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Abstract A new approach in satellite constellation design is presented in
this paper, taking as a base the 3D Lattice Flower Constellation Theory and
introducing the necklace problem in its formulation. This creates a further
generalization of the Flower Constellation Theory, increasing the possibilities
of constellation distribution while maintaining the characteristic symmetries
of the original theory in the design.
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1 Introduction

The space industry has experienced great advances in the last decades due
to the number of possibilities and benefits that the space environment brings.
Satellites orbiting the Earth have a very advantageous position, since they
are able to observe vast regions of the Earth in a small amount of time. This
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advantage can be improved even further with the use of satellite constellations,
allowing the study of several regions of the Earth surface at the same time.

Satellite constellations are groups of satellites that work cooperatively to
achieve a common mission. They allow to optimize the performance of the
system as a whole, reducing the costs of the mission. However, the study of
several satellites at the same time, and more importantly, the relations that
appear in the internal structure of the constellation, increases the complexity
of the problem to solve, but also expands the possibilities in the design.

In the last decades, several satellite constellation design methodologies have
appeared, such as the Walker Constellations [17] for circular orbits, the design
of Draim [13] for elliptic orbits, or the Ground-track Constellations [5,2] for any
kind of configuration. In 2004, the Flower Constellation Theory [15,14,18,10,
4] was presented, including in its formulation circular and elliptic orbits. The
theory was later improved by the 2D Lattice [7] and 3D Lattice [12] theories
which simplified the formulation and made the configuration independent of
any reference frame.

In the 2D and 3D Lattice Flower Constellation theories, the configuration
of the constellation presents symmetries and is highly uniform in the space,
allowing to generate constellations where all satellites observe the same rela-
tive configuration. These properties have many advantages in missions such as
global coverage or global positioning. Afterwards, realizing that the amount
of different configurations of a constellation for a certain number of satellites
could be increased in the formulation, the concept of necklaces [8,9] was intro-
duced for the 2D Lattice Flower Constellation theory. The theory of necklaces
is based on the idea of generating a fictitious constellation with more satel-
lites than required and then, selecting a subset of satellites from the fictitious
constellation taking into account that the property of symmetry has to be
maintained [3].

The solution of the necklace problem (as well as the Flower Constellation
Theory) is related with Number Theory which implies working with integer
numbers in the distribution of the orbital parameters of the constellation.
This leads to interesting properties that are not presented with the use of real
numbers.

The aim of this paper is to apply the necklace theory into the 3D Lattice
Flower Constellations design methodology. This is done by the introduction
of a new formulation, which constitutes a generalization of the 2D and 3D
Lattice Flower Constellations, and that contains as a subset, all the former
Lattice Flower Constellations. In this new formulation, it is possible to include
necklaces in any of the variables of distribution: the right ascension of the
ascending node, the argument of perigee and the mean anomaly. This allows
to expand the possibilities of design, not limiting the generation of necklaces
to the mean anomaly as done in previous works [8,9].

This manuscript is organized as follows. First, a short introduction on the
3D Lattice Flower Constellations and the Necklace Theory is performed. Sec-
ond, a new formulation is introduced that includes necklaces directly into the
formulation of the distribution. This provides a clearer formulation and more-
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over, allows a faster computation of the real constellation, since only the real
positions of the satellites are computed. Third, the expansion of the searching
space is introduced, which allows to generate as many different possibilities in
design as required. This two properties are especially interesting in optimiza-
tion problems, where the time spent and the design possibilities are controlled
using the size of the fictitious constellation. Fourth, the conditions to gen-
erate distributions that maintain the properties of symmetry and uniformity
of the configuration (characteristic of the Lattice Flower Constellations) are
presented. This allows to create structures in the constellation that are main-
tained during its movement. Finally, an example of application of this new
formulation is presented, where the possibilities that this new methodology
can provide in the design of satellite constellations are shown.

2 Preliminaries

In this section, a short introduction of the 3D Lattice Theory and the necklace
problem is shown, in order to present the base of the problem treated in this
paper and as a way to summarize the previous Flower Constellation Theory.

2.1 The 3D Lattice Flower Constellation Theory

The 3D Lattice Flower Constellation Theory is a satellite constellation design
methodology in which the satellites are distributed in several inertial orbits,
where each satellite has a different value of its mean anomaly and argument
of perigee. Furthermore, the satellites of the constellation have the same semi-
major axis, eccentricity and inclination. This design allows to generate constel-
lations whose satellites present circular or elliptic orbits. The most important
property of this constellation design is that the satellites are distributed gen-
erating a symmetric configuration in the lattice that is maintained over time.

As it can be seen in Avendaño et al. [12], a 3D Lattice Flower Constellation
can be described by the use of the Hermite Normal Form. The Hermite Normal
Form is composed by six integers, three in the diagonal of the matrix and
the other three in the lower triangular part of the matrix. The integers in
the diagonal are the number of orbital planes of the constellation (LΩ), the
number of different argument of perigees in each orbital plane (Lω), and the
number of satellites in each orbit (LM ). The other three parameters are the
configuration numbers (LMΩ , LMω, LωΩ) defined as follows: LMΩ ∈ [0, LΩ−1],
LMω ∈ [0, Lw − 1] and LωΩ ∈ [0, LΩ − 1].

The expression that summarizes the distribution of the satellites in a 3D
Lattice Flower Constellation is: LΩ 0 0

LωΩ Lω 0
LMΩ LMω LM

∆Ωijk

∆ωijk

∆Mijk

 = 2π

 i− 1
k − 1
j − 1

 ; (1)
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where ∆Ωijk is the distribution in the right ascension of the ascending node
of the constellation, ∆ωijk is the distribution of the argument of perigee, and
∆Mijk is the initial distribution of the mean anomaly with respect a reference
satellite of the constellation with orbital elements {Ω000, ω000,M000}. More-
over, the list (i, j, k) represents the position of a satellite in the orbital plane
i ∈ [1, LΩ ], with the argument of perigee k ∈ [1, Lω] and the mean anomaly
j ∈ [1, LM ]. Note also that the values of Ωijk, ωijk and Mijk represent three
angles and thus, they are defined in the range [0, 2π].

The distribution shown in Equation (1) can be represented as a set of
points that are situated over the surface of a three dimensional torus in a four
dimensional space (a representation that is non practical from a graphical
point of view). However, the same distribution can also be represented by
three different two dimensional tori in a three dimensional space.

As an example of that, a constellation with parameters: LΩ = 7, Lω = 5,
LM = 10, LMΩ = 5, LMω = 4 and LωΩ = 6 is generated. Using Equation (1),
the distribution of the satellites is obtained, where the constellation is made by
LΩLωLM = 350 satellites. The tori representation of this constellation can be
seen in Figure 1, where each point is represented by two coordinates, a polar
longitude (toroidal direction), and the angle between the perpendicular to the
torus surface in the point and the horizontal plane (poloidal direction). It is
important to note that the figure represents all the satellites of the constella-
tion, and as such, the points only shows the different values of each variable
in the constellation. That leads to LΩLω = 35 different combinations in the
first torus, LΩLωLM = 350 in the second and in the third one, since all the
configuration numbers (LMΩ , LMω, LωΩ) are different to zero, and LΩ and Lω

are co-primes. On the other hand, the figure clearly shows that the points are
situated generating closed lines in the tori, the lattice of the constellation.

Fig. 1 Tori representation of the constellation distribution.

Other useful representation is the (Ω,ω,M)-space, which can be observed
for this example in Figure 2. As it can be seen, the satellites are distributed
in two sets of parallel planes, one vertical (the orbital planes) and the second
inclined in the other axes. This is caused by the configuration numbers (LMΩ ,
LMω and LωΩ) which produce this effect in the distribution. As it will be seen
later, this property has deep implications in the development of the necklace
theory. Note also that the first and the last orbits are the same due to the
modular nature of the problem.
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Fig. 2 (Ω,ω,M)-space representation of the constellation.

On the other hand, it is important to remark the relation between both
graphical representations. If a projection is performed over the different axes
of Figure 2, we can observe clearly the number of points that appear in the
different tori of Figure 1, as some points of the distribution will collapse in the
same position of the tori during these projections. This provides an additional
tool to study how the constellation is distributed in the configuration space.

2.2 Necklace Theory

The necklace problem is a combinatorial problem which answers how many
different arrangements of n pearls in a circular loop can be produced assuming
that each pearl comes in one of k different colors [1,6]. In the case of study,
there are just two colors k = 2, representing an empty position or a satellite
in the constellation [8]. Thus, we can define a necklace as the subset of points
selected from a set of available positions, that is, a necklace G is a subset of a
ring of integers Zn:

G ⊆ Zn = {1, · · · , n} . (2)

In this definition, two arrangements are considered to be identical if they only
differ by a rotation inside the loop, that is:

G1
∼= G2 ⇐⇒ ∃s : G1 = G2 + s mod (n), (3)

where s is an integer that belongs to the ring Zn. In addition, another impor-
tant concept to introduce is the symmetry of a necklace (Sym(G)), defined
as:

Sym(G) = min {1 ≤ r ≤ n : G + r ≡ G mod (n)} , (4)

where Sym(G) is the number of times that the configuration must be shifted
in order to obtain a configuration identical to the initial.
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3 The 3D Necklace Flower Constellations Theory

Equation (1) defines the distribution of a 3D Lattice Flower Constellation.
This distribution has the particularity of presenting a symmetric configura-
tion in the lattice of the constellation with respect to all its variables, the
right ascension of the ascending node, the argument of perigee and the mean
anomaly. The objective now is to introduce the concept of necklaces in the
formulation, but preserving the symmetries of the initial configuration.

In order to introduce the necklaces, Equation (1) must be expanded:

∆Ωijk =
2π

LΩ
(i− 1) ,

∆ωijk =
2π

Lω
(k − 1)− 2π

Lω

LωΩ

LΩ
(i− 1) ,

∆Mijk =
2π

LM
(j − 1)− 2π

LM

LMω

Lω
(k − 1)−

− 2π

LM

(
LMΩ

LΩ
− LMω

Lω

LωΩ

LΩ

)
(i− 1) , (5)

where this configuration corresponds to a fictitious constellation that is used
to define the available positions in which the real satellites of the constellation
are located.

From Equation (5), it can be observed that the value of ∆ωijk is different
for i = 1 and i = LΩ + 1, and thus, moving in i ∈ [1, LΩ + 1] does not close
the configuration in the torus for a particular value of k. This means that in
general ∆ωijk ̸= ∆ω(i+LΩ)jk. In the 3D Lattice formulation this has no effect
since all the positions are filled and consequently, the configuration is complete.
However, with the use of necklaces, this effect has to be taken into account in
order to generate symmetric configurations. The same consideration has to be
made in the expression of the mean anomaly. In that sense, a complete rotation
in the right ascension of the ascending node or the argument of perigee does
not generate in general the same value on the mean anomaly since ∆Mijk ̸=
∆M(i+LΩ)jk and ∆Mijk ̸= ∆Mij(k+Lω).

Two different necklaces can be defined in a 3D Lattice Flower Constellation,
one in the mean anomaly, and the other in the argument of perigee. It is
possible to generate necklaces in the right ascension of the ascending node with
the 3D Lattice Flower Constellation configuration. However this is equivalent
to generate the distribution and keeping just the orbital planes that we are
interested in. For this reason, we do not consider this case, since the use of
necklaces is not required in these kind of configurations.

Let GM be a necklace defined in the mean anomaly with a number of
elements equal to NM = |GM | and such that GM ⊆ ZLM

. This represents NM

satellites taken from a set of LM available positions defined in a particular
orbit. The necklace in the mean anomaly GM is represented as a vector of
dimension NM :

GM = (GM (1), · · · ,GM (j∗), · · · ,GM (NM )) , (6)
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with
1 ≤ GM (1) ≤ · · · ≤ GM (j∗) ≤ · · · ≤ GM (NM ) ≤ LM , (7)

and where the index j∗ represents an integer modulo NM , that is, j∗ +NM is
the same index as j∗. This allows to define an application (T1) that points to
the positions occupied by the necklace from the available positions:

T1 : ZNM
−→ ZLM

j∗ 7−→ GM (j∗). (8)

Thus, it makes sense to refer to GM (j∗), where the integer parameter j∗ ∈
{1, · · · , NM} represents the position inside the necklace defined. In addition,
and for simplicity of notation, we denote mod(a, b) = a mod (b). Thus, due
to the modular arithmetic inside the necklace:

GM (j∗) = GM (mod(j∗ +NM , NM )), (9)

which corresponds to a complete loop in the available positions in the mean
anomaly. It is important to note that this rotation is equivalent to a movement
in the admissible locations defined by:

j = j + LM mod (LM ), (10)

as both represent the same movement of the necklace, one using the parametriza-
tion of the necklace and the other using the parametrization of the fictitious
constellation.

On the other hand, let Gω be a necklace defined in the argument of perigee
with a number of elements equal to Nω = |Gω|, the number of real orbits per
plane and a number of available positions equal to Lω, which correspond to the
size of the space of this variable in the fictitious constellation. This necklace
is defined as a vector in the same way as GM :

Gω = (Gω(1), · · · ,Gω(k
∗), · · · ,Gω(Nω)) , (11)

with
1 ≤ Gω(1) ≤ · · · ≤ Gω(k

∗) ≤ · · · ≤ GM (Nω) ≤ Lω, (12)

where the index k∗ is an integer modulo Nω. This allows to define an appli-
cation (T2) that points to the positions occupied by the necklace from the
available positions:

T2 : ZNω −→ ZLω

k∗ 7−→ Gω(k
∗), (13)

which is used to refer to Gω(k
∗), where the integer parameter k∗ ∈ {1, · · · , Nω}

represents the movement inside the necklace defined. Moreover, the necklace
represents a ring of integers, thus, there exist a modular arithmetic inside the
necklace:

Gω(k
∗) = Gω(mod(k∗ +Nω, Nω)), (14)
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which is equivalent to a complete loop in the available positions in the argu-
ment of perigee:

k = k + Lω mod (Lω), (15)

as both are two formulations for the same movement, one using the parametriza-
tion of the necklace and the other using the parametrization of the fictitious
constellation.

Now, an application (T3) has to be defined which relates the distribution
indexes (i, j∗, k∗) from the necklace, with the indexes of the available positions
(i, j, k):

T3 : ZLΩ
× ZNM

× ZNω
−→ ZLΩ

× ZLM
× ZLω

(i, j∗, k∗) 7−→ (i, j, k), (16)

where the effects of the possible movement with respect to the right ascen-
sion of the ascending node and the argument of perigee are introduced in the
formulation by the use of the three shifting parameters, SωΩ the shifting pa-
rameter that relates the argument of perigee with the right ascension of the
ascending node, SMΩ the shifting parameter that relates the mean anomaly
and the right ascension of the ascending node, and SMω the shifting parameter
that relates the mean anomaly and the argument of perigee. That way, the
possible movements of the integers k and j are described respectively by:

k = Gω(k
∗) + SωΩ(i− 1),

j = GM (j∗) + SMω(k − 1) + SMΩ(i− 1). (17)

We now subtract one unit of each expression to relate to the original formula-
tion provided by Equation (5), obtaining:

k − 1 = Gω(k
∗)− 1 + SωΩ(i− 1),

j − 1 = GM (j∗)− 1 + SMω(k − 1) + SMΩ(i− 1). (18)

Both expressions present modular arithmetic with respect to the symme-
tries of their necklaces, thus:

k − 1 = Gω(k
∗)− 1 + SωΩ(i− 1) mod Sym(Gω),

j − 1 = GM (j∗)− 1 + SMω(k − 1) + SMΩ(i− 1) mod Sym(GM ). (19)

However, j depends on k, and we require a dependency over k∗, consequently,
a substitution of k is performed in the second expression, leading to:

j − 1 = GM (j∗)− 1 + SMωmod (Gω(k
∗)− 1 + SωΩ(i− 1), Sym(Gω)) +

+ SMΩ(i− 1) mod Sym(GM ), (20)

where it can be seen that the movement in j depends also on the necklace in
the argument of perigee.
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Once the distribution over each index is performed, we introduce Equa-
tions (19) and (20) into Equation (5), resulting in:

∆Ωij∗k∗ =
2π

LΩ
(i− 1) ,

∆ωij∗k∗ =
2π

Lω

[
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω))−
LωΩ

LΩ
(i− 1)

]
,

∆Mij∗k∗ =
2π

LM

[
mod

(
GM (j∗)− 1 + SMωmod

(
Gω(k

∗)− 1 +

+ SωΩ(i− 1), Sym(Gω)
)
+ SMΩ(i− 1), Sym(GM )

)
−

− LMω

Lω
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω))−

−
(
LMΩ

LΩ
− LMω

Lω

LωΩ

LΩ

)
(i− 1)

]
, (21)

which describes the possible movements of the two necklaces defined (GM and
Gω) inside the distribution created in the fictitious constellation.

Equation (21) allows, not only to make the distribution of the satellites
in the lattice, but also to find all symmetric configurations using the necklace
theory. Note that, in the expression for ∆Mij∗k∗ , the necklace in the argument
of perigee appears, which means that properties in this necklace are affecting
the distribution of the constellation in the mean anomaly. This effect is also
seen in the conditions for the shifting parameters of the configuration as it will
be seen later.

One important thing to notice regarding Equation (21) is that, since the
shifting parameters (SωΩ , SMω, SMΩ) are subjected to a modular arithmetic
in the symmetry of the necklaces, duplicities can appear if no boundaries are
defined. In that sense, and in order to avoid these duplicities in the formulation,
we impose:

SωΩ ∈ [0, Sym(Gω)− 1],

SMω ∈ [0, Sym(GM )− 1],

SMΩ ∈ [0, Sym(GM )− 1], (22)

to the shifting parameters. That way, we can assure that all combinations of
parameters generate different constellation configurations, while we are still
able to create all the different distributions that this formulation can provide.

3.1 Symmetry in the 3D Lattice Flower Constellations

In this section we impose the conditions of symmetry to the constellation
configurations that can be obtained using Equation (21). That way, a relation
between the distribution and the shifting parameters is obtain, which allows to
define all the possible symmetric configurations that can be generated inside
a given fictitious constellation.
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3.1.1 Symmetry with respect to the mean anomaly

The conditions for symmetry in the three variables when a complete rotation
in the mean anomaly is performed are:

∆Ωij∗k∗ = ∆Ωi(j∗+NM )k∗ ,

∆ωij∗k∗ = ∆ωi(j∗+NM )k∗ , (23)
∆Mij∗k∗ = ∆Mi(j∗+NM )k∗ ,

where all expressions are automatically fulfilled as ∆Ωij∗k∗ and ∆ωij∗k∗ do not
depend on the movement of the mean anomaly whilst ∆Mij∗k∗ is also achieved
due to the modular arithmetic nature of the problem seen in Equation (9).

3.1.2 Symmetry with respect to the argument of perigee

In order to have symmetry in the argument of perigee, the configuration of
the constellation has to fulfill the following conditions:

∆Ωij∗k∗ = ∆Ωij(k∗+Nω),

∆ωij∗k∗ = ∆ωij∗(k∗+Nω), (24)
∆Mij∗k∗ = ∆Mij∗(k∗+Nω),

where the first equation is always true as it does not depend on the movement
in the argument of perigee. On the other hand, the other two equations depend
on k∗ and, as such, they have to be studied.

Taking the condition in ∆ωij∗k∗ , and from the equivalences in the definition
between Equations (14) and (15), we can conclude that the operation k∗+Nω

is equivalent to a full rotation in the argument of perigee, that is:

∆ωij∗k∗ + 2π = ∆ωij∗(k∗+Nω), (25)

which applied to the expression of the argument of perigee, leads to:

2π

Lω

[
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω))−
LωΩ

LΩ
(i− 1)

]
+ 2π =

=
2π

Lω

[
mod (Gω(k

∗ +Nω)− 1 + SωΩ(i− 1), Sym(Gω))−
LωΩ

LΩ
(i− 1)

]
, (26)

from where a relation between the two modular operators can be established:

mod (Gω(k
∗ +Nω)− 1 + SωΩ(i− 1), Sym(Gω))−

− mod (Gω(k
∗)− 1 + SωΩ(i− 1), Sym(Gω)) = Lω, (27)

where this equation will be used later in order to impose the condition of
symmetry in the mean anomaly with respect to the argument of perigee.
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On the other hand, regarding the condition in ∆Mij∗k∗ from the system
of Equations (24), and using Equation (21), the following expression can be
derived:

2π

LM

[
mod

(
GM (j∗)− 1 + SMωmod

(
Gω(k

∗)− 1 +

+ SωΩ(i− 1), Sym(Gω)
)
+ SMΩ(i− 1), Sym(GM )

)
−

− LMω

Lω
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω))−

−
(
LMΩ

LΩ
− LMω

Lω

LωΩ

LΩ

)
(i− 1)

]
=

=
2π

LM

[
mod

(
GM (j∗)− 1 + SMωmod

(
Gω(k

∗ +Nω)− 1 +

+ SωΩ(i− 1), Sym(Gω)
)
+ SMΩ(i− 1), Sym(GM )

)
−

− LMω

Lω
mod (Gω(k

∗ +Nω)− 1 + SωΩ(i− 1), Sym(Gω))−

−
(
LMΩ

LΩ
− LMω

Lω

LωΩ

LΩ

)
(i− 1)

]
; (28)

which can be simplified to:

mod
(
GM (j∗)− 1 + SMωmod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω)) +

+ SMΩ(i− 1), Sym(GM )
)
−

− LMω

Lω
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω)) =

= mod
(
GM (j∗)− 1 + SMωmod (Gω(k

∗ +Nω)− 1 + SωΩ(i− 1), Sym(Gω)) +

+ SMΩ(i− 1), Sym(GM )
)
−

− LMω

Lω
mod (Gω(k

∗ +Nω)− 1 + SωΩ(i− 1), Sym(Gω)) . (29)

Moreover, expanding the modular arithmetic in Sym(GM ) and using Equa-
tion (27) leads to:

ASym(GM ) = SMωLω − LMω; (30)

where A is an unknown integer number. This equation can be also represented
with the following expression:

Sym(GM ) | SMωLω − LMω, (31)

which reads, Sym(GM ) divides (SMωLω − LMω).
Equation (31) is the first condition for the shifting parameters of the con-

figuration. As it can be seen, it depends on the symmetry of the necklace,
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and some elements from the Hermite Normal Form. Note that the shifting pa-
rameter of the mean anomaly with respect to the argument of perigee (SMω)
depends on the number of fictitious orbits per orbital plane and not the real
number, a property that increases the number of possibilities in the configu-
ration.

3.1.3 Symmetry with respect to the right ascension of the ascending node

The conditions of symmetry that we have to impose with respect to the right
ascension of the ascending node are the following:

∆Ωij∗k∗ = ∆Ω(i+LΩ)j∗k∗ ,

∆ωij∗k∗ = ∆ω(i+LΩ)j∗k∗ , (32)
∆Mij∗k∗ = ∆M(i+LΩ)j∗k∗ .

where each one of these conditions is treated separately.
The condition in the right ascension of the ascending node is automatically

fulfilled as:

∆Ωij∗k∗ =
2π

LΩ
(i− 1) =

2π

LΩ
(i− 1) + 2π mod (2π), (33)

which is independent of any of the shifting parameters of the problem.
From the condition in the argument of perigee:

Lω

2π
∆ωij∗k∗ =

Lω

2π
∆ω(i+LΩ)j∗k∗ , (34)

that can be used to obtain the following expression:

mod (Gω(k
∗)− 1 + SωΩ(i− 1), Sym(Gω))−

LωΩ

LΩ
(i− 1) =

= mod (Gω(k
∗)− 1 + SωΩ(i− 1) + SωΩLΩ , Sym(Gω))−

− LωΩ

LΩ
(i− 1)− LωΩ , (35)

which can be simplified, leading to:

mod (Gω(k
∗)− 1 + SωΩ(i− 1) + SωΩLΩ , Sym(Gω))−

− mod (Gω(k
∗)− 1 + SωΩ(i− 1), Sym(Gω)) = LωΩ , (36)

where Equation (36) is used later to solve the symmetries in the mean anomaly.
Expanding now the modular arithmetic in Sym(Gω) from Equation (36)

and simplifying, we obtain:

BSym(Gω) = SωΩLΩ − LωΩ ; (37)

where B is an unknown integer. This expression is equivalent to:

Sym(Gω) | SωΩLΩ − LωΩ . (38)
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Equation (38) is the second condition for the shifting parameters. As it
can be observed, it relates the shifting of the argument of perigee with respect
to the right ascension of the ascending node SωΩ , with the symmetries of
the necklace in the argument of perigee Sym(Gω) and some elements of the
Hermite Normal Form (LΩ and LωΩ).

Once the problem of symmetry in the argument of perigee is solved, we
impose the condition of symmetry in the mean anomaly by the use of its
condition from Equation (32):

LM

2π
∆Mij∗k∗ =

LM

2π
∆M(i+LΩ)j∗k∗ , (39)

from where we can derive:
mod

(
GM (j∗)− 1 + SMωmod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω)) +

+ SMΩ(i− 1), Sym(GM )
)
− LMω

Lω
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω))−

−
(
LMΩ

LΩ
− LMω

Lω

LωΩ

LΩ

)
(i− 1) =

= mod
(
GM (j∗)− 1 + SMωmod (Gω(k

∗)− 1 + SωΩ(i− 1)+

+ SωΩLΩ , Sym(Gω)) + SMΩ(i− 1) + SMΩLΩ , Sym(GM )
)
−

− LMω

Lω
mod (Gω(k

∗)− 1 + SωΩ(i− 1) + SωΩLΩ , Sym(Gω))−

−
(
LMΩ

LΩ
− LMω

Lω

LωΩ

LΩ

)
(i− 1)−

(
LMΩ − LMωLωΩ

Lω

)
, (40)

which, using Equation (36) can be simplified to:

mod
(
GM (j∗)− 1 + SMωmod (Gω(k

∗)− 1 + SωΩ(i− 1)+

+ SωΩLΩ , Sym(Gω)) + SMΩ(i− 1) + SMΩLΩ , Sym(GM )
)
−

− mod
(
GM (j∗)− 1 + SMωmod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω)) +

+ SMΩ(i− 1), Sym(GM )
)
= LMΩ . (41)

Now, we expand the modular arithmetic in Sym(Gω) and apply again the
relation from Equation (36) in order to obtain:

CSym(GM ) = SMΩLΩ − (LMΩ − SMωLωΩ) , (42)
where C is an unknown integer. The former expression can be also written as:

Sym(GM ) | SMΩLΩ − (LMΩ − SMωLωΩ) . (43)
Equation (43) is the third condition for the shifting parameters. As we can

see, this relation has a particularity, SMΩ depends also on other shifting pa-
rameter, SMω which generates a logical order in the generation of the shifting
parameters.
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3.1.4 Symmetric configurations

In this subsection the formulation of the theory is summarized in order to
present all the methodology in a more compact and clear way. All possible
distributions of a particular necklace G can be described by the set of expres-
sions:

∆Ωij∗k∗ =
2π

LΩ
(i− 1) ,

∆ωij∗k∗ =
2π

Lω

[
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω))−
LωΩ

LΩ
(i− 1)

]
,

∆Mij∗k∗ =
2π

LM

[
mod

(
GM (j∗)− 1 + SMωmod

(
Gω(k

∗)− 1 +

+ SωΩ(i− 1), Sym(Gω)
)
+ SMΩ(i− 1), Sym(GM )

)
−

− LMω

Lω
mod (Gω(k

∗)− 1 + SωΩ(i− 1), Sym(Gω))−

−
(
LMΩ

LΩ
− LMω

Lω

LωΩ

LΩ

)
(i− 1)

]
, (44)

where the values of the shifting parameters SωΩ , SMω and SMω have to fulfill
the following relations in order to obtain symmetric configurations:

Sym(Gω) | SωΩLΩ − LωΩ ,

Sym(GM ) | SMωLω − LMω,

Sym(GM ) | SMΩLΩ − (LMΩ − SMωLωΩ) . (45)

As it can be seen, the set of Equations (44) and (45) leads to the 3D Lattice
Flower Constellations distributions if no necklace is defined, and to the 2D
Lattice Flower Constellations [12] if additionally, no distribution is performed
in the argument of perigee. Regarding the 2D Lattice Flower Constellations
using necklaces [8], the shifting parameter in the mean anomaly was defined
as:

Sym(G) | SMΩLΩ −Nc, (46)
where G is a necklace in the mean anomaly and Nc is the configuration num-
ber for the 2D Lattice Flower Constellations which corresponds to the LMΩ

parameter in the 3D Lattice Flower Constellations. This relation is equivalent
to the last condition in Equation (45) when the argument of perigee is not a
variable of the configuration, thus, the 3D Necklace Flower Constellations also
includes the 2D Lattice Flower Constellations using necklaces.

Therefore, Equations (44) and (45) constitute the generalization of the
necklace theory for the 3D Lattice Flower Constellations, which include all
the former Lattice Flower Constellations: 2D Lattice Flower Constellations,
2D Lattice Flower Constellations using necklaces, 3D Lattice Flower Constel-
lations and now 3D Lattice Flower Constellations using necklaces.

In the next section a detailed example is presented in order to show, in a
clear manner, the methodology to generate 3D Necklace Flower Constellations.
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3.2 Example of application

For this example, we assume that a constellation made of 42 satellites is chosen.
Let suppose that the constellation is required to be built in 7 orbital planes,
thus, LΩ = 7, and each plane contains two orbits, that is, the number of real
orbits per plane is Nω = 2. Moreover, the number of real satellites per orbit
is NM = 3.

Now, an expansion of the search space is done, choosing a fictitious constel-
lation with parameters Lω = 6 and LM = 9. This means that we are generating
two different necklaces, one in the argument of perigee and the other in the
mean anomaly. Moreover, as it can be seen, the available positions both in
mean anomaly and in the argument of perigee have been trebled, being just
the ninth part of all available real positions of satellites in the constellation.

Applying the 3D Necklace Flower Constellations to these parameters, we
obtain |GM | = 10 different necklaces in the mean anomaly and |Gω| = 3 in
the argument of perigee [1,11,16], generating a total of |GM ||Gω|L2

ΩLω = 8820
different symmetrical configurations (compared to the L2

ΩNω = 98 configu-
rations obtained using just the 3D Lattice Flower Constellations theory due
to the boundaries in the configuration numbers). Note that the number of
configurations using necklaces can be increased even further by expanding the
fictitious constellation or generating other fictitious constellations.

As there are too many configurations to analyze, we choose, without losing
generality, LMΩ = 4, LMω = 3 and LωΩ = 6 as combination numbers of the
constellation, and GM = {1, 4, 7} and Gω = {1, 4} as the necklaces in the
mean anomaly and the argument of perigee respectively. Applying the defini-
tion of symmetry of a necklace from Equation (4), these results are obtained:
Sym(GM ) = 3 and Sym(Gω) = 3.

With these parameters, we can use Equation (38) to obtain the shifting of
the argument of perigee with respect to the right ascension of the ascending
node:

Sym(Gω) | SωΩLΩ − LωΩ ⇒ 3 | 7SωΩ − 6, (47)
which leads to SωΩ = 0. On the other hand, the shifting parameter of the
mean anomaly with respect to the argument of perigee can be computed using
Equation (31):

Sym(GM ) | SMωLω − LMω ⇒ 3 | 6SMω − 3, (48)

which has three solutions, SMω = 0, 1, 2. Now, with this result, we apply
Equation (43) to obtain the shifting parameter of the mean anomaly with
respect the right ascension of the ascending node:

Sym(GM ) | SMΩLΩ−(LMΩ − SMωLωΩ) ⇒ 3 | 7SMΩ−(4−6SMω), (49)

which is SMΩ = 1 no matter the value of SMω = 0, 1, 2 used. Note that in
other examples, different values of SMω require different SMΩ .

As it can be seen, three configurations can be generated due to the multiple
solutions of SMω. In particular, we choose SωΩ = 0, SMω = 2 and SMΩ = 1
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as the selected configuration. The lattice obtained from this configuration can
be seen in Figure 3 where the (Ω,ω,M)-space of the distribution selected is
shown. The circles represent available positions while the colored ones are the
real satellites of the configuration.

Fig. 3 (Ω,ω,M)-space representation of the constellation.

Moreover, it is interesting to study the representation of this lattice using
tori. This can be observed in Figure 4 where the three tori that define the
distribution are shown. As it can be seen from Figure 3 and Figure 4, the
distribution is symmetrical in all three orbital parameters: the right ascension
of the ascending node, the argument of perigee and the mean anomaly.

Fig. 4 Tori representation of the constellation distribution.

Now, this configuration is applied to a satellite constellation. Without los-
ing generality, we choose an eccentricity of e = 0.3, an inclination equal to the
critical inclination i = 63.43o and a semi-major axis equal to a = 12, 770 km.
With these orbital parameters, an inertial configuration as shown in Figure 5
is obtained.

This constellation is just an example of the possibilities that the application
of necklaces into the 3D lattice flower constellations theory can bring. As it
has been said, the number of possibilities can be increased indefinitely, being
the only constraint the computational power available.



3-Dimensional Necklace Flower Constellations 17

Fig. 5 Inertial orbits of the constellation.

4 Conclusions

3D Lattice Flower Constellations is a powerful tool that allows the generation
of constellations with symmetric configurations and minimum parametriza-
tion. The distribution obtained with this methodology is fixed to certain po-
sitions which is a constraint in the number of possible configurations that the
theory can generate.

This paper introduces the concept of necklaces in the formulation of 3D
Lattice Flower Constellations, increasing the number of possible symmetric
configurations, being the only limitation the computational power available.
This is achieved by an expansion of the searching space of the constellation
and applying the necklace to fit the configuration again to the one sought.
Moreover, all the configurations obtained by this methodology maintain the
properties of the former Flower Constellations, presenting symmetry in the
lattice of the right ascension of the ascending node, the argument of perigee
and the mean anomaly of all the satellites in the constellation.

In addition, this new design framework can be used to introduce non uni-
formities in the distribution while maintaining a structure in the configuration.
This is done by defining necklaces adapted to the mission requirements, which
provides a powerful tool during the initial constellation design process. Other
applications of this methodology include the study of constellation reconfig-
uration problems, the assessment of satellite failure in a distribution, or the
definition of the launching schedule for a constellation made of a large number
of satellites.

Furthermore, the 3D Necklace Flower Constellations includes all the for-
mer Lattice Flower Constellation designs, being as such, a generalization of
the Lattice Flower Constellation theory. This means that the 3D Necklace
Flower Constellation theory is able to generate all former configurations (2D,
3D Lattice Flower Constellations and 2D Lattice Flower Constellations using
necklaces), and create new distributions using the necklace theory.
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Finally, it is important to note that the expansion of the search space can
be increased as much as desired, providing more possibilities of design as the
size of the fictitious constellation becomes larger. Moreover, this expansion can
also be done in an n-dimensional Lattice instead of just a 2D or a 3D Lattice.
This further generalization will be treated in future works.
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