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I. Introduction

Flower Constellations present beautiful and interesting dynamical features that allow explo-

ration of a wide range of potential applications, such as telecommunications, Earth and deep space

observation, global positioning systems, and distributed space systems. The Flower Constellations

Theory [1�3] was developed in 2004 by Prof. Mortari. A Flower Constellation (FC) is a set of

satellites following the same trajectories with respect to a rotating frame of reference. It includes

the classic Walker Constellations [4] but without the necessity of having circular orbits. This FC

theory was substantially improved by the 2D-Lattice Flower Constellations [5] (2D-LFCs), mak-

ing the theory independent of any reference frame (inertial or rotating), and achieving a minimal

parametrization.

In the Keplerian model, 2D-LFCs remain 2D-LFCs over time, that is, the initial lattice of the

constellation and its symmetries are maintained. However, when a perturbation is considered, such

as the J2 e�ect due to the non-spherical shape of the Earth, the initial structure slowly changes.

Thus, instead of trying to compensate the J2 perturbation by orbital maneuvers, we intend to

include this perturbation in the design process [6].
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Although the relative distance between two satellites is time changing, the Lattice-preserving

Flower Constellations method [7] allows to control the lattice and to preserve its initial con�guration

and symmetries through a two-step procedure. In the �rst place, a slight modi�cation of the semi-

major axis to control the orbital period of each satellite is applied; next, the values of the eccentricity

and inclination are adjusted to minimize the non secular rates. This way, it is possible to preserve

for several months the initial properties of the constellation. Nonetheless, the lattice-preserving

property is not valid inde�nitely and some orbit-maintenance maneuvers must be planned in order

to compensate the ground track shift [8].

In this paper we deal with the concepts of relative and absolute station keeping for a 2D-LFC.

Relative station-keeping is attained using the lattice-preserving methodology. Absolute station-

keeping is achieved by an impulsive-maneuvering strategy to compensate the shifting in the relative-

track. This methodology is then applied to a real constellation of satellites: the Galileo Constellation,

showing the∆v that would be required in order to perform an absolute station keeping in an example

of application. This method can be extended to any constellation of satellites using optimization

tools and the application of Lambert problem solvers, making the methodology very attractive from

an economical point of view (low fuel consumption) and from a practical point of view (�xed initial

con�guration).

The paper is organized as follows; �rst, the 2D Lattice Flower Constellation Theory is summa-

rized. Then, the e�ect of the J2 perturbation on the (Ω,M)-space is presented, and the method to

obtain the lattice-preserving Flower Constellation (relative station-keeping) is shown. After that,

an example of design is presented, in particular, the Galileo Constellation is built based on the

lattice-preserving Flower Constellation technique. Moreover, a study of the e�ects of the J3 and the

Sun perturbations are considered to show the di�erences from the initial design. Finally, the ∆v

and absolute station-keeping concepts are introduced for the 2D Lattice Flower Constellations and

then, an example of application is computed taking Galileo as the constellation of study. This way,

a complete station keeping strategy is de�ned, taking the lattice-preserving Flower Constellations

as a base and including the absolute station keeping methodology.
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II. Preliminaries

This section describes the main tools used throughout the paper: the theory of Flower Constel-

lations and the concepts of relative station-keeping and absolute station-keeping.

A. 2D-Lattice Flower Constellation Theory

A 2D Lattice Flower Constellation (2D-LFC) is described by nine parameters: three integers

and six continuous parameters. The �rst three parameters are the number of inertial orbits (No),

the number of satellites per orbit (Nso) and the con�guration number (Nc), which is a parameter

that satis�es Nc ∈ [0, No−1] and governs the phasing of the constellation. In particular, the location

of the satellites of a 2D-LFC corresponds to a lattice in the (Ω,M)-space [9]. This space can be

regarded as a 2D torus (both axes, Ω and M , are modulo 2π), and coincides with the solutions of

the following system of equations: No 0

Nc Nso


 Ωij − Ω00

Mij −M00

 = 2π

 i

j

 , (1)

where i = 0, · · · , No − 1, j = 0, · · · , Nso − 1, and Nc ∈ [0, No − 1]. Indices (i, j) represent the j-th

satellite on the i-th orbital plane.

Finally, the other six parameters are the semi-major axis (a), the eccentricity (e), the inclination

(i) and the argument of perigee (ω) (which are the same for all the satellites of the constellation), and

the longitude of the ascending node and the mean anomaly of the �rst satellite of the constellation

i. e. Ω00 and M00.

Other important concepts to introduce in this section are the relative and absolute station-

keeping. The application of these concepts to a constellation of satellites are the aim of the paper,

so, it is required to present them �rst.

B. Relative Station-Keeping

The relative station-keeping is based on the upkeep of the con�guration as a constellation.

The lattice-preserving property [7], applied to FCs, means that the initial con�guration and initial

symmetries are preserved. This kind of station-keeping is not related to any frame of reference, it is

a property of the constellation as a whole. In fact, achieving the relative station-keeping generates
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a rigid con�guration of satellites that will be able to move or rotate with respect to the Earth and

the inertial frame of reference.

C. Absolute Station-Keeping

The absolute station-keeping considered in this paper consist of the upkeep of the relative-tracks

of the constellation over the Earth surface in a certain available range. This range is part of the orbit

design requirement of each particular mission and it is usually chosen due to payload constraints

of the satellite, the telecommunications subsystem or the Earth target area to study. As such, it

is necessary to relate the inertial positions of the constellation satellites with the rotating frame of

reference �xed in the Earth.

III. Relative station-keeping in Flower Constellations

This section describes how to achieve the relative station-keeping in a Flower Constellation by

means of a proper initial design, no requiring further orbital corrections to maintain this property.

Normally, when perturbations are considered in the 2D-LFC, the lattice of the constellation departs

from the initial con�guration. However, the theory of lattice-preserving Flower Constellations [7]

describes a methodology to design a 2D-LFC in such a way that the initial lattice and symmetries

are maintained over a long period of time when the J2 perturbation is taken into account. Lattice-

preserving FCs are achieved in two steps. First, the semi-major axis of all satellites are slightly

modi�ed to make them have the same slope of the secular part of their osculating elements (i.e. the

secular perturbation is the same for all the satellites). Next, the values of their orbital eccentricity

and inclination are computed so that they minimize the non-secular perturbation of the osculating

elements as much as possible. Hence, it is possible to obtain a constellation where all the satellites

are perturbed in a similar way under the J2 e�ect, preserving the initial con�guration and the initial

symmetries.

In this work we apply the Lattice-preserving FCs methodology for the circular case in order

to show a simple and clear example of station keeping that is also widely used in constellations.

The lattice-preserving property degenerates over time and, in consequence, some orbit-maintenance

maneuvers must be planned in order to compensate the ground track error as we will see later.
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A. Lattice-preserving methodology

Lattice-preserving Flower Constellations [7] only consider the J2 e�ect, which represents the

second harmonic of the Earth's gravitational potential, since it is almost 1000 times larger than

the higher harmonic terms of the Earth's gravitational potential. We brie�y summarize below the

methodology followed in the paper mentioned above because we intend to apply it in the following

section.

From the formulation of 2D Lattice Flower Constellations (Eq. (1)), all the orbital elements

of all the satellites are equal except for the right ascension of the ascending node and the mean

anomaly. Thus, taking into account the J2 perturbation, we conclude that the slopes of the secular

component of the osculating elements (ȧ, ė, i̇, Ω̇, ω̇, Ṁ) do not depend on the initial right ascension

of the ascending node. However, they depend on the initial mean anomaly of each satellite.

To overcome this di�erence we take into account that the secular motion of the mean anomaly

and the semi-major axis are related by the following equation:

Ṁsec(t) = n =
2π

T
, (2)

where, n is the mean motion and T is the orbital period, directly related to the semi-major axis.

Then, the correction method states that, if we take the semi-major axis and the rate of change of

the mean anomaly corresponding to the �rst satellite of the constellation (Ṁsec
00 ) as reference values,

it is possible to obtain the same rate of change for the mean anomaly of all the satellites of the

constellation by slightly modifying the semi-major axis of all the satellites as follow:

aij = a

(
Ṁ ij

sec

Ṁ00
sec

) 2
3

, (3)

where ij represents the j-th satellite on the i-th orbital plane. This slightly modi�cation on the

semi-major axis is useful to control the secular variation of the satellites in order to make them

experience the same secular variation. Finally, the initial values of the eccentricity and inclination

are slightly modi�ed in such a way that the non-secular variations of the osculating elements are

minimized as much as possible. For a fully detailed analysis see Casanova et al. [7].
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B. Application to Galileo constellation

Galileo constellation [10] is Europe's own global navigation satellite system. It consists of 27

satellites positioned in three circular Medium Earth Orbit planes at an orbit inclination of 56 degrees

respect to the equator. This constellation can be described using the Flower Constellation theory

with the design parameters following Eq. (1): No = 3, Nso = 9, Nc = 2, a = 29600.137 [km], e = 0,

i = 56◦, ω = 0◦, Ω00 = 0◦ and M00 = 0◦.

Firstly, the evolution of the lattice of the constellation in the (Ω,M)-space is shown. Figure 1

(left) illustrates the initial lattice at time t = 0 [s]. Remark that each point represents one satellite of

the constellation. Figure 1 (right) presents the position of the satellites after one year of propagation

under the J2 e�ect.
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Fig. 1 Satellite distribution for Galileo Flower Constellation over 1 year of propagation.

It is observed that, at time t = 0 [s] the lattice is perfectly distributed. Nevertheless, after 1

year, the position of the satellites depart from the initial con�guration. We use the lattice-preserving

correction method with the aim of maintaining the lattice of the constellation over time.

Subsequently, we apply the lattice-preserving FCs method to all the satellites of the constella-

tion. Through the semi-major axis correction we are able to control the long-term dynamics. Thus,

all the satellites have the same slope for the osculating elements and they are perturbed in the same

way. In addition, we have computed the values of the eccentricity and the inclination that minimize

the non-secular component of the osculating elements of the satellites in the constellation. Therefore,

the new lattice-preserving Galileo constellation has the orbital parameters: e = 0.01, i = 56.0009◦,

ω = 0◦ for all the satellites. The values for the right ascension of the ascending node and the mean

anomaly are computed following Eq. (1). Meanwhile, the values of the corrected semi-major axis
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are given in Table 1. Additionally, the table shows the secular variation of the osculating elements

for each satellite after one year of propagation. Note that satellite (i, j) represents the j-th satellite

on the i-th orbital plane.

Table 1 Corrected semi-major axis and slopes of the osculating elements of lattice-preserving

Galileo FC.

Sat(i,j) a [km] ȧsec [km/s] ėsec [s−1] i̇sec [rad/s] ω̇sec [rad/s] Ω̇sec [rad/s] Ṁsec [rad/s]

(0, 0) 29600.137 −2.833·10−11 −8.944·10−17 −3.227·10−16 2.661·10−9 −5.228·10−9 1.2398266·10−4

(0, 1) 29598.872 8.298·10−12 −1.198·10−17 9.466·10−17 2.638·10−9 −5.228·10−9 1.2398266·10−4

(0, 2) 29597.165 3.114·10−11 3.891·10−16 3.549·10−16 2.629·10−9 −5.228·10−9 1.2398266·10−4

(0, 3) 29597.843 2.525·10−12 9.406·10−16 2.883·10−17 2.620·10−9 −5.228·10−9 1.2398265·10−4

(0, 4) 29599.783 −3.029·10−11 8.598·10−16 −3.450·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

(0, 5) 29599.784 −1.305·10−11 −3.276·10−16 −1.486·10−16 2.617·10−9 −5.228·10−9 1.2398266·10−4

(0, 6) 29597.845 2.569·10−11 −1.847·10−16 2.928·10−16 2.612·10−9 −5.228·10−9 1.2398265·10−4

(0, 7) 29597.166 2.198·10−11 −4.364·10−16 2.506·10−16 2.620·10−9 −5.228·10−9 1.2398266·10−4

(0, 8) 29598.874 −1.811·10−11 −1.044·10−15 −2.062·10−16 2.629·10−9 −5.228·10−9 1.2398266·10−4

(1, 0) 29599.524 −2.764·10−11 −7.800·10−16 −3.148·10−16 2.628·10−9 −5.228·10−9 1.2398266·10−4

(1, 1) 29599.976 −1.926·10−11 −3.502·10−16 −2.194·10−16 2.643·10−9 −5.228·10−9 1.2398266·10−4

(1, 2) 29598.165 2.096·10−11 1.680·10−16 2.389·10−16 2.636·10−9 −5.228·10−9 1.2398266·10−4

(1, 3) 29597.085 2.650·10−11 4.320·10−16 3.020·10−16 2.623·10−9 −5.228·10−9 1.2398266·10−4

(1, 4) 29598.519 −1.175·10−11 9.635·10−16 −1.338·10−16 2.623·10−9 −5.228·10−9 1.2398266·10−4

(1, 5) 29600.101 −3.061·10−11 5.169·10−16 −3.488·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

(1, 6) 29599.218 1.081·10−12 −5.280·10−16 1.245·10−17 2.612·10−9 −5.228·10−9 1.2398266·10−4

(1, 7) 29597.329 3.094·10−11 1.278·10−17 3.526·10−16 2.607·10−9 −5.228·10−9 1.2398266·10−4

(1, 8) 29597.554 9.650·10−12 −8.179·10−16 1.101·10−16 2.624·10−9 −5.228·10−9 1.2398266·10−4

(2, 0) 29598.167 −4.737·10−12 −1.048·10−15 −5.379·10−17 2.627·10−9 −5.228·10−9 1.2398266·10−4

(2, 1) 29599.978 −3.129·10−11 −2.438·10−16 −3.565·10−16 2.630·10−9 −5.228·10−9 1.2398266·10−4

(2, 2) 29599.522 −6.135·10−12 −1.903·10−16 −6.979·10−17 2.637·10−9 −5.228·10−9 1.2398266·10−4

(2, 3) 29597.553 2.915·10−11 3.121·10−16 3.322·10−16 2.634·10−9 −5.228·10−9 1.2398266·10−4

(2, 4) 29597.329 1.624·10−11 6.098·10−16 1.851·10−16 2.614·10−9 −5.228·10−9 1.2398266·10−4

(2, 5) 29599.216 −2.352·10−11 1.012·10−15 −2.680·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

(2, 6) 29600.101 −2.443·10−11 7.844·10−17 −2.783·10−16 2.620·10−9 −5.228·10−9 1.2398266·10−4

(2, 7) 29598.522 1.497·10−11 −3.629·10−16 1.707·10−16 2.609·10−9 −5.228·10−9 1.2398265·10−4

(2, 8) 29597.085 2.962·10−11 −6.970·10−17 3.376·10−16 2.614·10−9 −5.228·10−9 1.2398266·10−4

The illustration of the satellite distribution of the corrected Galileo Flower Constellation is not

depicted here because its representation coincides with Figure 1 (left). Yet, there are remarkable

di�erences highlighted on Table 2. In particular, the table presents the relative distance (in mean
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anomaly) between satellites. It is depicted the values of the mean anomaly of each of the nine

satellites of orbit i = 1 along with their relative variations. Note that we have only shown the

relative mean anomalies between satellites in the �rst orbit due to the similarity of the satellites

distribution in the other two orbital planes (i = 2, 3). Table 2 shows the mean anomaly variations

after one year of propagation of the lattice in case the lattice-preserving technique is applied or not.

Thus, we validate the proposed method and quantify the accuracy. Accordingly, it is concluded that

the initial lattice and the initial symmetries are maintained for a certain period of time. Thus, the

relative station-keeping of the satellites in the Galileo constellation states.

Table 2 Relative variations in Mean anomaly [deg] of the satellites (i = 0, j) after one year.

Orbit i = 0 M00 M01 M02 M03 M04 M05 M06 M07 M08

t = 0 0 40 80 120 160 200 240 280 320

|M0j − M0(j−1)| - 40 40 40 40 40 40 40 40

t = 1y. 145.42 170.34 185.43 234.69 303.21 341.88 356.94 28.15 91.41

|M0j − M0(j−1)| - 24.91 15.09 49.25 68.52 38.66 15.07 31.20 63.26

Corrected constellation

t = 1y. 147.75 186.94 226.64 267.62 307.11 346.90 27.87 67.28 106.80

|M0j − M0(j−1)| - 39.19 39.69 40.98 39.48 39.79 40.96 39.41 39.52

It is worth making a couple considerations about the methodology presented. As it is stated

before, lattice-preserving FCs procedure is valid only for J2 perturbation, the most important per-

turbation at the altitude of study (23222 [km]) as seen in Figure 2. Figure 3 shows the evolution

of the right ascension of the ascending node under other perturbations such as zonal harmonic J3

and the Sun and the Moon as a third bodies. We observe an error of 1◦ in the right ascension of

the ascending node. Therefore, we can expect a similar behavior of the constellation if other per-

turbations such as the zonal harmonics J3 and the Sun and the Moon as third bodies, are included

in the dynamical model.

Finally, it is worth noting that lattice-preserving property degenerates over time. Table 3 derives

the mean anomaly variations after �ve years of propagation. If we compare this table with Table 2

we observe that the lattice of the constellation in a very long propagation is not preserved and so,

some orbit-maintenance maneuvers must be planned in order to compensate this in the long term.
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Table 3 Relative variations in Mean anomaly [deg] of the satellites (i = 0, j) after �ve years.

Orbit i = 0 M00 M01 M02 M03 M04 M05 M06 M07 M08

t = 0 0 40 80 120 160 200 240 280 320

|M0j − M0(j−1)| - 40 40 40 40 40 40 40 40

Corrected constellation

t = 5y. 90.21 124.45 164.74 210.32 245.36 285.33 330.50 5.09 44.50

|M0j − M0(j−1)| - 34.24 40.28 45.57 35.04 39.97 45.16 34.59 39.40

IV. Absolute station-keeping in Flower Constellations

The previous section has presented a correction method to maintain the symmetries and the

structure of the 2D-Lattice Flower Constellations i.e. the satellites of the constellation display a

relative station-keeping. The main idea of lattice-preserving Flower Constellations is that all the

satellites in the constellation are perturbed in a similar way, and consequently, the initial lattice is
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maintained over time.

However, some missions require absolute station-keeping, which means that each satellite of

the constellation remains in a prede�ned mathematical box relative to the Earth. This section

analyses the feasibility of an absolute station-keeping in a lattice-preserving Flower Constellation.

In particular, a study has been made to estimate the required velocity change (∆v) to maintain an

absolute station-keeping.

A. Orbital Maneuvers Required

Thus, the objective now is to correct the satellite orbits of the whole constellation to maintain the

absolute station-keeping between the boundaries of a particular e�ective range. Let ∆ψmax be the

maximum permitted deviation of the relative-track in longitude with respect to the initial instant,

where ∆ψmax is chosen due to constellation design in order to ful�ll the mission requirements.

First, it is important to know how much time each satellite requires to reach this boundary. Let

Tc be the repetition cycle time, that is a time equal to Np satellite revolutions (T ) or Nd sidereal

days (Td):

Tc = NpT = NdTd. (4)

The deviation su�ered by the relative-track of each satellite in the time Tc can be obtained by

propagating each constellation satellite for a time equal to 2Tc and calculating the angle between the

two passings of the satellite over the Earth equator, one at the beginning of the cycle and another

one at the end, in the rotating frame of reference. Let ∆ψc be that angle (see Figure 4).

Now, a relation between ∆ψc and the orbital parameters must be established. That relation

appears between the right ascension of the ascending node and the deviation of the relative-track:

∆Ω = −∆ψc. (5)

Thus, the orbital maneuvers must be based on a plane shift applied when the deviation of

the relative-track reaches its maximum allowed (∆ψmax) i.e. the orbital maneuvers over the right

ascension of the ascending node is:

∆Ω = −∆ψmax. (6)
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Fig. 4 Representation of ∆ψc.

The frequency of this correction depends on the value of ∆ψc obtained, which gives an idea of

the time when the next orbital maneuver must be performed. Let ψ̇ be the angular velocity of the

relative-track drift, then:

ψ̇c =
∆ψc

Tc
. (7)

Thus, the time to make the orbital maneuvers, which happens when ∆ψc is near to get equal

to ∆ψmax, is equal to:

tcorrection =
∆ψmax

ψ̇c

=
∆ψmax

∆ψc
Tc. (8)

B. Maneuvering Strategy

After the previous analysis it is possible to con�rm that the variation of the parameter Ω is

the only one required to be changed. Now, a maneuvering strategy is set in order to achieve the

absolute station keeping maintaining the lattice of the Flower Constellation. The terms of the �nal

con�guration will be denoted with a superscript ∗.

As a requirement of the correction, the lattice of the constellation has to be maintained. Thus,

the new con�guration (Ω∗
ij ,M

∗
ij) has to follow the 2-D Lattice Flower Constellation theory equation,

so, using Eq. (1), the following expression can be obtained:

Ωij = Ω00 +
2π

No
i;

Mij = M00 +
2π

Nso
j − Nc (Ωij − Ω00)

Nso
; (9)
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where Ω00 and M00 represent the origin of the constellation distribution. Let ∆Ωij and ∆Mij be

the distribution of each particular satellite given by:

∆Ωij =
2π

No
i,

∆Mij =
2π

Nso
j − 2πNc

NsoNo
i, (10)

then, if they are introduced in Eq. (9), Eq. (11) is obtained:

Ωij = Ω00 +∆Ωij ;

Mij = M00 +
2π

Nso
j − 2πNc

NsoNo
i =

= M00 +∆Mij . (11)

As such, the constellation is positioned �xing a reference satellite and then distributing the satellites

respect to that satellite. Note that this de�nition is established for a given instant due to the fact

that the mean anomaly M is a function of time.

Following Eq. (11), the parameters of the Flower Constellation ∆Ωij , ∆Mij , No, Nc and Nso

must be the same in the new constellation in order to maintain its con�guration, so the only free

variables are Ω00 andM00 of the new con�guration, i.e. Ω∗
00 andM

∗
00. Thus, they are the parameters

that have to be modi�ed in order to position the constellation over the initial relative-track.

In that respect, the new value of Ω∗
00 is:

Ω∗
00 = Ω00 +∆Ω, (12)

and using Eq. (6) to relate Ω∗
00 with the deviation of the relative-track:

Ω∗
00 = Ω00 −∆ψmax. (13)

Since Ω00 and ∆ψmax are common for all the satellites of the constellation, the value of Ω∗
00 is the

same for all the satellites in the constellation.

Now, we have to prove that the value ofM∗
00 is the same for all the satellites of the constellation

for the orbital maneuvers chosen. This allows maintaining the lattice and con�guration of the new

constellation with respect to the original one. In that sense, the value ofM∗
00 has only the constraints

due to Eq. (1). However, M∗
00 of the constellation is a function of time, so, if a transfer orbit is
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required from the initial constellation to the �nal one, the time that it takes to travel through it

a�ects the new value of M∗
00 of each satellite (that has to be the same for all of them) and as such,

the constellation distribution. That means that having the same reference mean anomaly,M00, as a

design parameter of the Flower Constellation, it is necessary to generate transfer orbits that present

the same transfer time.

This situation can be solved by the application of a Lambert's problem numerical solver that

includes in its formulation the perturbations considered. That way, it is required to calculate the

initial and �nal positions, and the transfer time of each satellite of the constellation. These conditions

are given by the maintenance of the lattice of the constellation, and the lattice-preserving semi-major

axis correction for each satellite. As it can be seen, this methodology requires a numerical method

able to generate several iterations until a feasible solution is found. However, in order to show an

analytical and compact solution to this problem, we consider a simpli�ed case based on constellations

whose initial and �nal orbits have at least an intersection. If that constraint is ful�lled, it is possible

to recon�gure the constellation in just one impulse per satellite. That means that the time that

each satellite spends in the transfer orbit is zero, so the problem does not require any iteration. As

an example of this case are constellations whose satellites have circular orbits.

In order to prove thatM∗
00 is the same for all the satellites in the constellation, it is �rst required

to calculate the positions in which the impulse is applied. LetM ′ be the mean anomaly of the point

of each initial orbit in which the impulse is done, and let M∗ be the mean anomaly of the same

point in the �nal orbit. Taking into account the constraint proposed, we will demonstrate that M ′

andM∗ are independent of each satellite due to the constellation symmetries in the problem. Let x′

be the inertial positions of the initial orbits in the instant of the impulse and let x∗ be the inertial

positions of the �nal orbits in the same instant, then, in the moment where the impulse is made:

x∗ = x′, (14)

then, Eq. (15) is obtained, where R3 and R1 are the rotational matrices, f ′ and f∗ are the true
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anomalies of the initial and the �nal orbits, r∗ = ∥x∗∥ and r′ = ∥x′∥:

R3

(
Ω∗

ij

)
R1 (i)R3 (ω)


r∗ cos f∗

r∗ sin f∗

0


= R3 (Ωij)R1 (i)R3 (ω)


r′ cos f ′

r′ sin f ′

0


; (15)

Eq. (15) can be simpli�ed using the property that both points are the same in the inertial frame

of reference and thus r∗ = r′. Thereby, using Eq. (13) that states:

Ω∗
ij = Ωij −∆ψmax, (16)

Eq. (15) can be written as a function of ∆ψmax:

R1 (i)R3 (ω)


cos f∗

sin f∗

0


= R3 (∆ψmax)R1 (i)R3 (ω)


cos f ′

sin f ′

0


. (17)

Thus, from Eq. (17), it is possible to conclude that if the inclination and argument of perigee

are the same in all the satellites of the constellation in that moment (which is the case), the values

of f∗ and f ′ are independent on the satellite in study, because ∆ψmax is the same for the whole

constellation. Therefore, M∗ and M ′ are also independent on the satellite due to the fact that

they are only related to the true anomalies through the eccentricity, which is the same for all the

constellation.

That way, a relation can be established between the time (t′ij) that each satellite requires to

reach M ′ and the mean anomaly itself (Mij) that is the initial distribution of the constellation:

M ′ =Mij + nijt
′
ij ; (18)

it is possible to calculate t′ij as a function of the rest of parameters:

t′ij =
M ′ −Mij

nij
. (19)

On the other hand, with respect of the �nal orbits, the satellites will appear with this distribution

over time (note that the order of the satellites must be the same in the �nal constellation):

t∗ij = Tij − t′ij , (20)
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where Tij is the orbital period of each satellite. That way, the �nal distribution ofM∗
ij (the positions

of each satellite in the new con�guration), can be obtained by:

M∗
ij =M∗ + nijt

∗
ij ; (21)

and using Eq. (19) and Eq. (20):

M∗
ij =M∗ −M ′ +Mij + nijTij . (22)

Since nijTij = 2π, that term can be eliminated due to the modular nature of the mean anomaly,

simplifying the equation:

M∗
ij =M∗ −M ′ +Mij . (23)

If the expression is expanded using Eq. (9), this �nal relation is obtained:

M∗
ij =M∗ −M ′ +M00 +∆Mij . (24)

Eq. (24) relates the �nal distribution (M∗
ij) with the original spacing of the satellites (∆Mij). As

it can be seen, (M∗−M ′+M00) is common for the whole constellation (it does not depend on each

particular satellite), i.e., the position of the reference satellite coincides for the whole constellation,

and corresponds with the new value of M∗
00:

M∗
00 =M∗ −M ′ +M00. (25)

Hence, it is proved that all the satellites in the constellation share the same value of M∗
00, which

was the goal sought in the orbital maneuvers in order to maintain the lattice of the constellation.

Therefore, it has been proved that the initial and the �nal distribution are equivalent and Eq. (9)

is ful�lled by the new con�guration, so the lattice has been maintained:

M∗
ij =M∗

00 +∆Mij . (26)

Thus, we have demonstrated that the lattice of the constellation has been maintained during the

orbital transfer which means that the initial and �nal constellation distribution are equivalent.
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C. Example of Absolute Station-Keeping maneuvering

Once the maneuvering strategy for absolute station-keeping has been shown in the previous

section, it is time to apply this strategy to the constellation studied in this work. Using Eq. (17),

it is possible to obtain f ′ and f∗, the true anomalies of the initial and the �nal orbits. From those

anomalies, the value of ∆v of each satellite is obtained by calculating the velocities in the initial

and �nal orbits. Let (v∗xij
, v∗yij

, v∗zij ) be the components of the velocity in the �nal orbit and let

(v′xij
, v′yij

, v′zij ) be the components of the velocity in the initial orbit. Then, the ∆v required for

each satellite is:

∆vij =

√(
v∗xij

− v′xij

)2
+
(
v∗yij

− v′yij

)2
+
(
v∗zij − v′zij

)2
. (27)

Since each satellite has a slightly di�erent semi-major axis (see Table 1) due to the lattice-

preserving constellation property obtained, each satellite requires a particular impulse to make the

orbital maneuver as Table 4 shows.

Table 4 Impulses required for each satellite.

Sat. (i,j) a [km] ∆v [km/s] Sat. (i,j) a [km] ∆v [km/s] Sat. (i,j) a [km] ∆v [km/s]

(0, 0) 29600.137 0.1592758 (1, 0) 29599.524 0.1592775 (2, 0) 29598.167 0.1592811

(0, 1) 29598.872 0.1592792 (1, 1) 29599.976 0.1592763 (2, 1) 29599.978 0.1592762

(0, 2) 29597.165 0.1592792 (1, 2) 29598.165 0.1592811 (2, 2) 29599.522 0.1592775

(0, 3) 29597.843 0.1592820 (1, 3) 29597.085 0.1592840 (2, 3) 29597.553 0.1592828

(0, 4) 29599.783 0.1592768 (1, 4) 29598.519 0.1592802 (2, 4) 29597.329 0.1592834

(0, 5) 29599.784 0.1592768 (1, 5) 29600.101 0.1592759 (2, 5) 29599.216 0.1592783

(0, 6) 29597.845 0.1592820 (1, 6) 29599.218 0.1592783 (2, 6) 29600.101 0.1592759

(0, 7) 29597.166 0.1592838 (1, 7) 29597.329 0.1592834 (2, 7) 29598.522 0.1592802

(0, 8) 29598.874 0.1592792 (1, 8) 29597.554 0.1592828 (2, 8) 29597.085 0.1592840

It is also interesting to know which is the time in which these orbital maneuvers have to be done.

In order to do that, it is necessary to compute the deviation that the relative-track experiences each

day as it has been pointed out before. If the deviation of the relative-track of each satellite over

the Earth equator is calculated, a maximum deviation of 5.31 · 10−4 rad a day is obtained for the

constellation. Knowing that the allowed range of the Galileo constellation is about 3 degrees [11],

which is the value of ∆ψmax, and using Eq. (8), we obtain that an orbit correction is required to be

made each 98.5 days.
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Figure 5 shows the initial and �nal distributions of the lattice of the constellation in the ma-

neuvering process. Those distributions are shown at two times: one before the impulses are done,

i.e. the initial con�guration (circles), and the other after, i.e. the �nal con�guration (asterisks).

As it can be seen, the lattice of the constellation has been maintained during the process, obtain-

ing a new lattice-preserving Flower Constellation, equivalent to the original, that present the same

relative-track that the initial con�guration had at t = 0 [s].

Fig. 5 Initial and �nal lattice for the corrected Galileo Flower Constellation before and after

the orbital maneuvers to achieve the absolute station-keeping at time t = 98.5 days.

V. Conclusion

The 2D lattice-preserving Flower Constellations is a novel way to design Flower Constellations

that maintain the initial distribution of satellites and the initial symmetries over time i.e. relative

station-keeping. The main characteristic is that all the satellites in the constellation are perturbed in

a similar way, and consequently, the initial distribution of the satellites (initial lattice), and specially

its symmetries are time-preserving. This constellation design maintains the relative station keeping

without orbital maneuvers for longer periods of time than one year.

This design is expanded with the addition of the absolute station keeping. That way, with

a two-step maneuver design process, the absolute station keeping of a lattice-preserving Flower
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Constellation can be achieved against the e�ects of the J2 geopotential perturbation and without

losing the lattice and the relative station-keeping of the constellation in the process. This is an

important property because it allows the maintenance of the constellation in the relative to Earth

position that a mission could require, despite of being the satellites subjected to certain orbital

perturbations. Moreover, the amount of fuel required to achieve the absolute station-keeping with

this procedure is very low. In the case of the Galileo Constellation, this strategy results in a ∆v

consumption of less than 0.16 km/s per satellite each 3 months, which proves that the absolute

station keeping is feasible in this design.

With this two properties, relative and absolute station-keeping, a complete maintenance of

the constellation is established for the J2 perturbation. Furthermore, if the J3 e�ect and the Sun

perturbation are considered, these techniques are still valid, although the times to perform the

absolute and relative station-keeping maneuvers may change slightly.
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