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Solar sail is a new concept of spacecraft propulsion that uses solar radiation pressure
to generate acceleration. This technology opens new and challenging possibilities to space-
science missions such as deep-space exploration, space debris removal strategies and long
term missions in the solar system. This article provides a method for finding initial con-
ditions for frozen orbits around Mercury. Frozen orbits are those whose orbital elements
remain constant on average. Thus, at a given latitude, the satellite always passes at the
same altitude. This is very interesting for scientific missions that require close inspection
of any celestial body. The orbital dynamics of the artificial satellite about Mercury is gov-
erned by the potential attraction of the main body and the gravity field of the third body
(Sun). Besides the J2 and J3 secondary terms of the central body gravity field and the
third body perturbation, our average model also includes the eccentricity and inclination
of the orbit of the third body. We also take into account that the spacecraft is provided
by a solar sail, in consequence the acceleration due to solar acceleration pressure is taken
into consideration. In order to reduce the degrees of freedom of the dynamical system
and remove short-period terms, a double averaging technique is applied. This algorithm
is a two-fold process which firstly averages over the period of the satellite and secondly
averages with respect to the period of the third body. This simplified Hamiltonian model
is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized
by a surface depending on three variables: the orbital semi-major axis, eccentricity and
inclination. Finally, the paper delves into the temporal evolution of the eccentricity of
these orbits for different values of the sail area-to-mass ratio, which is a parameter related
to the efficiency of the solar sail.

I. Introduction

The use of propellantless propulsion systems like solar sails attract the interest for scientific missions. Solar
sails offer new challenging space-science missions, they are considered for having artificial equilibrium

points,1–3 these displaced periodic orbits near libration points can be used, for example, as an alert of
Geomagnetic storms.4 They also make feasible new observation missions based on the computation of
geocentric sun-synchronous frozen orbits.5,6 On this latter issue we carry out this research, whose aim is the
computation of frozen orbits for a solar sail.
Frozen orbits are orbits that have orbital elements constant on average. These orbits with constant mean
eccentricity and argument of periapsis can be obtained as the equilibria of the averaged dynamical system.
Actually, frozen orbits are very interesting for scientific missions because the control of the orbital eccentricity
leads to the control of the spacecraft lifetime (see for instance Scheeres et al.,7 Elipe et al.,8,9 Carvalho et
al.10,11 and references therein).

The design of frozen orbits involves selecting the correct values of eccentricity and argument of periapsis,
for a given semimajor axis and orbital inclination. Several procedures are used to find frozen orbits, from
zeroing Gauss equations and solving the corresponding system, to the grid-method,12 by Poincaré sections,13

by numerical continuation of families of periodic orbits,14 or by averaging the Hamiltonian and finding the
equilibria of the reduced Hamiltonian. This last procedure is the one that we will use in this work; it has
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been successfully used for finding frozen orbits for the zonal problem of an Earth artificial satellite,15 of a
satellite about the Moon,16,17 around Europa,11 around irregular asteroids18,19 or with radiation pressure
perturbation.20

In general, for orbiters around Mercury, it is necessary to consider the third-body attraction, that is,
the Sun attraction, due to its proximity. If the spacecraft is provided with a large sail, the solar radiation
pressure perturbation is worth considering. Thus, we deal with a Hamiltonian characterized by the Kepler
problem, Mercury’s gravitational potential, the third body perturbation and the solar radiation pressure.
We also include the eccentricity and inclination of the orbit of Mercury around the Sun and the oblateness
of Mercury caused by the zonal terms J2 and J3.

We give a brief description on the averaging techniques used in our work to reduce the dynamical problem
to only one degree of freedom system. Then, we obtain the equilibria characterized by a surface depending
on three variables, namely semi-major axis, eccentricity and inclination, which points will correspond to
frozen orbits. We shall see that the contribution of each perturbation term depends on the altitude of the
orbits in such a way that, for low-altitude orbits, the influence of the third body is almost negligible and
consequently and we could approach this problem using the zonal problem. However, for moderate altitudes
we need to cope with all the terms. Finally, let us remark that the frozen orbits computed are no longer
frozen when we include more complex force functions in the dynamical model. Hence, the averaged initial
conditions from a simplified model may be used as starters of numerical correction procedures in order to
have frozen orbits for the more complete model.16,21

II. Dynamical model

We consider the motion of an orbiter around Mercury under its gravitational force and the third body
attraction due to the Sun. We are not under the Hill hypothesis, Mercury orbit around the Sun is clearly
eccentric and it also exhibits a certain inclination (see Table 1), so we will study both the planar and inclined
case of the third body. Because Mercury has a known oblateness we also include both J2 and J3 harmonics
coefficients of Mercury’s gravitational potential.
Let us consider a Oxyz reference frame centered on the main body, Mercury, the Oxy plane coincides with
the planet’s equator, the x-axis along the intersection line of the equatorial plane of the main body and the
orbital plane of the third body, see Figure 1. It is assumed that the third body follows an elliptic inclined
orbit around the main body with semimajor axis a�, eccentricity e� and inclination i�. The spacecraft
orbits about the central body with semimajor axis a, eccentricity e, inclination i, right ascension of the
ascending node Ω, argument of the periapsis w and mean motion n, and its motion is perturbed by the third
body.
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Figure 1. Scheme of the dynamical system.

The equation of motion of the spacecraft is given by

r̈ = r̈M + r̈3b, (1)

where r̈M is the force induced by Mercury gravity field, which can be expressed as the gradient of a certain
potential UM in terms of the position of the state vector r of the spacecraft with respect to the central planet
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Sun µ� = 132712442099 [km3/s2]

Mercury µ = 22032.09 [km3/s2] RM = 2439.7[km] J2 = 6× 10−5

Mercury orbit a� = 5.79× 107[km] e� = 0.20563593 i� = 7.00559432 ◦

Table 1. Parameters of the dynamical model.

Mercury,
r̈M = ∇UM (r). (2)

The term r̈3b is the resultant of the gravitation attraction of the third body (Sun) and can be expressed
with respect to Mercury’s centre of mass

r̈3b = −µ�

(
r− r�
‖r− r�‖3

+
r�
‖r�‖3

)
, (3)

where µ� represents the gravitational parameter of the Sun (its value is given in Table 1), and r� is the
position vector of the Sun with respect to Mercury.

If the spacecraft is provided with a large sail it is necessary to add to Eq. (1) the acceleration generated by
the solar radiation pressure,

r̈ = r̈M + r̈3b + r̈SRP.

The idea of using a solar sail is to take advantage of the solar radiation pressure, in this way the sail
experiences a small but unlimited and continuous acceleration. The solar radiation pressure is added as
source of orbital perturbation.
The pressure P exerted on the sail by the solar radiation can be expressed in terms of the energy flux W
divided by the speed of light c,

P =
W

c
. (4)

The energy flux W is the flux per unit of area, it can be written in terms of the Sun’s luminosity, L�, and
the distance from the Sun, rs�,

W =
L�

4πr2s�
. (5)

We consider a perfectly reflecting sail, i.e. photons emitted by the Sun that impact on the sail are totally
reflected, thus the pressure is twice its value. We also assume that the force on the sail is exerted normal to
its surface, see Figure (2) (details can be found in22).

Sail

ui urn

Figure 2. Scheme of a perfect sail (flat and 100% reflection).

Therefore, the solar sail acceleration is expressed as

r̈SRP =
LS

c 2πρ2
A

m
(ui · n)2n, (6)

where m is the mass of the spacecraft. We will assume that the sail maintains a fixed orientation perpen-
dicular to the Sun line (ui‖n), then the sail effect takes its maximum value (ui · n) = 1. The solar sail
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acceleration, given in Equation (6) in terms of the area-to-mass ratio A/m of the sail, is also expressed in
terms of the lightness number of the sail, β, a dimensionless ratio of the solar radiation pressure acceleration
to the solar gravitational acceleration that measures the effectiveness of the sail. It is defined as

β =
σ∗

σ
,

where σ∗ =
LS

c 2πµ�
= 1.53 [gr/m

2
] , and σ is the sail loading parameter (areal density) given by the total

mass of the spacecraft divided by the sail area, σ = m/A expressed in [gr/m2].
Thus, taking into account that the sail is assumed to maintain the orientation perpendicular to the Sun line
n = ρ/‖ρ‖, and the sail is located at distance from the Sun ρ = ‖r − r�‖, the solar radiation pressure due
to a flat sail fixed perpendicular to the Sun line is given by

r̈SRP = β µ�
r− r�
‖r− r�‖3

. (7)

Note that the force on a solar sail depends on the sail’s area and orientation. When the perturbation term
due to solar radiation pressure is added the system, it only holds its Hamiltonian character when the sail
is aligned with respect to the Sun, i.e., no sail effect, or in the case that the sail is perpendicular to the
Sun-sail direction, i.e., maximum sail effect. For other sail orientations the systems is no longer Hamiltonian.

As it is stated above, perturbation due to solar radiation pressure depends strongly on the sail size and mass
and the orbit altitude, thus we will range the area-to-mass coefficient of the satellite and its altitude in order
to visualize their impact on the sail dynamics.

A. Hamiltonian description

The motion of the solar sail about Mercury under the gravitational effect of the central body and perturbed
by the gravitational attraction of the third body, Sun, and the Solar radiation pressure is described by

r̈ = r̈M + r̈3b + r̈SRP = ∇UM (r)− µ�

(
r− r�
‖r− r�‖3

+
r�
‖r�‖3

)
+ β µ�

r− r�
‖r− r�‖3

, (8)

Hence, the Hamiltonian is

H =
1

2
(ṙ · ṙ)− (UM + U3b + USRP ), (9)

where, for the central planet, we only take into account the zonal contribution,

UM =
µ

r
− µ

r

∑
n≥2

(
RM
r

)n
JnPn(sinφ), (10)

r is the distance from the sail to the central planet: r = ‖r‖, RM is the equatorial radius of Mercury (see
Table (1)) and φ is the latitude of the sail orbit with respect to the equatorial plane of Mercury. Using
spherical trigonometry we have sinφ = sin i sin(w+ f), where f is the true anomaly of the sail, i the orbital
inclination, w the argument of the periapsis and Pn(x) the Legendre polynomial of order n. We only consider
the harmonics coefficients J2 and J3; the corresponding Legendre polynomials are

P2(sinφ) =
1

2

(
3s2 sin2(w + f)− 1

)
, P3 =

1

2

(
5s3 sin3(w + f)− 3s sin(w + f)

)
,

with the shortcuts s = sin i, c = cos i. After some trigonometric manipulations we get that the perturbation
due to the J2 term, we named RJ2 , is given by

RJ2 =
µR2

M J2
4r3

(
1− 3c2 − 3s2 cos(2w + 2f)

)
, (11)

and the perturbation caused by the “pear shape” of the central body, J3 term, is

RJ3 = −µR
3
M J3

8r4
s
(

3 sin(w + f)− 5 sin(3w + 3f) + 5c2 sin(3w + 3f)− 15c2 sin(w + f)
)
. (12)
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If we look at the gravitational acceleration due to the third body (Eq. (8)), the potential function is

U3b = µ�

(
1

‖r− r�‖
− r · r�

r3�

)
, (13)

where r� = ‖r�‖. Since we are interested in the case r � r�, the first summand is expanded as a series of
Legendre polynomials up to second order,

1

‖r− r�‖
=

1

r�

(
1− 2

r

r�
cosψ +

( r
r�

)2)−1/2

=
1

r�

2∑
n≥0

(
r

r�

)n
Pn(cosψ).

By the replacing the expressions of the Legendre polynomials P0(cosψ) = 1, P1(cosψ) = cosψ, and
P2(cosψ) = (−1 + 3 cos2 ψ)/2, the second summand of Eq. (13) cancels with the P1 term, then we have

U3b =
µ�

r�

(
1 +

1

2

(
r

r�

)2

(3 cos2 ψ − 1)

)
. (14)

Considering the solar radiation acceleration, we show that if we assume the case of a solar sail always
perpendicular to the Sun-sail direction, the Sun gravitational attraction and the sail acceleration are equal
in magnitude but in opposite directions. Hence, the sail acceleration due to the radiation pressure can be
expressed as the gradient of the following potential

USRP = −βµ�

(
1

‖r− r�‖

)
. (15)

Based on the procedure followed for the third body perturbation, this potential function can be expanded
in terms of Legendre polynomials up to the second order; note that P0(cosψ) is omitted because it does not
depend on the orbital elements of the sail, but P1(cosψ) term is not eliminated in this case.

USRP = −βµ�

r�

(
1 +

r

r�
cosψ +

1

2

(
r

r�

)2

(3 cos2 ψ − 1)

)
. (16)

On the other hand, the angle ψ is the angle between radius vectors r and r� (see Fig.(1)), which can be
expressed in terms of the orbital elements of the third body and the spacecraft,

cosψ =
r · r�
r r�

,

where

r

r
=

cos Ω cos(w + f)− sin Ω sin(w + f) cos i

sin Ω cos(w + f) + cos Ω sin(w + f) cos i

sin(w + f) sin i


and

r�
r�

=

cos Ω� cos f� − sin Ω� sin f� cos i�

sin Ω� cos f� + cos Ω� sin f� cos i�

sin f� sin i�

 .

We have assumed w� = 0 without loss of generality because it is cancelled when the second average over the
period of the third body is performed.

Using this mathematical relation between the angle ψ and the true anomaly of the sail, and after some
algebraic manipulations, we can write

cosψ = α cos f + γ sin f,

where coefficients α and γ depend on the right argument of the ascending node, argument of the periapsis
and true anomaly of both the sail and the third body.

α = cosw cos(Ω− Ω�) cos f� + sin i sin i� sinw sin f� + cosw cos i� sin(Ω− Ω�) sin f�

− sinw cos i sin(Ω− Ω�) cos f� + sinw cos i cos i� cos(Ω− Ω�) sin f�.
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γ = − sinw cos(Ω− Ω�) cos f� + sin i sin i� cosw sin f� − sinw cos i� sin(Ω− Ω�) sin f�

− cosw cos i sin(Ω− Ω�) cos f� + cosw cos i cos i� cos(Ω− Ω�) sin f�.
(17)

Thus, the disturbing function due to the third body perturbation, named R3b, is

R3b =
µ�

2r�

(
r

r�

)2 (
3(α cos f + γ sin f)2 − 1

)
, (18)

and the disturbing function due to solar radiation pressure is

RSRP = −β

(
µ�

r

r2�
cosψ +

µ�

2r�

(
r

r�

)2

(3(α cos f + γ sin f)2 − 1)

)
, (19)

where P0 term has been dropped from the Hamiltonian because it is independent of the orbital elements of
the spacecraft.

Summarizing, for the model considered in this study the perturbing function is given by the addition of the
stated perturbation equations

RJ2 +RJ3 +R3b +RSRP . (20)

depicted in Eq. (11), Eq. (12), Eq. (18) and Eq. (19).

III. Averaging techniques

We present an analytical procedure using an averaged model in order to focus on the computation of
frozen orbits. We are not interested in developing a complete analytical theory but to help in mission design,
where frozen orbits are of major interest. Frozen orbits are those that keep their orbital eccentricity and
argument of periapsis constant on average. Therefore, the motion of the sail is studied under the double-
averaged analytical model with the aim of reducing the degrees of freedom of the system and eliminate the
short-period terms. The double averaged algorithm is a two-fold process which firstly averages over the
period of the satellite and secondly averages with respect to the period of the third body. The standard
definition for average a certain function F is

〈F 〉 =
1

2π

∫ 2π

0

F dM, (21)

where M stands for the mean anomaly.

A. First average

First, we perform an average over the eccentric anomaly of the spacecraft using the known relations of elliptic
motion

dM = (1− e cosE)dE,
r

a
= 1− e cosE, sin f =

√
1− e2 sinE

1− e cosE
, cos f =

e− cosE

1− e cosE
.

Applying these equation to the perturbation functions due to the non-sphericity of the primary body, Eq.
(11) and Eq. (12), we get the following averaged potential induced by the Mercury’s gravity field

〈RJ2〉 = −1

4
R2
M J2

n2(−2 + 3 sin2 i)

(1− e2)3/2
,

〈RJ3〉 = −3

8
R3
M J3

n2 e sin i sinw(−4 + 5 sin2 i)

a(1− e2)5/2
. (22)

which describe the secular perturbation of the motion of a spacecraft due to the harmonics J2 and J3. Now
we need to average the term given in Eq. (18) that corresponds to the disturbing body, the Sun. We multiply
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and divide that equation by a/a� to solve the average integral using the well-known relations between orbital
elements. After performing the average over the eccentric anomaly of the sail, the equation obtained is

〈R3b〉 =
3a2n2�

4

(
a�
r�

)3(
α2(1 + 4e2) + γ2(1− e2)−

(2

3
+ e2

))
, (23)

where n� is the mean motion of the third body.

Regarding to solar radiation pressure perturbation, we average Eq. 19 over the eccentric anomaly of the
spacecraft and we obtain the following expression

〈RSRP 〉 = −β
3a2n2�

4

(
a�
r�

)3(
α2(1 + 4e2) + γ2(1− e2)−

(2

3
+ e2

)
+

2α e r�
a

)
, (24)

B. Second average

Second average is applied with respect to the third body perturbation. To do this, we perform an average
over the true anomaly of the disturbing body, f�. We use the previous relations between the orbital elements,
expressed in terms of the third body, in addition with the following

r�
a�

=
1− e2�

1 + e� cos f�
, dM� =

r2�

a2�

√
1− e2�

df�.

Note that the orbital elements of the spacecraft are constant during this averaging process, thus

〈〈RJ2〉〉 = 〈RJ2〉, 〈〈RJ3〉〉 = 〈RJ3〉 (25)

When we apply the average over the period of the disturbing body we get the following expression

〈〈R3b〉〉 =
3a2n2�

4
(
1− e2�

)3/2(α2
1 + α2

2

2
(1 + 4e2) +

γ21 + γ22
2

(1− e2)−
(2

3
+ e2

))
. (26)

where we have rewritten α and γ given in Eq.17 as α = α1 cos f� +α2 sin f� and γ = γ1 cos f� + γ2 sin f� ,
with

α1 = cosw cos(Ω− Ω�)− sinw cos i sin(Ω− Ω�),

α2 = sin i sin i� sinw + cosw cos i� sin(Ω− Ω�) + sinw cos i cos i� cos(Ω− Ω�),

γ1 = − sinw cos(Ω− Ω�)− cosw cos i sin(Ω− Ω�),

γ2 = sin i sin i� cosw − sinw cos i� sin(Ω− Ω�) + cosw cos i cos i� cos(Ω− Ω�).

(27)

For the solar radiation pressure perturbation, the last summand of its potential function given in equation
Eq. (24) is canceled after the average over the third body period. Hence, we get the same expression than
〈〈R3b〉〉 but multiplied by −β,

〈〈RSRP 〉〉 = −β
3a2n2�

4
(
1− e2�

)3/2(α2
1 + α2

2

2
(1 + 4e2) +

γ21 + γ22
2

(1− e2)−
(2

3
+ e2

))
.

(28)

Subsequently, for the case of a solar sail with fixed orientation perpendicular to the sun-sail direction,
the double-averaging transformations applied to the solar radiation perturbation produces

〈〈RSRP 〉〉 = −β 〈〈R3b〉〉. (29)

Thus, the secular disturbing potential of the orbital motion of a sail orbiting Mercury when we take into
account the zonals of the planet and the gravitational attraction of the Sun and solar radiation pressure, is
the addition of the preceding perturbation terms, named R

R = 〈〈RJ2〉〉+ 〈〈RJ3〉〉+ (1− β)〈〈R3b〉〉. (30)
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IV. Frozen orbits

In order to analyze the effect of the disturbing potential on the orbital elements of the spacecraft, the
double-averaged potential (Eq. (30)) is replaced in the Lagrange’s planetary equations that describe the
temporal variation of the orbital elements. We are interested in frozen orbits, which are characterized by
no secular terms in eccentricity and argument of the periapsis. Frozen orbits are orbits of consideration for
mission planning purposes because they maintain almost constant altitude and require small amounts of
fuel for orbital maintenance. The variation of the eccentricity and argument of periapsis is given by their
corresponding Lagrange’s equations:

dw

dt
=
−
√

1− e2
na2e

∂R

∂e
+

cot i

n a2
√

1− e2
∂R

∂i
,

de

dt
=

√
1− e2
na2e

∂R

∂w
− 1− e2

na2 e

∂R

∂M
.

(31)

Frozen orbits are identified as the equilibrium points of these equations, therefore the final stage is undertaken
by solving the equations

dw

dt
= 0,

de

dt
= 0. (32)

Let us replace on the previous system the reduced potential R (Eq. (30)).

dw

dt
= −J2

3R2
Mn(5 cos 2i+ 3)

8a2(e2 − 1)2
− J3

3R3
Mn csc i sinw

(
5(7e2 + 1) cos 4i− 3e2 − 4 cos 2i− 1

)
64a3e(e2 − 1)3

+(1− β)

[
− 3n2

�

√
1− e2

4n
(
1− e2�

)3/2 (4(α2
1 + α2

2)− (γ2
1 + γ2

2)−
4

3

)
(33)

+
3n2
� cot i

4n
√

1− e2
(
1− e2�

)3/2 ((1 + 4e2)
(
α1
∂α1

∂i
+ α2

∂α2

∂i

)
+ (1− e2)

(
γ1
∂γ1
∂i

+ γ2
∂γ2
∂i

))]
,

de

dt
= −J3

3R3
Mn

2 e sin i cosw(−4 + 5 sin2 i)

8a(1− e2)5/2
+ (1− β)

15n2
� e
√

1− e2

4n
(
1− e2�

)3/2 (α1γ1 + α2γ2
)
. (34)

The derivative terms ∂α1/∂i, . . . can be easily obtained through the partial differentiation of Eq. (27). Note
that the second equation de/dt = 0, Eq. (34), clearly holds when cosw = 0 if the third body orbit is planar
(i� = 0). While, in the case of inclined third body, i� 6= 0, it is required that both sin(Ω − Ω�) = 0 and
cosw = 0. That is, we will search frozen orbits for w = π/2 and w = 3π/2 and Ω− Ω� = 2kπ, k ∈ Z.
Hence, equation dw/dt = 0 depends on three variables, namely, eccentricity e, inclination i, and semimajor
axis a. This equation represents a surface; points on this surface correspond to equilibria of the system given
in Eq. (32), that is, points on the surface

F(a, e, i) ≡ d

d t
w(a, e, i) = 0

correspond to initial conditions (a, e, i) of frozen orbits.
Now we present some examples for different values of parameters of the radiation pressure coefficient β

and J3. All constants but J3 are given in Table 1. This zonal harmonic reflects an asymmetry between both
hemispheres of Mercury and influences the orbital altitude at pericenter. Recent Messenger mission (2011)
provided new accurate data about the gravity field coefficients,23 thus the J3 coefficient in the HgM002
gravity model for Mercury is J3 = J2/5. Previous works24,25 analyze the phase space for different values of
J3 equal to ±J2/2,±J2/10. Note that the sign of J3 is connected to the term “sinw” as it can be observed
in Eq. (22); this fact implies that the frozen orbits contours are reversed (from w = π/2 to w = 3π/2) if the
sign of J3 is changed.

Fig. 3 illustrates this region where frozen orbits may exist with sin(Ω−Ω�) = 0, w = π/2 and w = 3π/2
for the ratio J3 = J2/2 and sail lightness coefficient β = 0.2. From these figures, and in order to go into more
detail, we fix a constant semimajor axis and plot the level contour sections of F for low and high altitude
orbits.
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(a) w = π/2 (b) w = 3π/2

Figure 3. The surface F(a, e, i) of frozen orbits with J3 = J2/2 and β = 0.2.

1. Low altitude orbits.

We choose an orbital semimajor axis a = 3416[km], which is close to the one of Mercury Planetary Orbiter
(MPO), and plot the curves (i, e) for the chosen value of a (see Fig. 4, left). Frozen orbits with periapsis
w = 3π/2 are represented by a solid line, while a dashed one corresponds to w = π/2. The horizontal line
at e = 0.2858 is the limit for impact orbits, thus, the orbital eccentricity must be lower than the impact
value to a avoid possible collisions with the planet surface. Limiting ourselves to the non-impact region, we
observe that the eccentricity of frozen orbits grows when we depart from the equator (i = 0, π) and approach
the critical inclination of the third body for equatorial orbits (i = 39.2 ◦ as results of vanishing Eq. (33)
only for the third body effect). We also observe that there exist frozen orbits at polar inclination, and the
eccentricity of these orbits increases when approaching the polar case.

Figure 4 illustrates the behavior of the curves (i, e) of frozen orbits when the sail area to mass ratio varies.
We observe that when β increases (thickest line), the maximum value of the eccentricity when approaching
polar orbits is greater. The opposite behavior occurs at very high eccentricities, for which the minimum
value of the eccentricity for the polar case decreases.

Next figure, Fig. 5, depicts a very low-altitude orbit with semimajor axis a = 2830[km], note that the
maximum allowed eccentricity for non-impact orbits is lower and the eccentricity increases when we approach
polar inclinations but do not exist a maximum value corresponding to frozen polar orbits.

2. High altitude orbits.

Let us show the frozen orbits location for a high altitude orbit; for this case, we chose a semimajor axis
a = 5612[km], close to the orbital element of Mercury Magnetospheric Orbiter (MMO). Fig. 6 illustrates the
continuous curve of frozen orbits for different values of the eccentricity and inclination. For this semimajor
axis, the maximum allowed eccentricity for non-impact orbits is e = 0.5652, and frozen polar orbits exhibit
a low eccentricity value in the non-impact region. As the orbital altitude increases, the third body and SRP
effect increases. This fact is represented as a certain flattening of the curves (i, e) of frozen orbits; as far as
the semimajor axis increases the eccentricity of frozen orbits decreases, and it is also observed that the gap
between the inclination ranges for w = π/2 and w = 3π/2 is reduced and the two lines tend to join near a
certain critical inclination. Thence, for high altitude, frozen orbits are almost circular (e ≈ 0), and the only
eccentric frozen orbits are near the critical inclination.

Frozen polar orbits at w = 3π/2 are represented in Fig. 7; the initial conditions are extracted from
Fig. 4 and Fig. 6. We can observe that polar orbits for different values of the eccentricity librate around
the corresponding equilibrium points (frozen orbits). Therefore these orbits are suitable orbits for scientific
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Figure 4. Section (i, e) of frozen orbits with a = 3416, J3 = J2/2 and different values of solar lightness β. Dashed
lines correspond to w = π/2 and solid lines to w = 3π/2. In plot on the right, thin solid line corresponds to
β = 0, while the thick solid line is for β = 0.8.
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Figure 5. Section of very low-altitude frozen orbits with a = 2830 km, J3 = J2/2 and β = 0.2.

missions about Mercury because they scarcely require control of the orbital eccentricity which leads to the
control of the spacecraft lifetime.

It is evident that the symmetry of frozen surfaces is destroyed when the third body has a certain incli-
nation. This asymmetry is more significant when the orbit altitude and the obliquity increase. We observe
that the amplitude of a polar frozen orbit at high altitude considerably increases when we include the orbital
inclination of the third body (see Fig. 7). However we find that for the case of low altitude orbits, the
behavior of the trajectories practically does not change when the inclination is taken into consideration.

It can be seen that although the value of the inclination i� is not high, its effect should not be neglected.
Moreover, previous literature26,27 indicates that the obliquity of the third body orbit could increase the
orbital stability due to the fact that it slows down the orbital eccentricity increment.

Finally, we propagate numerically the corresponding initial condition of some of the polar orbits shown
in the previous figures for a 100 years interval. Fig. 8 shows the long-term evolution of the eccentricity for a
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(b) a = 10000

Figure 6. Section of high-altitude frozen orbits with J3 = J2/2 and β = 0.2.
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(b) High-altitude orbit: a = 5612

Figure 7. Polar orbits evolution (e,w). Frozen orbits correspond to e = 0.196269 and e = 0.0498688 respectively.

sample of two low and two high-altitude polar orbits, one orbit is exactly frozen while the other has orbital
elements close to that frozen orbit. The periodic oscillations are due to the averaging process that removes
only the secular variations, nevertheless the polar orbits that correspond to e = 0.196269 and e = 0.0498688
experience less variation due to its frozen character.

Note that the frozen orbits detected correspond to the double-averaged Hamiltonian. The averaged
eccentricity and argument of periapsis are a perturbed version of their real correspondents. For a set of
initial conditions of a frozen orbit we have performed the numerical propagation to illustrate how these
orbits evolve over time. We observe that the frozen character degenerates with time.

Next piece of work is to achieve the averaged Hamiltonian through Lie transforms in order have the
generating functions of the involved transformations,15 and this will allow us to convert the averaged initial
condition into osculating elements of the original problem. Another option to recover the frozen condition
would be to apply a numerical correction procedure taking the averaged frozen orbits as starters conditions
for the complete dynamical model.16 Previous results show that these initial conditions can be used in the
initial system describing the full dynamics (Eq. 9) to generate a good initial guess for frozen orbits.
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Figure 8. Long-term propagation. Frozen orbits correspond to e = 0.196269 and e = 0.0498688 respectively.

V. Conclusions

This paper has studied the orbital dynamics around Mercury, taking into account the attraction of a
third body (Sun) in an elliptical and inclined orbit, as well as solar radiation pressure and the non-uniform
distribution of the mass of the planet. We would like to remark that this article did not intend to obtain
a complete analytical theory or to study the global dynamics around the planet, but to help in mission
designing where frozen orbits are of major interest. With this purpose, solar radiation pressure in the
perturbation model has been included in order to visualize the changes in the location of frozen orbits when
a solar sailing spacecraft is considered. A double-averaged method has been applied to find a global picture of
families of frozen orbits, depending on three parameters: the inclination, the eccentricity and the semimajor
axis. Hence, approximate frozen orbits for low and moderate altitudes are obtained.
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