 2 a new family of almost equatorial frozen orbits appears, namely the one
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Figure 2. Frozen orbits for a = α+100 km. The horizontal line e = 0.054407 is the limit for impact orbits.
Right plot is a part of the left one, showing less values of eccentricity. Dashed lines correspond to g = π/2
and solid lines to g = 3π/2

given by the line very close to the vertical axis, which was not detected in the quoted paper. One might
think that this new ‘family’ is an artifact due to truncations of the Lie transforms performed; thus, we
check whether or not orbits of this family are periodic and find that they are periodic indeed. Fig. 3
includes one such plot.

−9.9 −9.8 −9.7 −9.6 −9.5 −9.4 −9.3
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−3

−1

−0.5

0

0.5

1
x 10

−4

esinw
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o

sw

Figure 3. Periodic orbit for initial conditions a = 1838 km, e = 0.0100186 and i = 0.0000527948 rad, corre-
sponding to the new found family of almost equatorial orbits.

Note that the frozen orbits detected correspond to the averaged Hamiltonian. As an illustration of how
these orbits evolve into the original Hamiltonian, we pick up from the graphics a set of initial conditions
of a frozen orbit; then, we apply the initial conditions to an orbit propagator with the initial system and
plot the evolution of the orbit in Figure 4. The graphics on the left correspond to 200 revolutions (almost
20 days), whereas the one on the right corresponds to an integration over 5 years. We clearly see that
the frozen character degenerates with time.

However, since the averaged Hamiltonian is obtained through Lie transforms, we have the generating
functions of the involved transformations and by means of the inverse transformation (10) we can convert
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Figure 4. Orbit evolution (e sinω, e cos ω) of a frozen orbit with averaged initial conditions. Left: Evolution
after 20 days of a frozen orbit; right: evolution after 5 years.

the averaged initial conditions into osculating elements. We then compute the orbit again with the
propagator for the same time intervals than in the above case as shown in Figure 5. For this new set of
initial conditions, the orbit still remains almost periodic even after 5 years of integration.

B. Case cos g 6= 0

Let us now consider the case cos g 6= 0. Our first task is to convert the system (20) of trigonometric
equations into polynomial ones in order to simplify the process of computing the roots of the system. Let
us apply x = cos g, and y = sin g in Eqs. (20). Chebyshev polynomials of the first kind are defined as
Tn(x) = cosn(arccosx), that is, Tn(x) = cosng = Tn(cos g), and they satisfy the three terms property

Tn+1(x) = 2xTn(x) − Tn−1(x), with T0(x) = 1, T1(x) = x.

Chebyshev polynomials of the second kind are defined as
Un(x) = sin((n + 1) arccosx)/(sin(arccosx)); in our case Un(x) = sin((n + 1)g)/(sin g), and they satisfy
the three terms property

Un+1(x) = 2xUn(x) − Un−1(x), with U0(x) = 1, U1(x) = 2x.

With these definitions, the system (20) is easily elaborated as

m00 + k10y + k12yx2 + k14yx4 = 0,

x(k00 + k02x
2 + k04x

4) = 0.
(21)

where coefficients kij are functions of a, e, i. Excluding the case x = cos g = 0, already analyzed in the
previous subsection, the second equation is fulfilled when k00 + k02x

2 + k04x
4 = 0, a quadratic equation

in x2 = β. From the possible solutions, only those in the interval 0 < β = x2 < 1 are of interest, since
|x = cos g| ≤ 1. By replacing the valid solutions in the first equation of the above system, the value
y = sin g is obtained, and thus the angle g of the frozen orbit.

A numerical search of the roots has been made for the particular cases of the semi-major axis and the
result for a = α + 100 km is represented in Fig. 6; similar results are obtained for other values of a.

The restriction 0 < βj(a, e, i) < 1 (j = 1, 2) compels the possible values of e and i to lie inside the
“triangular” bands that seem to spring out from a certain inclinations (Fig. 6). But the possible solutions
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Figure 5. Orbit evolution (e sinω, e cos ω) of a frozen orbit with osculating initial conditions, obtained by the
inverse of the Lie transforms. Left: Evolution after 20 days of a frozen orbit; right: evolution after 5 years.

within these strips must also satisfy the first equation of system (21). From all possible solutions only
values of the solid line crossing the first band (the one emanating from i = 30 degrees) correspond to
frozen orbits. However, these orbits are far beyond the impact orbits, consequently, we conclude that
there are no frozen orbits except those found for cos g = 0.

VI. Analysis for Moderate Altitude Orbits

For moderate altitude orbits, we must make δ = 1 in the equations of motion (19). The system is
converted into

m00 + m01 sin g + m03 sin 3g + m05 sin 5g + m20 cos 2g = 0,

m10 cos g + m30 cos 3g + m50 cos 5g + m02 sin 2g = 0.
(22)

The second equation is fulfilled for either g = π/2 or g = 3π/2, and therefore, for these two values we
can proceed as in we did for low orbits in the previous section. The different families of frozen orbits for
several values of the semi-major axis a are given in Fig. 7. The horizontal lines represent the eccentricity
limit for impact orbits; for e beyond this limit, the orbits are useless since they impact with the Moon’s
surface. As the semimajor axis increases, the third-body influence increases. The effect of this influence
is a certain flattening of the curves representing the families, that is, comparing graphics in Fig. 7 with
the ones in Fig. 2, we see that the behavior is similar, although the eccentricity of the periodic orbits
decreases in Fig. 7. In addition, the gap between i ∈ (40◦, 60◦) is reduced, and the two lines tend to
join one another for large values of the semimajor axis a. Thus, when the third body action is taken into
account, most of the frozen orbits are circular; the only eccentric orbits are either almost circular or near
a certain critical inclination ∈ (40◦, 60◦).

For values of the pericenter g 6= π/2 and g 6= 3π/2, we could proceed as in the previous section.
However, we leave this case for now, since the experience for low orbits suggests that the possible frozen
orbits will be of impact.

VII. Frozen Orbits in the Original Problem

In the previous sections we have seen that Lie transforms provide a good approach to detecting frozen
orbits. However, the model used is rather simple since, as a matter of fact, only the J2 and J7 harmonics
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Figure 6. Frozen orbits (i, e) for cos g 6= 0. Only the line crossing the first strip emanating from i ≈ 30◦

corresponds to frozen orbits. Note that those are impact orbits and hence useless.

from the zonal potential are considered. One can easily guess that frozen orbits for this model are no
longer frozen when more complex force functions are considered. However, the averaged initial conditions
from the simplified model may be used as the beginnings of numerical correction procedures in order to
have frozen orbits for the more complete model.

As a corrector procedure we will use that given by Deprit and Henrard,16 which has already been used
in computing frozen orbits for the zonal problem.3, 9 As usual, this corrector method has to be initialized
with an almost periodic orbit, such that after several iterations a periodic orbit is obtained. To begin,
we take a periodic orbit from the averaged J2 + J7 Hamiltonian; this orbit will be almost periodic in the
J2 + . . . + J9 potential, hence we are able to apply the corrector procedure and we will obtain an exact
periodic orbit in the J2 + . . . + J9 potential. The computations have been obtained with the program
coded in MATLAB by E. Tresaco.

As an illustration, we give in Table 1 (first rows) the initial conditions of six almost periodic orbits
(obtained from the averaged Hamiltonian of the J2 + J7 potential), and in the second rows the initial
conditions of the exact periodic orbits of the J2+. . .+J9 potential, obtained with the corrector procedure.
Those orbits are plotted in Figures 8 and 9. In both Figures, the left column contains almost periodic
orbits of the total problem, whereas right column have exact periodic orbits of the total problem; their
initial conditions have been obtained by the corrector method.

VIII. Conclusions

Analytical theories based on Lie-Deprit series are used to compute frozen orbits for an orbiter around
the Moon. Both low and moderate orbits are analyzed. Even for low order normalization, the normalized
Hamiltonian gives a map with the families of frozen orbits. A new family of almost equatorial orbits is
detected. The inverse transformation allows for a refining of the initial conditions of the frozen orbit;
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Table 1. Initial conditions for frozen orbits. First row of each pair corresponds to averaged initial conditions
for the J2 + J7 problem. Second row corresponds to the actual initial conditions of the original problem
(J2 + . . . + J9) obtained from the previous ones after a numerical correction procedure.

x̃ ỹ z̃ ˙̃x ˙̃y ˙̃z

x y z ẋ ẏ ż

-610.34124124 1619.76000650 434.01271243 -1.58588106 -0.53982315 -0.14464495

-599.66436522 1591.42507580 428.14175270 -1.61476199 -0.54772361 -0.12808443

-157.84486971 1635.13819594 762.47683983 -1.65122224 -0.12902326 -0.06016448

-159.19844058 1649.16003545 772.46673519 -1.63536102 -0.14679905 -0.02295428

-63.14070550 1037.09127710 1481.11956091 -1.65803875 -0.03269739 -0.04669670

-61.08140016 1003.26701777 1431.24121150 -1.71337678 -0.04301879 -0.04004489

607.06597246 -1277.68556609 -1072.10548727 1.59516425 0.42819541 0.35929861

597.80117495 -1258.18604118 -1060.97165345 1.61853377 0.43767831 0.34822062

153.49663258 -1240.60084373 -1240.60084373 1.69702042 0.10074247 0.10074247

153.89202203 -1243.79648699 -1244.07061534 1.69262573 0.10076326 0.10065479

62.32432834 -1147.20570654 -1367.18652221 1.67931055 0.03665314 0.04368151

63.13665947 -1162.15830908 -1385.78703895 1.65760746 0.03796115 0.04255252

these initial conditions may be used as a starter in a correction scheme for having more accurate frozen
orbits when more terms in the force function are included.
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IX. APPENDIX

First order Hamiltonian for moderate altitude orbits

Hh = − µ2

2 L2 − Hω +
(
− J2 α2 µ4

4 L6 η3 + 3 J2 s2 α2 µ4

8 L6 η3

− 5 L4ω2

16 µ2 + 15 L4 s2ω2

32 µ2 + 3 L4 η2ω2

16 µ2 − 9 L4 s2 η2ω2

32 µ2

)

+
(

225225 e J7 s7 α7 µ9

16384 L16 η9 − 51975 e J7 s5 α7 µ9

2048 L16 η9 + 14175e J7 s3 α7 µ9

1024 L16 η9

− 525 e J7 s α7 µ9

256 L16 η9 − 675675 e J7 s7 α7 µ9

8192 L16 η11 + 155925 e J7 s5 α7 µ9

1024 L16 η11

− 42525 e J7 s3 α7 µ9

512 L16 η11 + 1575 e J7 s α7 µ9

128 L16 η11 + 1486485 e J7 s7 α7 µ9

16384 L16 η13

− 343035 e J7 s5 α7 µ9

2048 L16 η13 + 93555 e J7 s3 α7 µ9

1024 L16 η13 − 3465 e J7 s α7 µ9

256 L16 η13

)
sin g

+
(
− 135135 e J7 s7 α7 µ9

32768 L16 η9 + 51975 e J7 s5 α7 µ9

8192 L16 η9 − 4725 e J7 s3 α7 µ9

2048 L16 η9

+ 315315 e J7 s7 α7 µ9

16384 L16 η11 − 121275 e J7 s5 α7 µ9

4096 L16 η11 + 11025 e J7 s3 α7 µ9

1024 L16 η11

− 495495 e J7 s7 α7 µ9

32768 L16 η13 + 190575 e J7 s5 α7 µ9

8192 L16 η13 − 17325 e J7 s3 α7 µ9

2048 L16 η13

)
sin 3g

+
(

9009 e J7 s7 α7 µ9

32768 L16 η9 − 2079 e J7 s5 α7 µ9

8192 L16 η9 − 9009 e J7 s7 α7 µ9

16384 L16 η11

+ 2079 e J7 s5 α7 µ9

4096 L16 η11 + 9009 e J7 s7 α7 µ9

32768 L16 η13 − 2079 e J7 s5 α7 µ9

8192 L16 η13

)
sin 5g

+
(
− 3 L4 s2 η4ω2

8e2 µ2 − 3 L4 s2ω2

8e2 µ2 − 3 L4 s2ω2

32 µ2 + 3 L4 s2 η2ω2

4e2 µ2 + 3 L4 s2 η2ω2

32 µ2

)
cos 2g

+
(
− 15 L4 s2ω2

32 µ2 + 9 L4 s2 η2ω2

32 µ2

)
cos 2h

+
(

3 c L4ω2

32 µ2 + 3 c L4ω2

8e2 µ2 − 3 L4ω2

8e2 µ2 − 3 L4ω2

32 µ2

+ 3 c L4 η4ω2

8e2 µ2 − 3 L4 η4ω2

8e2 µ2 + 3 L4 s2 η4ω2

16e2 µ2 + 3 L4 s2ω2

16e2 µ2

+ 3 L4 s2ω2

64 µ2 − 3 c L4 η2ω2

32 µ2 − 3 c L4 η2ω2

4e2 µ2 + 3 L4 η2ω2

4e2 µ2

+ 3 L4 η2ω2

32 µ2 − 3 L4 s2 η2ω2

8e2 µ2 − 3 L4 s2 η2ω2

64 µ2

)
cos(2g − 2h)

+
(
− 3 c L4ω2

32 µ2 − 3 c L4ω2

8e2 µ2 − 3 L4ω2

8e2 µ2 − 3 L4ω2

32 µ2

− 3 c L4 η4ω2

8e2 µ2 − 3 L4 η4ω2

8e2 µ2 + 3 L4 s2 η4ω2

16e2 µ2 + 3 L4 s2ω2

16e2 µ2

+ 3 L4 s2ω2

64 µ2 + 3 c L4 η2ω2

32 µ2 + 3 c L4 η2ω2

4e2 µ2 + 3 L4 η2ω2

4e2 µ2

+ 3 L4 η2ω2

32 µ2 − 3 L4 s2 η2ω2

8e2 µ2 − 3 L4 s2 η2ω2

64 µ2

)
cos(2g + 2h)
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Figure 7. Families of frozen orbits corresponding to moderate altitudes and several values of the semi-major
axis: a = α + 100 km, a = α + 1000 km, a = 2α and a = 3α. The horizontal lines represent the eccentricity
limit for impact orbits.
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Figure 8. Orbits for the first three pairs of initial conditions of Table 1. Left column: orbits in the total
problem with averaged initial conditions; we can see that these orbits are not periodic. Note that these
plots are 2D. Right column: orbits in the total problem with corrected initial conditions; these orbits are
periodic.
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Figure 9. Orbits for the last three pairs of initial conditions of Table 1. Left column: orbits in the total
problem with averaged initial conditions; we can see that these orbits are not periodic. Note also that
these plots are 2D. Right column: orbits in the total problem with corrected initial conditions; these orbits
are periodic.
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