
January 12, 2016 Journal of Hydraulic Research R4CJPGN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

To appear in the Journal of Hydraulic Research
Vol. 00, No. 00, Month 20XX, 1–20

Research paper

An efficient GPU implementation for a faster simulation of unsteady
bed-load transport

Carmelo Juez, Research Scientist, LIFTEC, CSIC-Universidad de Zaragoza, Spain
Email: carmelo@unizar.es (author for correspondence)

Asier Lacasta, PhD Student, LIFTEC, CSIC-Universidad de Zaragoza, Spain
Email: alacasta@unizar.es

Javier Murillo, Research and Teaching Associate, LIFTEC, CSIC-Universidad de Zaragoza, Spain
Email: Javier.Murillo@unizar.es

Pilar Garcı́a-Navarro (IAHR Member), Full Professor, LIFTEC, CSIC-Universidad de Zaragoza, Spain
Email: pigar@unizar.es

ABSTRACT

Computational tools may help engineers in the assessment of sediment transport during the decision-making pro-
cesses. The main requirements are that the numerical results have to be accurate and simulation models must be
fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation. The
resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation,
the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is
increased and the numerical stability is more restrictive. In order to reduce the computational effort required for
simulating realistic scenarios, the authors have exploited the use of Graphics Processing Units (GPUs) in combina-
tion with non-trivial optimization procedures. The gain in computing cost obtained with the graphic hardware is
compared against single-core (sequential) and multi-core (parallel) CPU implementations in two unsteady cases.

Keywords: Finite Volume, flood simulation, GPU, parallel computing, sediment transport, 2D shallow water

1 Introduction

Traditionally, 1D models based on de St. Venant equations (Burguete & Garcı́a-Navarro, 2001;
Chang, 1982; Liu, Quin, Zhang, & Li, 2015; Petaccia et al., 2013) have been considered in hy-
draulic applications due to their low computational cost and data requirement. However, under
the presence of complex topography or the presence of hydraulic structures, the use of 2D or 3D
hydrodynamic models may be required. 2D depth averaged models are widely accepted for most
practical purposes in complex cases. These models provide predictions for the water depth and
the two-dimensional, depth averaged, flow velocity field at the cost of a fine topographic repre-
sentation as it was pointed out in Caviedes-Voullieme, Morales-Hernandez, Lopez-Marijuan, and
Garcia-Navarro (2014). The bed evolution is frequently computed through the Exner equation. The
two models, hydrodynamic and morphodynamic, can be solved using asynchronous or synchronous
methods (Aricò & Tucciarelli, 2008). Asynchronous techniques are based on the assumption that
morphodynamic time scales are not relevant enough for altering the hydrodynamic variables within
the interval of a computational time step. Therefore, the fluid mass and momentum equations are
solved apart from (decoupled of) the Exner equation. Conversely, synchronous procedures assume
that changes in the morphodynamic and hydrodynamic quantities take place within the same time

Received 07 Month 2015; accepted 01 Month 2016

January 12, 2016 Journal of Hydraulic Research R4CJPGN

scale, i.e. equations for both phases are solved at the same time and with the same time restriction.39

As stated in Juez, Murillo, and Garćıa-Navarro (2014), unsteady flows with a wide range of hydro-40

dynamic and morphodynamic situations can only be properly tackled by means of a synchronous41

technique.42

Focusing on the numerical techniques, the most widely used strategies are: Explicit Finite Volume43

(FV) schemes based on Riemann solvers (Begnudelli, Valiani, & Sanders, 2010; Canelas, Murillo,44

& Ferreira, 2013; Hou, Liang, Zhang, & Hinkelmann, 2015; Juez et al., 2014; Murillo & Garćıa-45

Navarro, 2010a; Siviglia et al., 2013; Soares-Frazao & Zech, 2010; Wu, 2004; Xia, Lin, Falconer,46

& Wang, 2010), or explicit Finite Element (FE) schemes (Villaret, Hervouet, Kopmann, Merkel,47

& Davies, 2013). The use of all these schemes for the extended system involves a higher number48

of algebraic operations and heavier restrictions in the stability criterion than their application to49

the fixed bed shallow water equations. Furthermore, the execution time required by the solver is50

increased when moving to realistic scenarios where large domains with high resolution meshes are51

required. Several authors have proposed strategies for improving their efficiency by relaxing the52

timestep selection (Juez et al., 2014; Serrano, Murillo, & Garćıa-Navarro, 2012) or by enlarging the53

CFL (Courant–Friedrichs–Lewy) condition (Murillo, Garćıa-Navarro, Brufau, & Burguete, 2008).54

Nevertheless, in all cases the gain in computing cost was moderate. In the search for reducing55

the simulation time, other authors have explored the possibility of using implicit (Bilaceri, Beux,56

Elmahi, Guillard, & Salvetti, 2012) or semi-implicit (Garegnani, Rosatti, & Bonaventura, 2013)57

methods which allow for larger time steps when comparing with explicit ones. However, the main58

problem is the convergence speed of the linear solver which can become the bottleneck of the59

simulation.60

A reliable way to reduce significantly the computational effort has come in the last years through61

the implementation of parallelization techniques such as Multiprocessing (OpenMP) and Message62

Passing Interface (MPI), which allow to run simulations on cluster machines (Lacasta, Garćıa-63

Navarro, Burguete, & Murillo, 2013). Their drawback is the associated hardware cost and energy64

processor requirements which usually imply a limitation on their practical usage. Conversely, hard-65

ware accelerators, such as Graphics Processing Units (also called GPUs), emerge as a low cost66

strategy since they can be used on simple personal computers. It is important to emphasize that,67

while the computing capability of these accelerators reduces the computational effort required for68

large simulations, their optimal programming is not straightforward. The present paper is devoted69

to explain the details that should be payed attention to make the best of a GPU implementation70

in a sediment transport simulation model.71

Previous works have developed strategies for implementing the pure shallow water equations72

on GPU (Kalyanapu, Siddharth, Pardyjak, Judi, & Burian, 2011; Vacondio, Dal Pal, & Mignosa,73

2014). In this work, and following Lacasta, Morales-Hernández, Murillo, and Garćıa-Navarro (2014),74

an efficient GPU implementation for the hydrodynamic and also for the morphodynamic model75

is provided assuming unstructured meshes. The GPU techniques described in this paper have76

been incorporated into RiverFlow2D, a general purpose two-dimensional free-surface flow model77

as described in Garcia et al. (2015).78

This work is organized as follows. In section 2 the mathematical model and the numerical scheme79

are described. Section 3 is devoted to outline the GPU implementation. Section 4 shows the ca-80

pabilities of the tool in terms of results and speedup. Finally, in section 5, the authors draw the81

conclusions and propose future work.82

2

January 12, 2016 Journal of Hydraulic Research R4CJPGN

2 Mathematical model & Numerical scheme83

2.1 Mathematical model84

The mathematical model is based on the 2D shallow water equations, SWE, and the 2D Exner85

equation. The SWE are derived from the Navier-Stokes equations by integrating the continuity86

and momentum equations over depth (Murillo & Garćıa-Navarro, 2010b). The resulting 2D system87

is written in conservative form as follows:88

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= Tτ +Tb (1)

where the vector of conserved variables is:89

U = (h, qx, qy)
T (2)

with h representing water depth, qx = huis the unit discharge in the x direction and qy = hv is the90

unit discharge in the y direction. The fluxes are expressed in terms of (u, v), the depth averaged91

components of the velocity field, as:92

F =

(
hu, hu2 +

1

2
gh2, huv

)T

G =

(
hv, huv, hv2 +

1

2
gh2
)T

(3)

The source terms Tτ and Tb include, respectively, the information about the friction exerted93

over the bed, evaluated through the Manning formula, and the bed slopes:94

Tτ =

(
0,−gh

n2u
√
u2 + v2

h4/3
,−gh

n2v
√
u2 + v2

h4/3

)T

Tb =

(
0, −gh

∂z

∂x
,−gh

∂z

∂y

)T

(4)

with n the Manning roughness parameter and z the bed elevation.95

On the other hand, the bed evolution is modeled through the Exner equation, which is basically96

a movable bed continuity equation where the bed level time variations are due to the solid fluxes97

which cross the control volume. In this work the authors only focus on highly concentrated bed-load98

phenomena and, consequently, the 2D Exner equation is:99

∂z

∂t
+ ξ

∂qs,x
∂x

+ ξ
∂qs,y
∂y

= 0 (5)

where ξ = 1
1−p , p is the material porosity and qs,x, qs,y are the solid fluxes. They are computed100

as a function of excess bed shear stress with respect to the critical value and taking into account101

the bed shear stress direction. This bedload transport is often expressed through the following102

dimensionless parameter:103

Φ =
|qs|√

g(s− 1)d3m
(6)

where s = ρs/ρw is the ratio of solid material (ρs) over water (ρw) densities, and dm is the grain104

median diameter. According to the numerical assessment performed in Juez, Murillo, and Garćıa-105

Navarro (2013) the empirical Smart (1984) formula is chosen for computing the dimensionless106

3

January 12, 2016 Journal of Hydraulic Research R4CJPGN

bedload discharge as follows:107

Φ = 4 (d90/d30)
0.2 F S0.1θ1/2(θ − θSc) (7)

where S is the velocity vector projected over the bed slope vector, as in Juez et al. (2013), for108

distinguishing between positive and negative sloping beds. On the other hand d90 and d30 are grain109

diameter values for which 90% and 30% of the weight of a nonuniform sample is finer respectively.110

F is the Froude number, θ is the dimensionless shear stress and θSc is the critical shear stress111

according to Smart (1984). This formula is only applied when the shear stress is larger than the112

critical shear stress. Otherwise there is no sediment transport.113

2.2 Numerical scheme114

Hydrodynamic numerical scheme115

System in (1) is integrated in a grid cell Ωi and Gauss theorem is applied:116

∂

∂t

∫

Ωi

UdΩ +

∮

∂Ωi

Endl =

∫

Ωi

(Tτ +Tb)dΩ (8)

where En = Fnx+Gny is the flux normal to a direction given by the outward pointing unit vector117

n. Our formulation considers a piecewise representation per cell of the conserved variables, with118

Ai the cell area, so that:119

Un
i =

1

Ai

∫

Ωi

U(x, y, tn)dΩ (9)

Using additionally that the second and the third integral in (8) can be explicitly expressed as a120

sum over the cell edges, (8) is written as:121

Ai
∂Ui

∂t
+

NE∑

k=1

(En)klk =

NE∑

k=1

Tτnlk +

NE∑

k=1

Tbnlk (10)

where NE is the number of edges in cell i and lk is the edge length. On the other hand, Tbn and122

Tτn are suitable integrals of the bed slope and friction source terms (Murillo & Garćıa-Navarro,123

2010a) projected over the outward pointing unit vector.124

The numerical scheme is constructed by defining an approximate Jacobian matrix J̃ at each k125

edge between neighboring cells defined through the normal flux En so that:126

δEn,k = J̃n,kδUk (11)

with δEn,k = (Ej − Ei) · nk, δUk = Uj −Ui, and Ui and Uj the values at cells i and j sharing127

edge k.128

From this approximate Jacobian matrix a set of three real eigenvalues λ̃m
k and eigenvectors ẽmk129

are obtained. The vector of conserved variables, U, is then split onto the eigenvectors basis (Murillo130

& Garćıa-Navarro, 2010a) as:131

δUk =

3∑

m=1

(α̃ẽ)mk (12)

4

January 12, 2016 Journal of Hydraulic Research R4CJPGN

The source terms are also projected onto the eigenvectors basis to guarantee the exact equilibrium132

between fluxes and source terms (Murillo & Garćıa-Navarro, 2010a):133

(Tbn +Tτn)k =

3∑

m=1

(
β̃ẽ
)m
k

(13)

With all this previous information the volume integral in the cell at time tn+1 is expressed as:134

Un+1
i = Un

i −
NE∑

k=1

3∑

m=1

(λ̃−α̃− β̃−)mk ẽmk lk
∆t

Ai
(14)

The superscript minus in (14) implies that only the incoming waves are considered for updating135

the flow variables of each cell, defining λ̃− = 1
2

(
λ̃−

∣∣∣λ̃
∣∣∣
)
. Further, special care is considered136

when calculating wet/dry fronts. The strategy proposed is based on enforcing positive values of137

interface discrete water depths coming from a detailed study of the Riemann problem (Murillo &138

Garćıa-Navarro, 2010b; Murillo, Garćıa-Navarro, & Burguete, 2008). When they become negative,139

the numerical values of the friction and bed slope source terms is reduced instead of diminishing140

the time step.141

142

Morphodynamic numerical scheme143

Equation (5) is also integrated in a grid cell Ωi. Using Gauss theorem:144

∂

∂t

∫

Ωi

zdΩ +

∮

∂Ωi

qsndl = 0 (15)

where qsn = (qs,xnx + qs,yny).145

Assuming a piecewise representation of the variable z and that the second integral can be written146

as the sum of fluxes across the cell edges, the bed level is updated as:147

zn+1
i = zni −

NE∑

k=1

ξq∗sn,k
∆t lk
Ai

(16)

where:148

q∗sn,k =

{
qsn,i if λ̃s > 0

qsn,j if λ̃s < 0
(17)

where qsn,i and qsn,j are the bed load discharge computed at the neighboring cells i, j, and λ̃s is149

the numerical bed celerity estimated as:150

λ̃s =
δqsn,k
δzk

(18)

with δqsn,k = qsn,j − qsn,i and δ(zk) = zj − zi.151

152

5

January 12, 2016 Journal of Hydraulic Research R4CJPGN

Stability criteria153

As it was stated in Leveque (2002) the explicitly updated conserved variables are defined through154

the fluxes obtained within each cell, so, the computational time step has to be chosen small enough155

for ensuring a stability region. Traditionally, the numerical stability has been controlled through a156

dimensionless parameter, CFL,157

∆t = CFL
min(χ)

max |λ̃m|
with CFL ≤ 0.5 (19)

where χ is a relevant distance between neighboring cells (Murillo & Garćıa-Navarro, 2010b) and158

λ̃m are the hydrodynamic celerities. The stability criterion is revisited for including a discrete159

estimation of the bed celerity, λ̃s, as in Juez et al. (2014),160

∆t = CFL
min(χ)

max |λ̃m, λ̃s|
with CFL ≤ 0.5 (20)

With this numerical strategy, the stability condition takes into consideration the most restric-161

tive numerical wave speed coming from the hydrodynamical and morphodynamical solvers. The162

resulting global time step is used for updating the whole set of conserved hydrodynamic and mor-163

phological variables in the system of equations.164

3 GPU implementation165

Due to the large computational effort required to solve this kind of problems, a GPU based solution166

is presented. In particular, the proposed numerical scheme has been implemented using the NVIDIA167

CUDA Toolkit.168

3.1 NVIDIA CUDA & GPU Architecture169

The GPU devices were originally designed to perform operations related to computer graphics.170

Those operations are usually run on a mesh-based structure. With the improvement of the GPUs171

technology a more general approach to exploit their capabilities has been designed. This approach is172

commonly known as GPGPU (General Purpose computing on Graphics Processing Units) and it is173

the natural extension of the graphical oriented instruction set architecture (ISA) to a more generic174

range of applicability. It allows users to write code that can be run on the GPU hardware using high175

level language. On the other hand, as double-precision floating-point units are sometimes necessary176

in computing operations, this feature opens a new opportunity to increase the performance of177

numerical implementations that require that precision.178

There are two main manufacturers in the field of graphical accelerators: AMD and NVIDIA. In179

the case of NVIDIA, their contribution to the improvement of the GPGPU paradigm has resulted180

in the creation of the Compute Unified Device Architecture (better known as CUDA) toolkit181

(NVIDIA Corporation, 2007, 2014). CUDA toolkit is a parallel framework for graphic processing182

which implements a set of instructions for their use in parallel codes in C. It has the disadvantage of183

being designed only for NVIDIA GPUs. Other more general implementations have been developed184

through open-source platforms such as OpenCL (Munshi et al., 2009). OpenCL has the main185

advantage of being hardware-independent. It is designed to enable the same implementation on186

a variety of computer architectures from CPU, to GPU or FPGA. Hence, the same code can187

be executed on both NVIDIA and AMD GPUs, which provides a high portability character to188

those elements developed under that framework. Nevertheless, some comparisons such as the one189

6

January 12, 2016 Journal of Hydraulic Research R4CJPGN

proposed in Danalis et al. (2010) have demonstrated that CUDA is generally more efficient than190

OpenCL when using NVIDIA GPUs. Special mention requires the work described in Gandham,191

Medina, and Warburton (2014) where the implementation of a discontinuous Galerkin method192

to solve the Shallow Water equations is analyzed using CUDA and OpenCL, reaching the same193

conclusion as in Danalis et al. (2010). For this reason this work is based on the CUDA toolkit.194

3.2 Scheme of the implementation195

GPUs were originally oriented to perform arithmetical operations on vector-based information. Be-196

cause of this design, the numerical scheme presented in this work is suitable for being implemented197

on GPU.198

Unlike the conventional CPU implementations, the GPU solution must be designed taking into199

account the fact that the GPU is an independent device with its own RAM memory. This means200

that it is necessary to transfer those elements that may be used by the GPU from the CPU and vice201

versa. Although the last CUDA version makes these steps transparent to the developer by means202

of their unified memory (NVIDIA Corporation, 2014), the most common way of performing these203

operations is by means of explicit memory copy operations in the code. In any case, if the algorithm204

requires a large number of transfers, the performance of the GPU solution may be dramatically205

reduced due to this separate memory space.206

In Fig. 1 the sequence diagram of the simulator is displayed. Except for the preprocess stage207

made on CPU and then its transfer to the GPU, the rest of the process is controlled by the CPU208

but computed on the GPU. In other words, the execution flow is controlled by the CPU and only209

the current time t is required by the CPU to know when the calculation has reached the target210

simulation time. To obtain that, it is necessary to transfer that information to the GPU at each211

time-step. The cost of this transfer is considerably smaller than the cost of each kernel, and it212

does not introduce important overheads. Moreover, in order to dump intermediate states of the213

simulation, the CPU may require the transfer of variables from the GPU. This transfer is heavier214

than the one related to the current time because of the number of elements to be copied. While215

the transfer of t is sizeof(double) bytes long, the whole domain has a total length of Ncells×216

sizeof(double) bytes. Memory transfer and disk writing may occupy less than 1% of the time217

consumed by the whole time step so it is negligible in practical situations that require a large218

number of time steps to complete the whole simulation.219

The implementation of the numerical kernels has been made following Lacasta, Juez, Murillo,220

and Garćıa-Navarro (2015); Lacasta et al. (2014), where a deep analysis of these kind of solvers221

with unstructured meshes is provided. Briefly, the strategies proposed for obtaining an efficient222

implementation on GPU with unstructured meshes are the following:223

• The variables as well as the rest of the information related to the wall and cell fluxes are224

mapped using Structure of Arrays. Hence, each variable is defined on a vector of size Ncells225

or Nedges. It provides a useful manner to access each element by each thread easily.226

• The computational mesh is reordered during the preprocessing to provide an ordered pattern227

to access the cells as well as the edges. This is made by reordering the cell numbering, by228

using the RCM (Reverse Cuthill-McKee) technique and then ordering the edges. (Lacasta et229

al., 2014).230

These two strategies contribute to increase the coalescence of memory accesses, which makes the231

GPU implementation between 15% and 30% more efficient (Lacasta et al., 2015).232

7

January 12, 2016 Journal of Hydraulic Research R4CJPGN

Figure 1 UML Sequence Diagram of the simulation process. Dark gray elements are memory inter-
action with the CPU and light gray elements are related to computing processes on the GPU.

3.3 Details of the implementation233

As displayed in Fig. 1, the numerical scheme as in (14) may be decomposed in three main oper-234

ations: the calculation of fluxes looping by cell edges, the election of the minimum time-step ∆t,235

dynamically chosen to control the global stability, and the updating of the cells using the previous236

information. Using the CUDA toolkit, all the processed elements can be distributed by threads and237

blocks (of threads). Each thread uses its own thread index to identify the element to be processed.238

Then, the GPU launches several execution threads at the same time so that the calculations are239

performed in parallel.240

As the GPU is well designed to work efficiently with ordered information, ordering techniques241

to reduce the distance in the memory address space of variables for cells i and j may produce a242

desirable effect. There are two main options to store the information: arrays of structures (AoS) or243

structures of arrays (SoA). The conserved variables {h, qx, qy} can be stored sequentially by cells244

(h0, q0x, q
0
y , h

1, q1x, q
1
y ,, h

Ncells , qNcells

x , qNcells

y) generating an array of structures (AoS) or they can245

be stored grouped by variables as (h0, h1, ..., hNcells , q0x, q
1
x, ..., q

Ncells

x , q0y , q
1
y , ..., q

Ncells

y) forming three246

arrays with Ncells components each one (i.e. a structure of three arrays). Since all the threads247

within a block execute the same instruction at a certain moment, all of them may need to read248

the same variable. Therefore, a coalesced SoA improves spatial locality for these memory accesses249

(Lacasta et al., 2014).250

In order to make feasible the calculations by edges, in the case of the fluxes computation, and by251

cells, in the update cells function, a strategy to access each element efficiently is required. In the252

case of the edge-based computations, each thread is devoted to calculate the numerical fluxes for253

each edge using differences across the edge of neighboring cells (i, j). Since each edge requires to254

know the value of the variables for each cell i and j, an auxiliary identifier vector is created. In Fig.255

8

January 12, 2016 Journal of Hydraulic Research R4CJPGN

2 it is possible to see how this vector works. For instance, based on the thread index n, water depth256

for the cell i of the global index edge n is obtained by its correspondent index vIdxEdgeForCelli(n)257

and analogously for cell j with another auxiliary vector using it as vIdxEdgeForCellj(n). Here is258

where the optimized manner of distributing the information may improve these memory accesses.259

Threads

vIdxEdgeForCelli

vWaterDepth vWaterDepthFluxes

Figure 2 Sketch of the loading operations for one conserved variable (water depth h) in the fluxes
calculation procedure (left) and loading operation of the fluxes calculated in the previous function
for the update cells function (right)

Once the fluxes are calculated, they must be stored in another vector that will be read to update260

the cells. The way these elements are saved is using a vector (vIdxEdgeForLocalEdge(n,{0,1})) of261

size 2Nedges that relates the global edge indexing and the local index (i.e. 1, 2 and 3 for each cell i262

or j). This vector contains the index that relates the local indexing for the cell i of the edge n in263

the position 2n and the equivalent for the cell j in the position 2n+ 1 (see Fig. 3).264

vWaterDepth

Threads

vIdxEdgeForLocalEdge

vWaterDepthFluxes

Figure 3 Sketch of the store operations for the fluxes related to the water depth variable in the
fluxes calculation procedure (left) and storing operation for the update cells function (right)

When using the previous ideas, the updating procedure is simpler. Since it is necessary to inte-265

grate the inlet fluxes across the edges, it is required to add those correspondences to edge 1, 2 and266

3 by cells. As they have been stored sequentially, the access is performed consecutively given a cell267

identifier (i.e. given a thread, see Fig. 2). As the kernel is launched to perform the operations by268

cells (i.e. thread i corresponds to cell i), the storage is straightforward as the thread i will store269

data in the position i (see Fig. 3).270

The last operation that is done in the GPU is the selection of the global time step. As the271

CFL restriction is governed by the celerities, λ̃m, λ̃s, at each edge in the global indexing n, the272

wall flux calculation step stores the local restriction for the time-step in the position n of a vector273

vDt. The global ∆t is the minimum among them. To obtain that, a min-reduction primitive, as274

implemented in the CUBLAS library included in CUDA (NVIDIA Corporation, 2014), has been275

used. The operation cublasidamin() computes this reduction efficiently in the GPU and it returns276

the identifier of the minimum value within a vector (see Fig. 4).277

vDt 2.23 0.51 0.23 0.41 0.26 0.56 0.90 0.24 0.33

n
cublasIdaMin(...,vDt,...)

n-1 n+1

n

Figure 4 Min-reduction using CUBLAS to obtain the minimum ∆t stored by edges

This last operation is included in the edge-loop of the CPU code and it is implemented using the278

common reduction OpenMP directive. It is important to take into account that it also represents279

a bottleneck in the CPU code.280

9

January 12, 2016 Journal of Hydraulic Research R4CJPGN

4 Results281

In this section, the solver implemented on the GPU is applied to two test cases in order to prove282

that the numerical prediction retains the accuracy of the original CPU solver, necessary to be283

reliable but also to measure the required computational speed in order to be efficient. Test 1 is284

based on a laboratory test case already considered by the authors for testing the numerical scheme285

in CPU (Juez et al., 2014). It allows to explore the accuracy and also the relative performance286

between a CPU and a GPU version. Test 2 shows the computational results for a real dam break287

event which took place in the past. Thanks to the GPU capabilities, it is affordable to design288

several possibilities in the dike breaching using desktop computing resources.289

In both cases, unstructured meshes have been used with a dynamically computed time-step based290

on a CFL=0.5.291

GPU implementation has been analyzed against single-core and multi-core CPU implementa-292

tions. The computational time has been measured for the main loop of the numerical engine, that293

is, the t < tmax loop displayed in Fig. 1. It includes not only the main computation but also those294

transfers between CPU and GPU required for dumping purposes as well as time-step accounting.295

Obviously, these operations only affect to the GPU implementation. The performance of the test296

cases has been measured through the speedup ratio.297

Both the sequential and the parallel implementations have been tested on a Intel Core i7 3770K298

CPU while the GPU code has been run on a NVIDIA Titan Black GPU. It is important to remark299

that CPU implementation has not been fully optimized exploiting advanced capabilities such as300

vectorizations but multiprocessing has been included by means of OpenMP.301

4.1 2D laboratory dam break302

This experiment was carried out at the laboratory of the Civil and Environmental Engineering303

Department of the Université Catholique de Louvain (UCL) (Goutière, Soares-Frazao, & Zech,304

2011; Palumbo, Soares-Frazao, Goutiere, Pianese, & Zech, 2008). It consists of a straight channel305

with a sudden enlargement. A sketch of the experimental set up is shown in Fig. 5. The bed material306

was uniform sand, gray area in Fig. 5, with the following properties: median diameter d50 = 1.65307

mm, density ρs = 2630 kgm−3, friction angle ϕ = 15o, negligible cohesion, porosity p = 0.42 and308

a Manning roughness factor n = 0.0185 sm−1/3.309

z

y

x

0.25 m

0.1 m

2 m1 m3 m
x

0.5 m

0.25 m

Gate

U1❧U2❧

S1 S2

Figure 5 Sketch of the experimental flume in test 1: side view (upper) and plan view (lower)

This experiment was performed for simulating a dam break over erodible bed. For that purpose,310

10

January 12, 2016 Journal of Hydraulic Research R4CJPGN

Table 1 Detail of execution time and speed-up for the compared implementations

1 Core 4 Cores GPU
t t sup t Sup

6526.81 s 2331.52 s 2.95 115 s 56.75

in the middle of the straight channel there was a gate with an uniform water depth on the left.311

The gate was opened to release the water and due to the presence of the abrupt expansion a local312

erosion was generated and the material eroded by the flow was deposited in the vicinity of the wall313

area with the form of a bar. Later, the bar migrated and the erosion area increased its depth. This314

natural evolution is observed in Fig. 6, where the computational results for the erosion (-) and315

deposition (+) rates are plotted in time. The computational domain was discretized with 98000316

cells. Despite the complexity of this test case, including wet/dry conditions, moving shocks and317

important erosion/deposition rates, no numerical instabilities are observed thanks to the augmented318

stability criterion.319

Figure 6 Bed surface variation at times t=1, 2, 4, 16 s

The numerical predictions are compared with the experimental data. Figure 7 displays the com-320

parison between the water level measured and the numerical solution at two locations, U1 (x= 4.2321

m, y= 0.125 m) and U2 (x= 4.45 m, y= 0.125 m). Additionally, the bed level is also compared322

at the end of the experiment in two sections, S1 (x= 4.4 m) and S2 (x= 4.5 m) in Fig. 8. Both,323

water and bed numerical estimations, are able to track the tendency of the experiment ensuring a324

correct comparison. Main differences in cross sections are due to the fact that the mathematical325

model considered in this work is depth averaged and consequently, the vertical flow accelerations326

are neglected. Therefore a mismatch in the results in the area close to the left wall is expected.327

It is worth noting here that the quality of the numerical results is the same as that offered by328

the CPU version of the method already published elsewhere (Juez et al., 2014). Discussion of the329

limitations of the underlying mathematical model or numerical method is out of the scope of the330

present study.331

Table 1 collects the information concerning the computational effort using the CPU (1 and 4332

Cores) and the GPU. As it can be observed the speedup with the GPU is roughly 57 meaning that333

this implementation is 57 times faster than the 1 core CPU model.334

11

January 12, 2016 Journal of Hydraulic Research R4CJPGN

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

 0 2 4 6 8 10

W
at

er
 le

ve
l (

m
)

Time (s)

Probe U2

Experimental
Computed

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

 0 2 4 6 8 10

W
at

er
 le

ve
l (

m
)

Time (s)

Probe U4

Experimental
Computed

Figure 7 Temporal comparison between experimental and computed results for the water level at
probes U1 and U2

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

 0 0.1 0.2 0.3 0.4 0.5

B
ed

 le
ve

l (
m

)

Cross coordinate (m)

Section S7

Experimental
Computed

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

 0 0.1 0.2 0.3 0.4 0.5

B
ed

 le
ve

l (
m

)

Cross coordinate (m)

Section S9

Experimental
Computed

Figure 8 Comparison of the experimental and computed final bed surface at cross sections S1 and
S2

4.2 Tous dam break335

In this test the authors address the possibility of using large spatial domains, that require a high336

number of cells, for flood warning/hazard prediction. For this purpose the dam failure of Tous dam337

is proposed (Alcrudo & Mulet, 2007).338

Tous dam is the last flood control structure of the Júcar River basin in the central part of the339

Mediterranean coast of Spain. During the 20th and the 21st October 1982 a particular meteorolog-340

ical condition led to extremely heavy rainfall. As a result the Júcar River basin suffered flooding341

all along and the Tous Dam failed with devastating effects downstream. The first affected town342

was Sumacárcel, about 5 km downstream of Tous Dam, lying at the toe of a hill on the right343

bank of Júcar river (Alcrudo & Mulet, 2007). The terrain is moderately mountainous and most of344

the buildings lie on a slope that partially protected them from the flood. The ancient part of the345

village, however, is located closer to the river course and was completely flooded, with high water346

marks reaching between 6 m and 7 m.347

The DTM model used in this work was generated by CEDEX in 1998 Alcrudo and Mulet (2007).348

From this information a numerical mesh with 3 · 105 cells has been defined. This computational349

domain covers most of the original DTM, starting just after the dam location and finishing ap-350

proximately 1 km downstream of Sumacárcel. The mesh has been refined in the dam area and in351

the village area (Fig. 9) for providing an adequate resolution for the hydraulic structures and the352

12

January 12, 2016 Journal of Hydraulic Research R4CJPGN

buildings. It is stressed that the decrease in the cell size leads to an increment in the simulation353

time since the stability criterion is more restrictive.354

Urban area

J
ú
car river

Flooding area

Figure 9 Detail of the simulation mesh at the village area nearby

The cause of the dam break was overtopping/dam-breaching, due to intense rainfall, and its355

later erosion and collapse. The height of the dam crest was 98.5 m and before reaching this level356

the discharge facilities of the dam were opened in order to evacuate the huge amount of incoming357

water. To reproduce this situation, the authors have considered the water elevation records together358

with the reservoir rating curves for simulating the spillway procedure, i.e. a water discharge of 3568359

m3s−1 is considered for obtaining the initial condition. Once the crest level is reached, a dam breach360

starts and it causes the erosion and collapse process. Hence, an outflow discharge emerging from361

the dam creates the traveling wave which is the responsible for the flooding event, i.e. it is the key362

information for the prediction of this event. In previous studies (Alcrudo & Mulet, 2007), since363

the morphodynamic change of the dam was not modeled, a tuning synthetic discharge, based on364

several assumptions, was estimated. Finally, at the outlet boundary, downstream of the domain,365

the flow was let to exit freely without imposing any conditions, as no information was provided.366

On the other hand, following Alcrudo and Mulet (2007), a Manning coefficient of 0.030 sm−1/3
367

has been set for the whole river bed reach and, additionally, an increased roughness coefficient of368

0.1 sm−1/3 has been defined in two zones close to the village with dense orange trees. The mean369

sediment diameter involved in the erosion process has been set to 0.02 m. As the ground in the370

town area was fully paved with concrete the flood did not erode it. The real time simulated has371

been 11.1 hours from the beginning of the dam overtopping.372

In Fig. 10 the breach evolution of the dam is plotted at several times. The flow overtopping373

causes the inception of the erosion at the front edge of the dam crest. As the breach increases in374

size the flow is accelerated and a severe erosion occurs. Consequently, the water discharge in the375

breach also augments. The earthfill material is grabbed by the flow and it is settled downstream376

the dam creating a sediment tongue which migrates towards the riverbed. At the end of the event377

the morphology of the dam area has changed completely and an important fraction of the dam378

has been completely removed, which is in agreement with the photos taken after the event and379

provided in Alcrudo and Mulet (2007).380

The evolution of the computed flooding can be seen in full plan view in Fig. 11 at times t =0,381

1.3, 2.7 and 11.1 hours considering the time t=0 when the water surface level inside the reservoir382

has reached the dam crest and the overtopping is about to start. The flow advances towards the383

village filling the riverbed capacity and, consequently, inundating the floodplain areas nearby.384

Thanks to the work described in Alcrudo and Mulet (2007), there are field data for the estimation385

of: (i) the maximum and minimum levels reached by the flood wave or (ii) a unique level for the386

water surface at different locations within the town, for evaluating the quality of the simulations.387

This estimation was performed considering a range of values within which it was completely ensured388

that the water reached that level. The location of the gauging points is shown in Fig. 12. Figure389

13 displays the water depth recorded at several locations in Sumacárcel village together with the390

numerical predictions. There is a good agreement between the field data and the estimated depth,391

13

January 12, 2016 Journal of Hydraulic Research R4CJPGN

Figure 10 Initial condition (Top-Left) and evolution of the erosion process at t=1.3 hours (Top-
Right), t=2.7 hours (Bottom-left) and at final stage (t=11.1 hours) (Bottom-right)

since most of the probes reach the range, between the maximum and minimum, estimated during392

the event. This agreement is attributed to the adequate simulation of the erosion process at the393

Tous dam.394

It is also important to highlight that, by coupling the hydrodynamic and the breach erosion395

phenomena, less assumptions are required. This may be relevant in practical applications but is396

costly in computational terms. For instance, in Alcrudo and Mulet (2007) a synthetic hydrograph397

based on a detailed analysis of how the dam failed was proposed. However, thanks to the GPU398

capabilities it is possible to couple the hydrodynamics and the dam erosion for obtaining directly399

the hydrograph which is the responsible for the later flooding event. In Fig. 14 both hydrographs,400

the synthetic and the computed one in the dam-breach, are plotted. It is remarkable that the401

peak discharge observed by means of the simulation, Qpeak= 14568.09 m3s−1, is very close to the402

peak discharge estimated in Alcrudo and Mulet (2007), where Qpeak= 15000 m3s−1. Conversely,403

the computed discharge is less sustained in time. This difference is probably because the inlet404

tributaries of the reservoir have been neglected. Since this effect has not been taken into account,405

in Alcrudo and Mulet (2007) there is not a fair estimation of the magnitude of these inlet tributaries,406

only the water contained in the reservoir at the beginning of the event is allowed to outflow in the407

simulation.408

The evolution of the dam-breach is also plotted in Fig. 14 using the same cross section used to409

evaluate the discharge. It can be observed that most of the process has occurred within the first410

1500 s, i.e. during the peak discharge. After t=1500 s changes in bed morphology are less violent.411

The execution time is summarized in Table 2. In this case, only the parallel CPU version has412

been benchmarked due to the huge execution time required for the single-core CPU version. The413

GPU reduces the simulation effort 25 times compared with the 4-Core version allowing an efficient414

simulation and accurate prediction. It is important to take into account that, in this case, the415

improvement has been increased compared against the previous cases where the GPU accelerates416

the computation of the OpenMP solution in a 20 factor. This effect has been previously reported417

in hydrodynamic simulation in Lacasta et al. (2014) and it is due to the large number of elements418

included in the calculation. Thanks to the GPU capabilities it has been affordable to locally refine419

the mesh in the breach area and provide an adequate design for the initial breach which provides420

14

January 12, 2016 Journal of Hydraulic Research R4CJPGN

0.0 24.0

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Water Depth (m)

Figure 11 Water depth evolution along the valley at times t=0, 1.3, 2.7, 11.1 hours from top to
bottom

Figure 12 Detail of the location of the gauging points

the dam-breaching discharge. Therefore, several possibilities can be addressed in the same day421

which is a noticeable advance when comparing with the computational effort based on CPU.422

15

January 12, 2016 Journal of Hydraulic Research R4CJPGN

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

W
at

er
 D

ep
th

 (
m

)

Time (h)

Simulation
Estimated peak range

Figure 13 Water depth numerical predictions at several locations in Sumacárcel village and esti-
mated range provided in Alcrudo and Mulet (2007) for gauges 1, 2, 3, 4, 6, 7, 11, 12 and 15 (from
top to bottom and from left to right), see Fig. 12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

-5 0 5 10 15

D
is

ch
ar

ge
 (

m
3 /s

)

Time (h)

Simulated
Estimated

 60

 65

 70

 75

 80

 85

 90

 95

 100

 140 160 180 200 220 240 260 280 300

H
ei

gh
t (

m
)

Cross coordinate (m)

Initial
t=(0h,0.41h)

t=0.41 h
t=11 h

Figure 14 (Left) Comparison of the hydrograph generated due to the dam failure using the presented
implementation against the hydrograph estimated in Alcrudo and Mulet (2007). Simulated window
is highlighted considering the time interval between t = 0 and t = 11 hours. (Right) Evolution of
the dam-breach from t = 0 to t = 0.41 hours (peak discharge) each 0.07 hour and t = 11.0 hours
(final state)

5 Conclusions423

The new opportunities given by the GPU implementation have been described in this work for424

the analysis of several situations where the morphodynamic effects are relevant. For this purpose,425

the shallow water equations in combination with the Exner equation have been discretized in426

Finite Volumes and the numerical schemes implemented to run on a GPU card. This model allows427

to properly represent the propagation of bed and surface waves over realistic bathymetries in428

affordable computation time even when considering large domains and retaining a high level of429

accuracy.430

For maximizing the speedup performance, several strategies have been proposed in order to431

improve the implementation of the numerical scheme in these hardware devices: the use of Structure432

16

January 12, 2016 Journal of Hydraulic Research R4CJPGN

Table 2 Detail of execution time and speed-up for the compared implementations

4 Cores GPU
t t Sup

207 h 7 min 8h 7 min 25.25

of Arrays (SoA) instead of Arrays of Structures (AoS), the cells reordering and the walls reordering.433

These optimization techniques allow a faster memory access reducing the execution time.434

The speedups have been computed involving the performance of single-core and multi-core pro-435

cessors. The GPU implementation provides a peak speedup of 50. This saving of time allows to436

address large-number-of-cells, large-time and large-space scenarios, strengthening preventive mea-437

sures and enhancing response capacities.438

As future work, the authors will focus on the implementation of these methods on a cluster of439

GPUs. This kind of distributed computing will allow to compute morphodynamic problems in a440

larger scale. This opens the possibility of facing the sediment transport analysis in a particular441

location for several years or the geomorphological changes in domains of a regional-size.442

Acknowledgments443

The authors would like to thank the anonymous reviewers and the editor for their valuable com-444

ments and suggestions to improve the quality of the paper.445

Funding446

This work was partially supported and funded by the Spanish Ministry of Science and Technology447

under research projects CGL2011-28590, BIA2011-30192-C02-01 and by Diputación General de448

Aragón, DGA, through FEDER funds.449

17

January 12, 2016 Journal of Hydraulic Research R4CJPGN

Notation450

x = spatial coordinate in the longitudinal direction (m)
y = spatial coordinate in the traversal direction (m)
z = bed level (m)
t = time (s)
h = water depth (m)
u = depth averaged velocity in x coordinate (ms−1)
v = depth averaged velocity in y coordinate (ms−1)
qx = unit water discharge in x coordinate (m2s−1)
qy = unit water discharge in y coordinate (m2s−1)
qs,x = unit sediment discharge in x coordinate (m2s−1)
qs,y = unit sediment discharge in y coordinate (m2s−1)
g = gravity acceleration (ms−2)

n = Manning coefficient (sm−1/3)
p = sediment porosity (–)
s = ratio between sediment and water densities (–)
dm = grain median diameter (m)
d30 = representative grain diameter for 30% of the weight of the sample (m)
d90 = representative grain diameter for 90% of the weight of the sample (m)
S = slope in the Smart formula (–)
Ai = cell area (m2)
nx = normal component in x coordinate
ny = normal component in y coordinate
F = Froude number (–)
ρw = water density (kgm−3)
ρs = sediment density (kgm−3)
θ = dimensionless shear stress (–)
θSc = dimensionless Shields parameter according Smart (–)
∆t = timestep (s)

451

References452

Alcrudo, F., & Mulet, J. (2007). Description of the Tous dam break case study (Spain). Journal453

of Hydraulic Research, 45(Extra Issue), 45–57.454

Aricò, C., & Tucciarelli, T. (2008). Diffusive modeling of aggradation and degradation in artificial455

channels. Journal of Hydraulic Engineering , 134(8), 1079–1088.456

Begnudelli, L., Valiani, A., & Sanders, B. F. (2010). A balanced treatment of secondary currents,457

turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model458

for channel bends. Advances in Water Resources, 33 , 17–33.459

Bilaceri, M., Beux, F., Elmahi, L., Guillard, H., & Salvetti, M. (2012). Linearized implicit time460

advancing and defect correction applied to sediment transport simulations. Computers and461

Fluids, 63 , 82–104.462

Burguete, J., & Garćıa-Navarro, P. (2001). Efficient construction of high-resolution TVD conserva-463

tive schemes for equations with source terms: application to shallow water flows. International464

Journal of Numerical Methods in Fluids, 37 , 209–248.465

Canelas, R., Murillo, J., & Ferreira, R. (2013). Two-dimensional depth-averaged modelling of466

dam-break flows over mobile beds. Journal of Hydraulic Research, 51(4), 392–407.467

Caviedes-Voullieme, D., Morales-Hernandez, M., Lopez-Marijuan, I., & Garcia-Navarro, P. (2014).468

Reconstruction of 2D river beds by appropiate interpolation of 1D cross-sectional information469

18

January 12, 2016 Journal of Hydraulic Research R4CJPGN

for flood simulation. Environmental Modelling and Software, 61 , 206–228.470

Chang, H. (1982). Mathematical model for erodible channels. Journal of Hydraulic Engineering ,471

108 , 678–689.472

Danalis, A., Marin, G., McCurdy, C., Meredith, J. S., Roth, P. C., Spafford, K., et al. (2010).473

The scalable heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd474

workshop on general-purpose computation on graphics processing units (pp. 63–74).475

Gandham, R., Medina, D., & Warburton, T. (2014). GPU Accelerated discontinuous Galerkin476

methods for shallow water equations. arXiv preprint arXiv:1403.1661 .477

Garcia, R., Restrepo, P., DeWeese, M., Ziemer, M., Palmer, J., Thornburg, J., et al. (2015).478

Advanced GPU paralellization for two-dimensional operational river flood forecasting. 36th479

IAHR World Congress.480

Garegnani, G., Rosatti, G., & Bonaventura, L. (2013). On the range of validity of the Exner-based481

models for mobile-bed river flow simulations. Journal of Hydraulic Research, 51(4), 380–391.482

Goutière, L., Soares-Frazao, S., & Zech, Y. (2011). Dam-break flow on mobile bed in abruptly483

widening channel: experimental data. Journal of Hydraulic Research, 49(3), 367–371.484

Hou, J., Liang, Q., Zhang, H., & Hinkelmann, R. (2015). An efficient unstructured MUSCL485

scheme for solving the 2D shallow water equations. Environmental Modelling and Software,486

66 , 131–152.487

Juez, C., Murillo, J., & Garćıa-Navarro, P. (2013). Numerical assesment of bed load discharge488

formulations for transient flow in 1D and 2D situations. Journal of Hydroinformatics, 15(4),489

1234–1257.490

Juez, C., Murillo, J., & Garćıa-Navarro, P. (2014). A 2D weakly-coupled and efficient numerical491

model for transient shallow flow and movable bed. Advances in Water Resources, -, In press.492

Kalyanapu, A., Siddharth, S., Pardyjak, E., Judi, D., & Burian, S. (2011). Assessment of GPU493

computational enhancement to a 2D flood model. Environmental Modelling and Software,494

26 , 1009–1016.495

Lacasta, A., Garćıa-Navarro, P., Burguete, J., & Murillo, J. (2013). Preprocess static subdomain496

decomposition in practical cases of 2D unsteady hydraulic simulation. Computers & Fluids,497

80 , 225–232.498

Lacasta, A., Juez, C., Murillo, J., & Garćıa-Navarro, P. (2015). An efficient solution for hazardous499

geophysical flows simulation using GPUs. Computers & Geosciences, 78 , 63–72.500

Lacasta, A., Morales-Hernández, M., Murillo, J., & Garćıa-Navarro, P. (2014). An optimized GPU501

implementation of a 2D free surface simulation model on unstructured meshes. Advances in502

Engineering Software, 78 (1), 1-15.503

Leveque, R. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,504

New York.505

Liu, Q., Quin, Y., Zhang, Y., & Li, Z. (2015). A coupled 1D-2D hydrodynamic model for flood506

simulation in flood detention basin. Natural Hazards, 75(2), 1303–1325.507

Munshi, A., et al. (2009). The OPENCL specification. Khronos OpenCL Working Group, 1 , l1–15.508

Murillo, J., & Garćıa-Navarro, P. (2010a). An Exner-based coupled model for two-dimensional509

transient flow over erodible bed. Journal of Computational Physics, 229 , 8704–8732.510

Murillo, J., & Garćıa-Navarro, P. (2010b). Weak solutions for partial differential equations with511

source terms: Application to the shallow water equations. Journal of Computational Physics,512

229 , 4327–4368.513

Murillo, J., Garćıa-Navarro, P., Brufau, P., & Burguete, J. (2008). 2D modelling of ero-514

sion/deposition processes with suspended load using upwind finite volumes. Journal of Hy-515

draulic Research, 46(1), 99–112.516

Murillo, J., Garćıa-Navarro, P., & Burguete, J. (2008). Time step restrictions for well balanced517

shallow water solutions in non-zero velocity steady states. International Journal of Numerical518

Methods in Fluids, 56 , 661–686.519

NVIDIA Corporation. (2007). NVIDIA CUDA Compute unified device architecture programming520

19

January 12, 2016 Journal of Hydraulic Research R4CJPGN

guide [Computer software manual]. NVIDIA Corporation.521

NVIDIA Corporation. (2014). CUDA Toolkit 6.0 [Computer software manual].522

Palumbo, A., Soares-Frazao, S., Goutiere, L., Pianese, D., & Zech, Y. (2008). Proc., River Flow523

2008 International Conference on Fluvial hydraulics, Cesme.524

Petaccia, G., Natale, L., Savi, F., Velickovic, M., Zech, Y., & Soares-Frazao, S. (2013). Flood wave525

propagation in steep mountain rivers. Journal of Hydroinformatics, 15(1), 120–137.526

Serrano, A., Murillo, J., & Garćıa-Navarro, P. (2012). Finite volumes for 2D shallow-water flow with527

bed-load transport on unstructured grids. Journal of Hydraulic Research, 50(2), 154–163.528

Siviglia, A., Stecca, G., Vanzo, D., Zolezzi, G., Toro, E., & Tubino, M. (2013). Numerical mod-529

elling of two-dimensional morphodynamics with applications to river bars and bifurcations.530

Advances in Water Resources, 52 , 243–260.531

Smart, G. (1984). Sediment transport formula for steep channels. Journal of Hydraulic Engineering ,532

3 , 267–276.533

Soares-Frazao, S., & Zech, Y. (2010). HLLC scheme with novel wave-speed estimators appropiate534

for two-dimensional shallow-water flow on erodible bed. International Journal of Numerical535

Methods in Fluids, 66(8), 1019–1036.536

Vacondio, R., Dal Pal, A., & Mignosa, P. (2014). GPU-enhanced finite volume shallow water solver537

for fast flood simulations. Envirnonmental Modelling and Software, 57 , 60–75.538

Villaret, C., Hervouet, J., Kopmann, R., Merkel, U., & Davies, A. (2013). Morphodynamic modeling539

using the Telemac finite-element system. Computers and Geosciences, 53 , 105–113.540

Wu, W. (2004). Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuni-541

form sediment transport in open channels. Journal of Hydraulic Engineering , 130(10), 1013–542

1024.543

Xia, J., Lin, B., Falconer, R., & Wang, G. (2010). Modelling dam-break flows over mobile beds544

using a 2D coupled approach. Advances in Water Resources, 33 , 171–183.545

20

