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Abstract The aim of the time distribution methodology presented in this
paper is to generate constellations whose satellites share a set of relative tra-
jectories in a given time, and maintain that property over time without orbit
corrections. The model takes into account a series of orbital perturbations such
as the gravitational potential of the Earth, the atmospheric drag, the Sun and
the Moon as disturbing third bodies and the solar radiation pressure. These
perturbations are included in the design process of the constellation. Moreover,
the whole methodology allows to design constellations with multiple relative
trajectories that can be distributed in a minimum number of inertial orbits.

Keywords Satellite Constellations · Formation Flying · Orbital Perturba-
tions · Orbit Design

1 Introduction

Space has become a strategic resource that offers an unlimited number of pos-
sibilities. Scientific and military missions, telecommunications or Earth obser-
vation are some of its most important applications and have led the sector to
a quick expansion with an increasing number of satellites orbiting the Earth.
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Satellites lie in a very advantageous position that allows the observation of
vast regions of the Earth in short periods of time, an objective which is diffi-
cult to achieve with human and technical means in ground. This advantage can
be improved even further with the concept of satellite constellations. Satellite
constellations are groups of satellites that, having the same mission, work co-
operatively to achieve it. This concept increases the complexity of the celestial
mechanics problem to solve, but opens new and interesting possibilities for
future missions.

Satellite constellation design has been since its beginning a process that
required a high number of iterations due to the lack of established models for
the generation and study of constellations. This situation resulted in the neces-
sity of specific studies for each particular mission, being unable of extrapolate
the results from one mission to another. Fortunately, in the last decades, new
theoretical models have been developed that include in their formulation all
the former configurations. Examples of that are the Walker Constellations1

for circular orbits or the design of Draim2 for elliptic orbits. Afterwards, a
new design theory was introduced, which included all the former designs and
allowed more possibilities of configuration for circular and elliptic orbits: the
Flower Constellations Theory.

The Flower Constellations were introduced for the first time by Mortari3 in
the year 2004. The most relevant feature of this model consists of the visualiza-
tion and study of the constellations using a rotating frame of reference instead
of an inertial frame of reference. That way, a relative orbit whose geometry
reminds the shape of the petals of a flower is obtained.

The initial Flower Constellations model was reformulated in the 2-D Lat-
tice4 and 3-D Lattice5 models which improved the parametrization of the
problem. However, due to the strictly Keplerian formulation of the model,
the inclusion of orbital perturbations is required to enhance the precision. In
Casanova6 the perturbation created by the J2 term of the gravitational po-
tential of the Earth was introduced in the model. Nevertheless, other orbital
perturbations are also significantly modifying the orbits, so it is important to
include them in the design process of the constellation.7

The goal of the methodology presented in this paper is to generate satel-
lite constellations that include the effects of orbital perturbations such as the
gravitational potential of the Earth, the atmospheric drag, the Sun and the
Moon as disturbing third bodies or the solar radiation pressure.8 The proposed
constellation design allows to generate a configuration in which a number of
different relative trajectories is defined, each of these containing a number of
satellites that present the same instantaneous relative trajectory over time.
Moreover, in order to decrease the number of orbital launches to build the
constellation, another constraint will be set: satellites from different relative
trajectories have to share the same inertial orbit, allowing a decrease in the
number of inertial orbits.

The time distribution methodology introduced is able to generate all kinds
of satellite configurations including equally spaced time distributions (as the
Flower Constellations Theory does) but also formation flying (or cluster fight9).
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Examples of these are presented in this paper for both Keplerian formulation
and perturbed models using the time distribution methodology introduced in
this work.

2 Keplerian model for constellation design

Throughout this paper, the so called classical orbital elements will be used,
namely: a the semi-major axis, e the eccentricity, i the inclination, ω the
argument of perigee, Ω the right ascension of the ascending node and M the
mean anomaly. Other common parameters used are: f the true anomaly, ω⊕
the angular velocity of the Earth, µ the Earth gravitational constant, R⊕ the
Equatorial Earth radius and J2 the second order term of the gravitational
potential of the Earth.

In an unperturbed dynamic model, the classical orbital parameters (a, e,
i, ω, Ω) are constant whilst the mean anomaly (M) varies through time. This
property will be used to show in a clear way the analytical model behind the
constellation design proposed in this paper.

Along this section, three different constellation designs will be shown, each
one expanding the possibilities of the former one with a new concept. First, a
constellation design model in which satellites share the same relative trajectory
with respect a rotating reference frame will be presented. Second, this model
will be expanded with the possibility of distribution of the satellites in several
different relative trajectories. And finally, a constraint will be set in order to
reduce the number of inertial orbits to a minimum. That way, the costs of
building the constellation in orbit are considerably reduced.

All these constellation designs share the mean values of the semi-major
axis, the eccentricity, the inclination and the argument of perigee. This is
done in order to achieve the sharing of the relative trajectories.

One important thing to notice is that the definition of the relative trajec-
tory done throughout this paper can be established in whatever rotating frame
of reference that rotates at a constant speed respect to the inertial frame of
reference, and thus, it does not have to be the one fixed with the movement
of the Earth. This has two important implications. The first one is that the
methodology can be used in constellations orbiting any celestial body. The
second one is that even if the satellites rotate a particular celestial body, the
definition of the constellation does not have to be made in the reference frame
fixed to the central body, it can be made in other reference system, increasing
the freedom in the design. However, in most applications, it is more practical
the use of the ECEF (Earth Centered - Earth Fixed) frame of reference as it
defines the constellation in a relative to Earth position, so during this paper,
it is assumed that the design of the constellation is done in the ECEF frame
of reference.
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2.1 Constellation design with a common relative trajectory

The objective of this design model is to generate a constellation whose satel-
lites share the same relative trajectory over time. The first thing required to
achieve this condition is to define that particular relative trajectory. It is worth
noting that the relative trajectory is not required to be closed in the proposed
methodology.

The position of a satellite along its trajectory in the perifocal frame of
reference is:

x = (r cos f, r sin f, 0) , (1)

where r is the radius of the orbit in each instant of time:

r =
a
(
1− e2

)
1 + e cos f

. (2)

These positions can be expressed in the inertial frame of reference (ECI:
Earth Centered Inertial) using rotational matrices (R3 and R1):

x|ECI = R3 (Ω)R1 (i)R3 (ω)x, (3)

and it can also be expressed in the ECEF (Earth Centered - Earth Fixed)
frame of reference:

x|ECEF = R3 (−ψG0 − ω⊕t)x|ECI , (4)

where ψG0 is the longitude of Greenwich at the time of reference t = 0 and
ω⊕ is the angular velocity of rotation of the Earth.

Thus, using Equations (1), (3) and (4), the position of a certain satellite is
obtained in the ECEF frame of reference:

x|ECEF = R3 (−ψG0 − ω⊕t)R3 (Ω)R1 (i)R3 (ω)

 r cos f

r sin f

0

 , (5)

where combining the first two matrices, the following expression is obtained:

x|ECEF = R3 (Ω − ψG0 − ω⊕t)R1 (i)R3 (ω)

 r cos f

r sin f

0

 . (6)

The aim now is to create a constellation of satellites whose trajectories in
the ECEF frame of reference are the same. To be able to do that, the orbital
elements a, e, i and ω must be equal for all the satellites of the constellation.
Let a, e, i, ω, Ω0 be the orbital parameters of the reference trajectory and
let t0 be the reference time of the constellation which is associated with a
reference satellite of the constellation (which can be an actual satellite or a
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fictitious position). This reference trajectory (named x0) can be expressed in
the relative frame of reference as:

x0|ECEF = R3 (Ω0 − ψG0 − ω⊕t)R1 (i)R3 (ω)

 r cos f

r sin f

0

 , (7)

where r and f are a function of t. This relative trajectory must be fulfilled
by every satellite in the constellation, so it is fixed in the design of the con-
stellation. If another point of this relative trajectory is considered, a satellite
that shares the same relative trajectory can be obtained. If the value of t0
is modified, this relative trajectory remains the same. Let t1 be the changed
value of t0, then, the right ascension of the ascending node suffers a variation
of ∆Ω = −ω⊕(t1− t0). Thus, the relative trajectory of the satellite (x1) when
t1 is considered is:

x1|ECEF = R3 (Ω0 − ψG0 − ω⊕(t1 − t0 + t))R1 (i)R3 (ω)

 r cos f

r sin f

0

 , (8)

where r and f are now a function of (t1+ t). From Equation (8) and using the
inverse relation of Equation (4), the inertial orbit of this second satellite can
be obtained through:

x1|ECI = R3 (ψG0 + ω⊕t)x1|ECEF , (9)

so the inertial orbit is:

x1|ECI = R3 (Ω0 − ω⊕(t1 − t0))R1 (i)R3 (ω)

 r cos f

r sin f

0

 . (10)

In other words, let {a, e, i, ω,Ω0,M0} and {a, e, i, ω,Ω1,M1} be the classi-
cal orbital elements of two satellites whereM0 andM1 are given for the initial
time. We impose that both satellites lay in the same relative trajectory:

x0|ECEF (t+ (t1 − t0)) = x1|ECEF (t) ∀t ∈ R, (11)

where t1 − t0 is the time that satellite 0 requires to reach the same position
of satellite 1 in the relative trajectory. Then, in the inertial frame of reference
and following Equation (10), a relation between both right ascensions of the
ascending nodes can be obtained:

Ω1 = Ω0 − ω⊕(t1 − t0). (12)

On the other hand, the mean anomaly of the reference satellite can be
defined as:

M = n(t+ t0 − τ), (13)
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where τ is the time of pass for the perigee, t0 is the time of reference of the
constellation and n is the mean motion of the satellite, which, for a Keplerian
movement is:

n =

√
µ

a3
, (14)

being µ the standard gravitational constant of the Earth. As all the inertial
orbits are identical except for a rotation and a time of reference, we can define
τ as the time of pass for the perigee of the leading satellite of the constellation,
that is, satellite 0. It is important to notice that with this definition, τ becomes
independent of the satellite of study. Thus, the mean anomaly of satellite 1
can be expressed as:

M1 = n(t+ t1 − τ), (15)

where t1 is the reference time of satellite 1. Then, a relation between both
mean anomalies can be obtained:

M1 =M0 + n(t1 − t0). (16)

As it can be seen, combining Equations (12) and (16), a function between
M1 and Ω1 can be established:

M1 =

(
M0 +

n

ω⊕
Ω0

)
− n

ω⊕
Ω1; (17)

which represent a straight line (M1(Ω1) with a slope of n/ω⊕) as it can be
seen in the (Ω, M)-space10 representation of the relative trajectory shown in
Figure 1, where each vertical line represents the inertial orbit and the diagonal
represents the relative trajectory of the satellite for a particular instant.

Fig. 1 (Ω, M)-space representation of a relative trajectory.

If instead of only one satellite, a certain number of them are taken, it is
possible to generate a constellation whose satellites share the same relative
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trajectory. Let tq be the temporal positions in the relative trajectory (in the
same sense as t1 worked) and let Nst be the number of satellites in the rel-
ative trajectory, where q ∈ [1, Nst] represent each particular satellite of the
constellation. Then, for each q:

Mq =

(
M0 +

n

ω⊕
Ω0

)
− n

ω⊕
Ωq; (18)

and the inertial orbits can be expressed as:

xq|ECI = R3 (Ω0 − ω⊕(tq − t0))R1 (i)R3 (ω)

 r cos f

r sin f

0

 . (19)

As Equation (19) shows, the first matrix corresponds to a rotation in a
modified right ascension of the ascending node for each satellite. Let Ωq be
the right ascension of the ascending node of the satellite q, then:

Ωq = Ω0 − ω⊕(tq − t0). (20)

Note that (tq − t0) represents a distribution over time with respect to the
reference trajectory defined in the beginning, and as such, it does not depend
on the time (t) used in the propagation, that is, it remains constant. Moreover,
tq and ω⊕ are also constant in time, so it can be concluded that Ωq is fixed
for each satellite of the constellation. On the other hand, the initial value of
the true anomaly of each satellite of the constellation (fq) only depends on tq.
Then, it is possible to generate the full constellation by the only use of the
parameter of distribution tq. Each inertial orbit of the constellation is obtained
by:

xq|ECI = R3 (Ω0 − ω⊕(tq − t0))R1 (i)R3 (ω)


a
(
1− e2

)
1 + e cos fq

cos fq

a
(
1− e2

)
1 + e cos fq

sin fq

0

 . (21)

Equation (21) allows to design a distribution of satellites in which all have
the same relative trajectory (and thus, they share the same ground-track).
This distribution is done over time, with no constraints in the selection of the
different values of tq which is the parameter of distribution in the configuration.

A more compact representation of the distribution can be done combining
Equations (18) and (20), which lead to:

Ωq = Ω0 − ω⊕(tq − t0);

Mq = M0 + n(tq − t0); (22)

where tq is the parameter of distribution of the configuration, and Ω0, t0 and
M0 are the parameters related to the leading satellite.



8 David Arnas et al.

2.1.1 Example of constellation defined in a single relative trajectory

As an example of application, a constellation consisting on five satellites is
selected. The semi-major axis of the constellation is a = 14420 km, the eccen-
tricity is e = 0.4 and the inclination is i = 63.435o. Suppose that a distribution
of satellites is required in such a way that once the first satellite has observed
a particular region, the rest of the satellites have to pass over the same region
but with a delay of five minutes between them.

Without losing generality, let Ω0 = 0,M0 = 0 and t0 = 0 be the parameters
of the leading satellite. Then, the time distribution of the constellation is
defined by the following relation:

tq = 300(q − 1); (23)

where q ∈ [1, 5] defines the parameter of distribution for each particular satel-
lite and 300 represents the delay in seconds between satellites. From Equa-
tion (22), the following distribution is obtained:

Ωq = −ω⊕tq;

Mq = ntq; (24)

which leads to the configuration shown in Table 1.

Table 1 Initial distribution of the constellation.

Element Sat. 1 Sat. 2 Sat. 3 Sat. 4 Sat. 5
Ωq (deg) 0.000 -1.2534 -2.5068 -3.7603 -5.0137
Mq (deg) 0.000 6.2671 12.5342 18.8013 25.0684

Fig. 2 Inertial (left) and relative (right) trajectories of the constellation.

Figure 2 shows the inertial and relative trajectories of the constellation.
As it can be seen, the relative trajectory is common for all the satellites in
the constellation whilst they have five different inertial orbits. One important
property of this design is that, even if we decrease the distances between
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satellites, it is not possible for the satellites to collide because they are moving
in the same relative trajectory which does not have self intersections.

2.2 Constellation design with multiple relative trajectories

The objective now is to distribute the satellites in more than one relative
trajectory. The methodology is similar to the previous one (see Section 2.1),
but in this case, other degrees of freedom are added in the spacing of the
relative trajectories in the ECEF frame of reference. Let Nt be the number of
relative trajectories in which the constellation is distributed and let k ∈ [1, Nt]
be the parameter that names each one of this trajectories. Therefore, the total
number of satellites in the constellation Ns is:

Ns = NstNt, (25)

where Nst is the number of satellites in each relative trajectory.
Furthermore, the satellites named with the sub-index k0 are the leading

satellites of each k relative trajectory, that is, the reference satellites that define
the trajectories in the ECEF frame of reference. Moreover, the leading satellite,
named with the sub-index 00, represents the reference origin of the whole
constellation. Thus, as seen before, the relative trajectories can be defined as:

xkq|ECEF = R3 (σ)R1 (i)R3 (ω)

 r cos f

r sin f

0

 , (26)

where:

σ = Ω0 +∆Ωk − ψG0 − ω⊕(tkq − t0 + t), (27)

∆Ωk is the space distribution of the relative trajectories in the ECEF frame
of reference and tkq represents the distribution parameter of the constellation.
Note that r and f are now functions of tkq. The parameter tkq distributes
the satellites in a k relative trajectory and the q position in that relative
trajectory. As it can be seen, two degrees of freedom control the distribution
of the constellation: ∆Ωk and tkq.

Transforming those coordinates to the ECI frame of reference, and naming
fkq the true anomaly of the satellite q of the k relative trajectory at the initial
time, the following inertial orbits for each satellite of the constellation are
obtained:

xkq|ECI = R3 (Ωkq)R1 (i)R3 (ω)


a
(
1− e2

)
1 + e cos fkq

cos fkq

a
(
1− e2

)
1 + e cos fkq

sin fkq

0

 , (28)
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where the right ascension of the ascending node of each satellite is:

Ωkq = Ω0 +∆Ωk − ω⊕(tkq − t0), (29)

which means that, in general, each satellite presents a different inertial orbit.
This distribution can also be represented in the (Ω, M)-space. As done

before:

Ωkq = Ω0 +∆Ωk − ω⊕(tkq − t0),

Mkq = M0 + n(tkq − t0), (30)

and the relation between Ωkq and Mkq is:

Mkq =

(
M0 +

n

ω⊕
Ω0

)
+

n

ω⊕
∆Ωk − n

ω⊕
Ωkq; (31)

which is a distribution of points over a family of straight lines that have the
same slope. Figure 3 shows a particular case of a satellite with respect to the
reference trajectory (named 0). There, the satellite 11 (k = 1, q = 1) is located
in the relative trajectory 1 which presents a rotation of ∆Ω1 with respect to
the reference trajectory.

Fig. 3 (Ω, M)-space representation of the configuration for multiple relative trajectories.

2.2.1 Example of constellation defined in various relative trajectories

As an example of this section, we present a sun synchronous constellation
based on 15 satellites distributed in 3 relative trajectories and circular orbits.
The constellation has an altitude of 880 km, and thus, a = 7260 km and
i = 98.95o. Now, we choose a distribution of the constellation such that the
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relative trajectories are equally spaced and the satellites in each orbital plane
are equally spaced in time. That way, this distribution can be expressed as:

∆Ωk = 2π
k − 1

Nt
,

tkq = 2π
q − 1

Nst
; (32)

where Nt = 3 is the number of relative trajectories and Nst = 5 is the number
of satellites per relative trajectory. Using Equation (30) this initial distribution
leads to the following configuration:

Ωkq = 2π
k − 1

Nt
− 2πω⊕

n

q − 1

Nst
,

Mkq = 2π
q − 1

Nst
, (33)

where k ∈ [1, Nt] and q ∈ [1, Nst]. The distribution is shown in the (Ω, M)-
space in Figure 4, where it can be observed how the satellites are positioned in
three different lines that represent the relative trajectories of the constellation.

Fig. 4 (Ω, M)-space, where each point represents a satellite in the constellation.

Figure 5 shows the inertial and relative trajectories of the constellation.
As it can be seen, there are 15 different orbits, one for each satellite, however
there are only three different relative trajectories (a solid line, a dashed line
and a dotted line), which was the objective sought.

As it can be seen from Figures 4 and 5, this distribution generates too many
different orbital planes, one per satellite, a fact that increases the expenses
of building the constellation in orbit. Therefore, in the next subsection the
constraint of minimum number of inertial orbits will be set in order to correct
this situation.
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Fig. 5 Inertial (left) and relative (right) trajectories of the constellation.

2.3 Constellation design with minimum number of inertial orbits

Once a distribution over different relative trajectories is done, it is interesting
to impose the restriction that the constellation has to be built in the least
number of inertial orbits due to costs reduction. As seen before, the procedure
places the satellites in different relative trajectories. Nevertheless, there is no
constraint with respect to the inertial frame of reference, and in fact, each Ωkq

is in general different. The aim now is to impose that the values of Ωkq are
shared between relative trajectories.

The parameter tkq is a time distribution of the satellites in the constel-
lation, but in reality, there exist two effects provoked by this parameter, the
movement along the relative trajectory and the spacing of the inertial orbits.
On the other hand, the spacing of the relative trajectories is controlled by the
parameter ∆Ωk. As we require to reduce the number of inertial orbits to a
minimum, a relation between tkq and ∆Ωk has to be found in order to achieve
this condition. As tkq is a distribution, we can separate it in two different
parameters tk and tq such that:

tkq = tk + tq, (34)

where tq is related to the distribution of satellites in the same relative tra-
jectory as done in Section 2.1, and we want tk to be related with the inertial
orbits. In order to achieve that, we impose the right ascension of the ascending
node to be independent of the parameter k, in the form of tk or ∆Ωk. That
way, the number of inertial orbits only depends on tq, which is related with
the number of points per relative trajectory.

Thus, applying Equation (34) in Equation (29), we obtain:

Ωkq = Ω0 +∆Ωk − ω⊕(tk + tq − t0), (35)

where it is possible to eliminate the dependence on k imposing:

tk =
∆Ωk

ω⊕
, (36)
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and thus, introducing this value for tk in Equation (35) the following expression
for the right ascension of the ascending node is obtained:

Ωkq = Ω0 − ω⊕(tq − t0). (37)

Note that now, Ωkq does not depend on the terms in k, and as such, is
the same for every satellite that shares the value of tq, one for each relative
trajectory. That leads to a distribution in which the satellites with the same q
are distributed in the same inertial orbit whilst the satellites with the same k
are distributed in the same relative trajectory (remember that fkq is a function
of tq + tk). Figure 6 shows how the distribution works in the ECEF and the
ECI frames of reference for two generic relative trajectories.

Fig. 6 Constellation distribution in the ECEF (left) and ECI (right) frames of reference.

The (Ω, M)-space representation can be defined as before:

Ωkq = Ω0 − ω⊕(tq − t0),

Mkq = M0 + n

(
∆Ωk

ω⊕
+ tq − t0

)
, (38)

obtaining the same expression as in Equation (31):

Mkq =

(
M0 +

n

ω⊕
Ω0

)
+

n

ω⊕
∆Ωk − n

ω⊕
Ωkq. (39)

The difference now is that the right ascension of the ascending node is
shared by one satellite of each relative trajectory as seen in Figure 7. In fact
this is a particular case of the one presented in Section 2.2.

Using the two time distributions tq and tk, it is possible to achieve the
configuration desired with no constraints in the distribution, generating con-
stellation configurations distributed in a reduced number of orbital planes.
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Fig. 7 (Ω, M)-space representation of the configuration for minimum number of inertial
orbits.

2.3.1 Example of constellation defined in various relative trajectories with
minimum number of inertial orbits

As an example of application, a constellation of five satellites is chosen. This
time we impose as a requirement of the mission that the satellites have to be
distributed forming a “+” shape during their movement around the Earth. Let
a = 26562km, e = 0 and i = 50o be the orbital parameters of the constellation,
and let Ω0 = 0, M0 = 0 and t0 = 0 be the parameters of the leading satellite.

In order to design the constellation, three relative trajectories and three
inertial orbits are required to be able to obtain that shape. So three different
values of tq (inertial orbits) and three different values of ∆Ωk (relative trajec-
tories) must be taken. We define the first relative trajectory as the one that
contains the central point of the “+” (k = 1), being the upper and lower points
also contained in this relative trajectory (see Figure 8). On the other hand,
the left and right points are contained in two different relative trajectories,
k = 2 and k = 3 respectively. Moreover, the left and right points of the “+”
are defined in the same inertial orbits as the upper and lower points, more
precisely, the left and the upper points have the same inertial orbit q = 2,
whilst the right and lower point are contained in the same inertial orbit q = 3.
The central point has its own inertial orbit q = 1.

If the delay between satellites in the same relative trajectory is taken as 10
minutes, the values of tq can be defined as: t1 = 0s, t2 = 600s and t3 = −600s.
Regarding the values of∆Ωk and for the sake of simplicity, we choose∆Ω1 = 0,
∆Ω2 = −ω⊕t2 and ∆Ω3 = −ω⊕t3. With those parameters, the distribution of
the constellation is shown in Table 2, where Sat. (k, q) represents the satellite
contained in the inertial orbit q and the relative trajectory k.

Figure 8 shows the inertial orbits and relative trajectories of the constel-
lation. As it can be seen, the constellation is built in three different inertial
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Table 2 Initial distribution of the constellation.

Element Sat. (1, 1) Sat. (1, 2) Sat. (1, 3) Sat. (2, 2) Sat. (3, 3)
Ωkq (deg) 0 -2.5068 2.5068 -2.5068 2.5068
Mkq (deg) 0 5.0137 -5.0137 0 0

orbits and three relative trajectories generating the “+” shape that we were
aiming for.

Fig. 8 Inertial (left) and relative (right) trajectories of the constellation.

3 Perturbed model for constellation design

It has been previously seen how to generate the constellation design in a Ke-
plerian model. The objective now is to apply this methodology to the case of
orbital perturbations. Orbital perturbations such as the gravitational poten-
tial of the Earth, the solar radiation pressure, the Sun and Moon as disturbing
third bodies or the atmospheric drag, will destroy the Keplerian configuration
proposed in a short period of time, so other complementary model has to be
developed to solve this problem. The perturbed model proposed in this paper
achieves the sharing of the relative trajectories despite of being the satellites
subjected to certain known orbital perturbations. This methodology can be
applied with any kind of orbital propagators (analytical, semi-analytical or
numerical) not having any constraint in that respect.

As done in the latter section, three different constellation designs will
be presented, corresponding to the ones studied previously in the Keplerian
model. That way, a clearer exposition of the methodology is presented.

3.1 Constellation design with a common relative-trajectory

The objective is to generate a constellation whose satellites share the same
relative trajectory despite of being subjected to several known orbital pertur-
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bations. Note that sharing the same relative trajectory does not mean that it
has to be closed, in fact, the model is independent of this property.

The idea behind the perturbed model is to propagate first a reference
satellite x0, which will be called the leading satellite, taking into account all
the perturbations of the dynamical model chosen, and keeping the results
of times, positions and velocities of the propagation in certain moments to
generate the positions and velocities of the satellites of the constellation. The
information that is kept correspond to the moments when:

t = tq − t0, (40)

where t0 is the reference time of the leading satellite, and tq represents the pa-
rameter of distribution of each particular satellite. Moreover, using the nomen-
clature introduced in the Keplerian model, q ∈ [1, Nst].

Then, a transformation of these positions and velocities, given in the ECI
frame of reference, will be performed in order to define the initial positions and
velocities of the satellites of the constellation. Therefore, two transformations
will be required: the first one to define the relative trajectory, and the second
one to obtain the inertial orbits that have generated that relative trajectory
and correspond to satellites of the constellation.

Let x̃q|ECI and ṽq|ECI be the positions and velocities of the leading satel-
lite in the inertial frame of reference. The relative positions (xq|ECEF ) and
velocities (vq|ECEF ) are obtained from the inertial ones by using the following
expressions:

xq|ECEF = R3 (−ψG0 − ω⊕(tq − t0)) x̃q|ECI , (41)

vq|ECEF = R3 (−ψG0 − ω⊕(tq − t0)) ṽq|ECI − ω⊕ × xq|ECEF . (42)

However, the initial inertial positions xq|ECI and velocities vq|ECI are
required in order to define the constellation, thus, the second transformation
of frames of reference is needed:

xq|ECI = R3 (ψG0)xq|ECEF , (43)

vq|ECI = R3 (ψG0)vq|ECEF + ω⊕ × xq|ECI . (44)

One important thing to notice is that, having included the perturbations
in the initial orbit propagation, all the satellites follow the same relative tra-
jectory for the perturbations considered in the constellation design. Thus, the
more realistic the orbital perturbation model is, the better the constellation
will perform in the reality.
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3.2 Constellation design with multiple relative trajectories

The next step in complexity in the design of a constellation is to include
multiple relative trajectories in the configuration. The process is similar as
before, but now, several leading satellites are required in order to define the
different relative trajectories, one leading satellite for each relative trajectory.
Furthermore, the distribution of the satellites is done using two parameters:
the time distribution over the different relative trajectories tkq and the angular
distribution of the relative trajectories in the ECEF frame of reference ∆Ωk.

As it has been said, each relative trajectory requires a leading satellite.
Those satellites have the same values of a0, e0, i0 and w0, whilst the right
ascension of the ascending node follows:

Ωk0 = Ω0 +∆Ωk − ω⊕ (tk0 − t0) , (45)

where Ωk0 are the right ascension of the ascending nodes of the leading satel-
lites and each relative trajectory is named as k ∈ [1, Nt]. Moreover, each one
can present a different reference with respect to the global reference time of
the constellation t0, that means that in general, each leading satellite define a
time of reference for each relative trajectory tk0.

Once the leading satellites are defined, each one of them is propagated
for a time equal to at least the maximum value of (tkq − tk0), that is, the
maximum distance in time between the leading satellite and the satellites in
the constellation related to it. This generates a number of relative trajectories
equal toNt, the number of different relative trajectories of the constellation. As
previously, the values of the positions and velocities of each relative trajectory
for the moments when (t = tkq − t0) are kept, which represent the distribution
of the constellation, and two transformations are performed:

xkq|ECEF = R3 (−ψG0 − ω⊕(tkq − t0)) x̃kq|ECI ,

vkq|ECEF = R3 (−ψG0 − ω⊕(tkq − t0)) ṽkq|ECI − ω⊕ × xkq|ECEF ;

xkq|ECI = R3 (ψG0)xkq|ECEF ,

vkq|ECI = R3 (ψG0)vkq|ECEF + ω⊕ × xkq|ECI . (46)

The values of the inertial positions xkq|ECI and velocities vkq|ECI of each
satellite determine the initial configuration of the constellation. This configu-
ration distributes the constellation in Nt different relative trajectories and a
number of inertial orbits equal to the number of satellites (in general). This is
the same case as the one seen in Section 2.2 but for a non Keplerian model.
Having too many different orbital planes in the constellation increases the costs
of the mission, therefore, it is required to include the constraint of minimum
number of inertial orbits which is presented in the next section.

3.3 Constellation design with minimum number of inertial orbits

The latter configuration distributes the constellation in Ns different inertial
orbits, which is a design decision that carries a lot of expenses to build the
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constellation in orbit. In order to solve that, and as done Section 2.3, the dis-
tribution parameter can be separated in two different distribution parameters
tk and tq where tkq = tk + tq. Then, a relation can be established between
tk and Ωk using Equation (36). However, the orbital perturbations make the
right ascension of the ascending node to shift and therefore, the configuration
obtained from the Keplerian procedure does not generate orbits in the same
inertial planes.

In order to solve that, we introduce a modification in the distribution of
tk from Equation (36) that allows to include the effects of the shifting of the
right ascension of the ascending node in the formulation. If we fix a frame of
reference in the orbit, we observe that the Earth does not rotate at ω⊕ due
to the shifting in the right ascension of the ascending node. In this frame of
reference, the Earth rotates respect to the orbit at ω⊕ − Ω̇, where Ω̇ is the
derivative of the right ascension of the ascending node. Thus, applying this
modification to Equation (36), we obtain:

tk =
∆Ωk

ω⊕ − Ω̇k0

, (47)

where Ω̇k0 is the derivative of the right ascension of the ascending node for
the leading satellite of the relative trajectory k, which can be obtained using
the secular value of the perturbation. The value of tk is introduced in Equa-
tion (46) leading to a constellation based on Ns satellites distributed in Nt

relative trajectories and Nst inertial orbits. All this design includes the orbital
perturbations considered in the propagations that were made.

4 Constellation design based on equally spaced in time
distributions

The aim of this section is to define a constellation distribution that is equally
spaced in time, basing the design in the case of multiple relative trajectories
and minimum number of inertial orbits. In order to do this kind of distribution,
it is required to have a closed relative track, which defines a repeating cycle
that allows to define the distribution.

Let a cycle be the time that a satellite requires to repeat its ground-track,
and let Tc be the period of this cycle. In order to achieve the repeating ground-
track property, the orbital parameters have to fulfill a relation with the rotation
of the Earth, given by:

Tc = NpTΩ = NdTΩG, (48)

where Np is the number of orbital revolutions to cycle repetition, Nd is the
number of revolutions of the ECEF frame with respect the orbital plane to
cycle repetition, TΩ is the nodal period of the orbit and TΩG is the nodal
period of Greenwich.

Let Nst be the number of satellites in each different relative trajectory,
and let q ∈ [1, Nst] be the integer that names each satellite of each relative
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trajectory of the constellation. In order to obtain an equally spaced time dis-
tribution in each relative trajectory, we distribute the values of tq over the
period of the cycle Tc, where tq < Tc, generating the following configuration:

tq = (q − 1)
Tc
Nst

. (49)

Furthermore, let Nt be the number of different relative trajectories, and
let k ∈ [1, Nt] be the integer that names each different relative trajectory of
the constellation. The right ascension of the ascending nodes of the leading
satellites of each relative trajectory are expressed as:

Ωk = Ω0 + (k − 1)
2π

Nt
, (50)

where:

∆Ωk = Ωk −Ω0 = (k − 1)
2π

Nt
. (51)

Note that the right ascension of the ascending node of the leading satellites
is not shared in general with the rest of the satellites situated in the same
relative trajectory (see Equation (20)).

Using Equation (47), the distribution of tk is obtained:

tk =
(k − 1)

2π

Nt

ω⊕ − Ω̇k0

, (52)

thus, the distribution of each satellite (tkq = tk + tq) for an equally spaced in
time configuration is:

tkq = (q − 1)
Tc
Nst

+ (k − 1)
2π

Nt

(
ω⊕ − Ω̇k0

) . (53)

One thing to notice is that due to the possible symmetries in the config-
uration, two conditions have to be assured by the designer. The first one is
that the parameters Nd and Np must be relatively primes in order to avoid
duplicities in the formulation (for example Np = 2 and Nd = 3 is equivalent
to Np = 4 and Nd = 6).

The second condition is related to avoiding the overlapping of satellites
in the configuration. This may occur if the distribution is uniform with sym-
metries in time and space, a condition that appears when the parameters Np

and Nt are relatively primes between them. Let Nf be the maximum common
divisor between Np and Nt. Then, the distribution over space is:

Ωk = Ω0 + (k − 1)
2π

NtNf
, (54)

and therefore, the distribution over time is:

tkq = (q − 1)
Tc
Nst

+ (k − 1)
2π

NtNf

(
ω⊕ − Ω̇k0

) , (55)
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where Equations (54) and (55) substitute Equations (50) and (53) in order to
avoid the overlapping of satellites.

5 Examples of application

In this section, two examples of application are shown. In particular, a Medium
Earth Orbit Constellation and a Low Earth Orbit Constellation are presented.
In these designs, constellations whose satellites are equally spaced in time are
defined (see Section 4). Moreover, the satellites will present the repeating
ground-track property and will be distributed in the least number of inertial
orbits using the perturbed model (see Section 3.3).

During these examples the following perturbations have been taken into
account: the gravitational potential of the Earth11 up to 4th order terms (in-
cluding tesserals), the Sun and Moon as disturbing third bodies,12 the solar
radiation pressure13 and the atmospheric drag (Harris-Priester14,15 model).
In addition, it has been supposed that all the satellites are identical in each
constellation.

5.1 Example of Medium Earth Orbit Constellation

First, it is supposed, as part of the mission requirements, that the parameters
Np, Nd, Nst and Nt are known, as well as the inclination and eccentricity of
the orbits. Moreover, as a mission requirement, the pass of the constellation
over a certain point of the Earth with coordinates in longitude and latitude
(ψr, ϕr) is imposed, and we choose f = π over that point to maximize the
time of coverage of the constellation in these coordinates.

On the other hand, we impose that the semi-major axis of all the satellites
of the constellation present the repeating ground-track property. This condi-
tion is achieved by the use of osculating elements in the constellation for each
satellite, having considered the orbital perturbations mentioned before. This
is performed by the use of a numerical method to find the semi-major axis
that is able to achieve the ground-track repetition for each satellite.

The basis of the numerical method is to correct the value of the semi-major
axis by adjusting the orbit of the satellite in the ECEF frame of reference. This
correction is achieved by using a basic property in celestial mechanics: if the
semi-major axis of an orbit increases, its period also increases and vice versa.
Therefore, the goal of the correction is to find the value of the semi-major
axis that allows the closing of the ground-track in a period of time equal to
a cycle: Tc = TNp (being T the orbital period and Np the number of orbital
periods to complete a cycle). This is done by a series of iterations in which
the secant method and the intermediate value theorem are used to find the
value of the semi-major axis that allows the closing of the ground-track for
the orbital perturbations considered.

Once the orbital parameters are established for one satellite, it is time to
generate the initial configuration of a constellation with minimum number of
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inertial orbits, that is, the methodology presented in Section 3.3 is used. How-
ever, in order to do that, the constellation distribution must be chosen firstly.
For the sake of simplicity, the value of t0 is fixed as t0 = 0 and Equations (49)
and (55) are used in order to define the equally spaced in time configuration.

Using this equally spaced in time distribution, we apply it to a constellation
consisting of 24 satellites and show the results. The constellation repeats its
ground-track each two orbital revolutions (Np = 2) and each day (Nd = 1).
Furthermore, all satellites have an inclination of i = 63.435o and an eccentricity
of e = 0.5. A high eccentricity orbit has been selected in order to show the
possibilities of the constellation design model. The constellation is distributed
in 6 different relative trajectories (Nt = 6) and 4 inertial orbits (Nst = 4),
thus Ns = NtNst = 24.

Note that Nt = 6 and Np = 2 have a maximum common divisor of
Nf = 2, so, Equations (54) and (55) must be used to perform the distri-
bution. As a further requirement, it has been imposed that one ground-track
of the constellation passes over the city of Zaragoza (Spain) with coordinates
(ϕr = 41.698169o and ψr = −0.874295o).

With these conditions, the constellation is designed following the perturbed
model proposed in this work obtaining the initial positions and velocities shown
in Table 3. These results are given in the inertial frame of reference and gener-
ate a constellation whose satellites are distributed in 4 different inertial orbits
and 6 relative trajectories. The satellites are subjected to the orbital pertur-
bations named at the beginning of this section: the gravitational potential of
the Earth, the Sun and Moon as disturbing third bodies, the solar radiation
pressure and the atmospheric drag.

Table 3 Initial positions and velocities of the constellation.

Sat. (k,q) x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
1,1 29742.291 -453.883 26500.795 -1.171 1.358 1.337
1,2 154.758 9918.577 -8829.518 -4.072 -3.511 -4.013
1,3 -29744.259 452.557 26498.609 1.171 -1.358 1.338
1,4 -160.231 -9924.333 -8822.957 4.072 3.509 -4.016
2,1 16921.730 8809.410 31186.380 -2.343 1.135 -0.134
2,2 -14103.296 -21475.852 -5338.235 -0.094 -2.969 2.559
2,3 -16924.510 -8809.572 31186.600 2.343 -1.135 -0.134
2,4 14100.583 21472.679 -5342.417 0.094 2.970 2.559
3,1 -2593.920 13813.974 22164.558 -2.884 -0.004 -2.655
3,2 -9567.105 -32767.410 13084.071 1.093 -0.422 2.330
3,3 2590.853 -13813.672 22168.897 2.884 0.004 -2.654
3,4 9564.986 32767.859 13080.263 -1.093 0.422 2.330
4,1 -9918.577 154.758 -8829.518 3.511 -4.072 -4.013
4,2 -452.557 -29744.259 26498.609 1.358 1.171 1.338
4,3 9924.333 -160.231 -8822.957 -3.509 4.072 -4.016
4,4 451.231 29746.226 26496.423 -1.357 -1.171 1.338
5,1 21475.852 -14103.296 -5338.235 2.969 -0.094 2.559
5,2 8809.572 -16924.510 31186.600 1.135 2.343 -0.134
5,3 -21472.679 14100.583 -5342.418 -2.970 0.094 2.559
5,4 -8809.735 16927.289 31186.819 -1.135 -2.343 -0.134
6,1 32767.410 -9567.105 13084.071 0.422 1.093 2.330
6,2 13813.672 2590.854 22168.896 -0.004 2.884 -2.654
6,3 -32767.859 9564.986 13080.264 -0.422 -1.093 2.330
6,4 -13813.370 -2587.787 22173.233 0.004 -2.884 -2.653
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This configuration can be seen in Figure 9, where the ground-track of the
whole constellation is presented. There, it can be observed that the constella-
tion is distributed in 6 different ground-tracks, being them completely closed
and shared by 4 satellites each.

Fig. 9 Ground-track of the constellation.

Figure 10 shows the inertial (left) and relative (right) trajectories of all the
satellites in the constellation. There, it can be seen how the constellation is
distributed in only 4 different inertial orbits, and how the relative trajectory
is shared by groups of satellites (4 for each relative trajectory). The figure
allows also to see the possibilities that the definition of the constellation in the
relative frame of reference brings, generalizing the orbits from a conic shape
in the inertial frame of reference into a more diverse group of configurations
in the relative frame of reference.

Fig. 10 Inertial (left) and relative (right) trajectories of the constellation.
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Finally, in Figure 11, the polar view of the constellation in the ECEF frame
of reference can be observed. It can be concluded that the satellites are able
to share their relative trajectories (4 satellites in each trajectory) despite of
being subjected to orbital perturbations.

Fig. 11 Polar view of the constellation in the ECEF frame of reference.

5.2 Example of Low Earth Orbit Constellation

For this second example, we choose a constellation composed by 16 satellites
that has as main mission Earth observation. The constellation is distributed
in circular orbits and in the same relative trajectory in the ECEF frame of
reference using the uniform in time distribution seen in Section 4. As in the
former example, the repeating ground-track property is imposed following the
methodology explained for orbital perturbations. However, due to the nature
of the mission, two new requirements are included, the sun-synchrony of the
orbits and the ability to scan all the Earth surface in the minimum time
considering a sensor with a field of view of 7.5o that requires to work at
705± 5 km over the Earth surface.

With this conditions, we obtain a constellation whose satellites have a =
7978.61 km, e = 0, i = 98.21o and that repeat a cycle of their ground-tracks
in 233 orbital revolutions or 16 days. The initial positions and velocities of the
satellites of the constellation can be seen in Table 4.

On the other hand, in Figure 12, the inertial orbits for the constellation in
the initial time (left) and during a propagation of 16 days (right) are presented.
As it can be seen, all the satellites of the constellation lay in the same inertial
orbit that, due to the orbital perturbations considered, is modified during the
time of propagation as seen clearly in the figure. Nevertheless, although the
inertial orbits are greatly perturbed, we can observe in Figure 13 that the
ground-track of the constellation for 16 days of propagation remains fixed for
all the satellites of the constellation.

The property of ground-track repetition (or the sharing of the same relative
trajectory) can be maintained over time without orbital maneuvers using the
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Table 4 Initial positions and velocities of the constellation.

Sat. (q) x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
1 5284.700 -80.647 4708.740 -4.921 -1.361 5.499
2 -3121.980 563.734 -6332.950 6.679 1.224 -3.175
3 453.969 -965.619 6999.826 -7.4332 -0.903 0.362
4 2247.912 1216.725 -6601.230 7.060 0.446 2.489
5 -4640.872 -1286.606 5197.538 -5.605 0.081 -4.976
6 6302.855 1158.491 -3006.073 3.312 -0.595 6.711
7 -7027.148 -856.836 358.524 -0.502 1.019 -7.412
8 6664.128 421.497 2352.191 -2.388 -1.290 6.999
9 -5310.014 73.102 -4688.967 4.897 1.361 -5.512
10 3123.734 -562.082 6330.047 -6.675 -1.228 3.188
11 -495.962 960.076 -6995.614 7.433 0.910 -0.397
12 -2237.058 -1217.700 6610.987 -7.061 -0.452 -2.467
13 4605.905 1287.042 -5217.115 5.636 -0.073 4.955
14 -6295.586 -1164.822 3040.536 -3.340 0.587 -6.686
15 7016.553 862.183 -387.252 0.538 -1.015 7.419
16 -6686.889 -433.575 -2302.522 2.337 1.286 -7.010

Fig. 12 Inertial orbits of the constellation for the initial time (left) and 16 days of propa-
gation (right).

design methodology proposed in this work. However, due to the non periodic
perturbations such as the atmospheric drag or the solar radiation pressure,
the constellation will be modified and thus, orbital maneuvers will be required
in the long term. One important thing to notice is that although in orbit ma-
neuvers are always needed, the use of this methodology reduces the effects
of orbital perturbations over the constellation (specially periodic perturba-
tions such as the non-uniformity of the Earth gravitational field) and thus,
this perturbed design model allows the reduction of the fuel required for the
station-keeping of the constellation.

6 Conclusions

This paper has shown a new design model to create constellations whose satel-
lites share one or several relative trajectories using time as parameter of dis-
tribution in the configuration. This design allows to distribute satellites in
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Fig. 13 Coverage and ground-track of the constellation for 16 days of propagation.

several relative trajectories without no restrictions at all in their distribution,
a property that can be used to configure missions in which the satellites have
to pass consecutively over a certain point of the Earth’s surface.

This design model opens a wide variety of possibilities in the configuration
of satellite constellations, and it is able to handle any combination of orbital
parameters, being the model applicable even with constellations based on high
eccentricity orbits.

Furthermore, two different approaches have been presented for this design
model, a Keplerian model in which no orbital perturbation was considered, and
a perturbed model that can handle orbital perturbations. These two method-
ologies represent the same idea, but each one has its own peculiarities and uses.
Specifically, the perturbed model allows to include the orbital perturbations
inside the design process, improving the results obtained.

Moreover, this constellation design model allows to include orbital proper-
ties to the basic design. In that respect, a semi-major axis correction has been
applied to the example presented in the paper in order to achieve the repeat-
ing ground-track property in the constellation despite of being the satellites
subjected to certain known orbital perturbations. The ability to include other
properties such as the sun-synchrony or the frozen character will be studied
in future work.

Finally the decrease on the number of inertial orbits to a minimum, rep-
resents a big design advantage, due to the fact that the reduction of inertial
orbits allows to group satellites in their launches, therefore reducing the costs
of the mission.
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