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1. Introduction 1 

Teosinte, an invasive species native to South America, recently appeared as weed in 2 

corn fields throughout Northeastern Spain. This species is the wild ancestor of corn 3 

(Zea mays L.) and it shares a similar growth cycle in this region. That is, teosinte 4 

germinates in May and needs high temperature and humidity to develop. Next, it 5 

reaches the flowering stage between August and September and its seeds fall to the 6 

ground from October to December, remaining latent until the next cropping season. 7 

Teosinte is a serious competitor of corn for several reasons. It is capable of producing a 8 

large number of seeds which remain viable in the soil for future cropping periods. It can 9 

also be hybridized with commercial corn. A heterogeneous set of undesirable plants can 10 

be observed in the fields as a result. A recent genetic study has determined that 11 

“Spanish teosinte” “does not group with any of the currently recognized teosinte taxa” 12 

(Tritikova et al., 2017). Moreover, at present, there is no herbicide control method that 13 

distinguishes between corn and teosinte, making chemical control unfeasible.  14 

Although the first reports of teosinte in Spanish fields come from the region of Aragon 15 

in 2014, some farmers have declared that rare, corn-like plants were observed some 16 

years before. At the same time, infestations in neighbouring areas of Catalonia have also 17 

been reported. Teosinte infestations were also reported further north, in the French 18 

region of Poitou-Charentes causing corn yield losses of more than 50% in 2013 19 

(ARVALIS, 2013).1 20 

Teosinte has become a major agronomic concern in important corn-producing regions. 21 

Corn is the third most important crop in Spain with 4.6 million tonnes annually, 22 

accounting for 17% of total Spanish cropland, of which 20% is produced in Aragon 23 

(Mapama, 2016). Additionally, since corn mono-cropping is common in many affected 24 

                                                 
1 At present, it is not confirmed if the teosinte plants from France are genetically connected with plants 
from Spain.  
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areas, teosinte has a high potential for spreading rapidly and could cause severe yield 25 

losses and economic costs to farmers.2 26 

Devising strategies for optimal control of an invasive weed like Spanish teosinte 27 

requires consideration of temporal and spatial dimensions. The temporal aspects of the 28 

invader require an understanding of the life cycle of teosinte to identify the most 29 

appropriate timing for the control method (Zimdahl, 1988; Recasens et al. 2005). This 30 

warrants research efforts to understand the demographic behaviour of teosinte, the 31 

teosinte-corn competition for resources, and the effectiveness of alternative control 32 

strategies. Research based on experimental trials can be used to estimate the expected 33 

economic benefits of weed control in the short- and long-run, after taking into account 34 

infestation scenarios in fields and the costs of available control methods (Recasens et al. 35 

2005). With respect to the spatial dimension of teosinte control, it is important to 36 

consider the weed’s diffusion pattern and how farmer behaviour could affect 37 

neighbouring fields, i.e., the identification of positive and negative externalities. This 38 

paper focuses solely on the temporal aspects of teosinte control. The spatial dimension 39 

is important but must be deferred to future research because different methodological 40 

approaches are required.  41 

In addition to affecting individual farms, a regulator dealing with the management of a 42 

new invasive weed in field crops faces several wider policy issues, including: i) 43 

uncertainty about the biological behaviour of the invader in the new agroecosystem and 44 

attendant effects on crop yields; ii) limits on available control methods and/or the 45 

regulator’s budget constraints; and iii) uncertainty about the economic efficiency of 46 

control methods. To overcome these uncertainties, dynamic mathematical models that 47 

combine biological and economic aspects of invasive species control is useful to 48 

                                                 
2 A research project to study the biology and control strategies was funded by the Spanish National 
Agriculture Research Institute (INIA) and executed by Aragon and Catalonian Research Centres and 
Plant Protection Services. 
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identify promising control strategies and the costs associated with them. One of the 49 

advantages of bio-economic modelling is that an economic and biologic equilibrium can 50 

be obtained simultaneously. Additionally, it is possible to design economic incentives 51 

for farmers to achieve a specific invasive species control target.  52 

A number of studies have demonstrated the usefulness of bio-economic models to study 53 

control of invasive weeds in natural ecosystems (e.g., Fechter and Jones 2001; Olson 54 

2006; Cacho et al. 2008; Epanchin-Niell and Hastings 2010). While these studies are 55 

abundant, the literature regarding invasive weeds in agricultural settings are relatively 56 

scarce (Mackee 2006; Juliá et al. 2007; Grimsrud et al. 2008; Maher et al. 2013). These 57 

studies focus primarily on using a variety of methods to identify optimal control levels 58 

once the invader is established on farms.  59 

The literature underscores the potential of bioeconomic models to identify optimal 60 

control measures when a weed invades a new environment because population growth 61 

and spread patterns vary across locations (Schereiber and Lloyd-Smith 2009). Also, 62 

there is consensus that invasive species impact assessments should recognize the 63 

multidisciplinary nature of the problem and should account for critical interdependence 64 

between economic and ecological factors (Perrings et al. 2002). Advances in knowledge 65 

of invasive species, optimization techniques and computational tools offer new 66 

opportunities for implementing models to help decision-makers identify appropriate 67 

strategies to control invasive weeds (Büyüktahtakın et al. 2015, Cacho et al. 2006).  In 68 

the case of teosinte, which appeared only recently in Europe, the availability of data on 69 

its biology and its economic impacts sets the stage for development of bio-economic 70 

models to guide optimal control decisions of farmers and regulators.  71 

The aim of this paper is to construct a bio-economic dynamic model in order to identify 72 

profit-maximizing strategies and devise policies to manage the teosinte problem in the 73 
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Spanish areas of Aragon and Catalonia. In this setting, the dynamic model is used to 74 

compare the optimal strategies under two scenarios: 1) when an individual farmer 75 

maximizes his/her own private benefits and 2) when a regulating agency maximizes 76 

social benefits (i.e., benefits to farmers minus the public costs resulting from the control 77 

program to manage teosinte infestations). This comparison sheds light on practical 78 

insights to improve the knowledge of teosinte weed and its optimal control. 79 

The literature on invasive species management incorporating estimations of economic 80 

damages is relatively abundant since the 1990s in the United States, South Africa, 81 

Australia and New Zealand (see Born et al. 2005 and Pimentel et al. 2005 for a review 82 

of diverse species). Remarkably, however, with the exception of a few studies 83 

addressing the management of invasive species in natural ecosystems in Germany 84 

(Reinhardt et al. 2003; Nehring, 2005) and in the UK (Dehnen-Schmutz et al. 2004), 85 

research focusing on Europe is scarce. Even more surprising, little work has dealt with 86 

the impacts of invasive weeds in agroecosystems. To the best of our knowledge, 87 

Recasens et al. (2007) in Spain is the only exception. They estimate the impact of 88 

invasive weeds by calculating the sum of the annual losses in expected crop production 89 

caused by weeds and the costs of the corresponding herbicide controls. 90 

This paper contributes to this growing literature by focusing on the case of teosinte in 91 

Spain, combining new knowledge on the biology of the invader with its impacts on 92 

economic costs. Our approach is similar to a study that used a bioeconomic dynamic 93 

model to determine the optimal combination of strategies to control an invasive weed in 94 

an Australian National Park (Odom et al. 2003). In our case, two different models are 95 

defined (private and social) and we incorporate a function to depict public costs. 96 

2. Methodology  97 

2.1. Study area 98 
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Although the date of the initial infestations of teosinte in the region is uncertain, the first 99 

reports were received in August 2014 at the Centro de Sanidad y Certificación Vegetal 100 

of Aragon (CSCV), which is the regional government’s Plant Protection Service 101 

agency. The agency is responsible for monitoring and control of plants pests and 102 

diseases, and outreach to farmers with technical advice on these issues. From these 103 

consultations, the CSCV identified several invaded areas with either low or high 104 

infestation scenarios in three specific irrigation districts of the Huesca and Zaragoza 105 

provinces covering an area of approximately 400 has. A low infestation scenario is 106 

associated to the presence of isolated teosinte plants in the plot, while a high scenario 107 

implies the existence of teosinte plant patches or a high incidence of the weed in the 108 

affected plot. Table 1 shows the distribution of affected lands and their initial infestation 109 

scenarios. 110 

Table 1: Crop area affected by teosinte (ha) 111 

Location Low infestation High infestation 

Monegros district 

Candasnos 

Bujaraloz 

Peñalba 

 

- 

27 

- 

 

284 

- 

12 

Ejea district - 38 

Torralba district - 36 

Total area (ha) 27 358 

  Source: CSCV (2017) 112 

The origin of teosinte infestations and its propagation Aragon region are still unclear, 113 

but initial hypotheses point to the use of non-certified seeds and later propagation with 114 

harvesters and stubble sheep grazing in affected areas. Based on its initial prospecting 115 

data the CSCV published a technical report with control recommendations for farmers 116 

(Pardo et al. 2014). In addition, several experimental trials were started in 2014 to 117 
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investigate the biology of teosinte under the growing conditions found in Aragon. These 118 

trials were initiated prior to the INIA-funded research project mentioned above, due to 119 

the urgency in providing responses to the teosinte problem. Results from this research 120 

were published recently (Cirujeda, 2017; Cirujeda et al. 2017; Pardo et al. 2017; Prado 121 

et al. 2017) and are employed in this paper to construct a bioeconomic model to 122 

examine farmer response to a teosinte infestation and to evaluate the social costs 123 

associated with this invasive weed. 124 

 125 

2.2. Hypothesis used for the model construction 126 

A particular concern with teosinte is that corn mono-cropping practices are common in 127 

the study area and can substantially accelerate its propagation. Growing corn in mono-128 

cropping systems dates to the mid-1990s, when fields started to be irrigated. Lack of 129 

experience with other irrigated crops and high corn prices have reduced incentives to 130 

use crop rotations in the region. However, CSCV guidelines encourage farmers to rotate 131 

corn with other crops. These recommendations are considered in the model explained 132 

below. 133 

In this work, the effect of mono-cropping practices over the temporal expansion of 134 

teosinte is evaluated under two initial infestation scenarios: low and high infestation 135 

scenarios. The modelling approach considers optimal strategies from two different 136 

perspectives: 1) an individual farmer maximizing his/her private benefits; and 2) a 137 

regulator that maximizes social benefits. The first model considers a farmer’s behaviour 138 

when corn mono-cropping is permitted. This model considers individual farmer 139 

decisions, assuming that the field average size of 8 ha, and it is solved to identify the 140 

control strategy that maximizes profits in the presence of teosinte. 141 
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The second model evaluates social impacts of alternative control strategies. A social 142 

planner selects the strategy that minimizes aggregate social costs in the infested areas 143 

(i.e. private costs of affected farmers plus public costs incurred by the social planner). In 144 

this context, the social planner is the institution responsible for the control of teosinte in 145 

the infested area (in our case the CSCV). The public costs include research, outreach 146 

activities and monitoring of infested areas. The model considers a region of 400 has in 147 

Aragon affected by teosinte and selects the best control strategies from the point of view 148 

of a social planner.  149 

We compare and contrast optimal control strategies of the farmer and social planner 150 

optimization problems to assess the adequacy of regulatory measures introduced by 151 

CSCV to control teosinte in 2014. Data on the total area affected and the infestation 152 

incidence in monitoring plots from 2014 to 2017 is used in order to validate our results. 153 

 154 

2.3. Bioeconomic dynamic model 155 

We consider the behaviour of a representative farmer in the focal region to state the 156 

private benefit optimization problem. Subsequently, we extend the model to consider 157 

the problem of a regulator deciding how to control teosinte to maximize social benefits 158 

in the region.  159 

In the presence of a teosinte infestation, the representative farmer problem is stated as 160 

the maximization of the total net annual benefit obtained from agricultural production in 161 

year t (Bi,t) (in €) calculated as the difference between the profit margin of crops (in 162 

€∙ha-1) minus the costs (in €∙ha-1) associated with each weed control strategy i. 163 

Mathematically: 164 

   titititi
z

ti zcwvB
ti

,,,,,  max
,

        [1] 165 
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where vi,t(wi,t) is the profit margin (in €∙ha-1) obtained from crops production in period t 166 

under strategy i, which depends on teosinte density (wi,t) (in plants∙m-2), ci,t is the cost of 167 

control strategy i (in €∙ha-1) in period t and zi,t is the farm area (in has) under control 168 

strategy i in period t. Each strategy i is linked to a specific crop, as explained below. In 169 

the private maximization problem, the farmer selects the area allocated to control 170 

strategy, zi,t,. Equation [1] states that farmers adopt management regimes and control 171 

strategies in response to the presence of the weed. Thus, the model focuses only on the 172 

key variables directly related to teosinte that affects profit margins. 173 

2.3.1. Teosinte control measures 174 

For simplicity, the only costs considered are those directly related to teosinte control 175 

and these depend on the control strategy i (i=1,…,7). Therefore, seven control strategies 176 

to control for teosinte are available, following research and recommendations of the 177 

CSCV of Aragon (Pardo et al., 2014). Such recommendations include a set of 178 

preventive and cultural measures to avoid field infestations. Within the possible cultural 179 

controls, three primary strategies have been proposed: 1) the false seedbed technique, 2) 180 

manual control and 3) rotations without corn. The first two cultural control strategies 181 

are only recommended for plots with low infestation scenarios, while rotations are 182 

mandatory in highly-infested plots. In addition planting corn is prohibited in highly-183 

infested areas until the elimination of teosinte seeds.3 The use of crop rotations 184 

facilitates weed control because the identification of teosinte in fields is easier and non-185 

selective herbicides of corn might be used, i.e. unspecific herbicides for grass weed 186 

control authorised for the corresponding crops (Pardo et al. 2017). The rotation crops 187 

recommended by the CSCV employed in the model are 1) barley-sunflower, 2) pea-188 

                                                 
3 The compliance of mandatory strategies in highly-infested plots is enforced and verified by the CSCV. 
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sunflower, 3) alfalfa and 4) wheat-alfalfa. Consequently, we consider seven control 189 

strategies:4 190 

1. No control (corn crop), 191 

2. False seedbed technique (corn crop), 192 

3. Manual control (corn crop), 193 

4. Barley-sunflower rotation, 194 

5. Pea-sunflower rotation, 195 

6. Alfalfa, 196 

7. Wheat-alfalfa rotation. 197 

The cost of each controls strategies in period t was calculated by Pardo et al. (2016). 198 

Specifically, the authors estimate the reduction in the annual net profit margins of such 199 

measures with respect to non-infested plots under alternative simulated infestation 200 

scenarios. The authors also underscore that under high infestations scenarios, manual 201 

control and false seedbed strategies are overly expensive and ineffective. Thus, these 202 

strategies are only considered under low infestation scenarios. Table 2 shows the costs 203 

associated to each control strategy. These costs were estimated by the CSCV collecting 204 

actual data in the infested area. In the case of manual control and false seedbed 205 

techniques these costs include management and labour costs as well as the profit margin 206 

losses resulting from lower yields because of competition between corn and teosinte. 207 

For the rest of strategies (i.e., rotations) no costs are directly related with teosinte 208 

control because common tillage and herbicides control it effectively. We note that 209 

rotations without corn imply lower profit margins which is captured in the model 210 

through the variable vi,t (profit margin per ha) for strategies i=4,5,6,7. 211 

Table 2: Control costs related with control strategies. 212 

                                                 
4 Preventive strategies (i.e. using certified seed, careful cleaning of equipment and water canals, and 
avoiding the use of crop residues of infested plots as feed for livestock) are not considered in the model. 
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Control strategy Cost (€/ha) 

1. No control 0 

2. False seedbed technique 546.7 

3. Manual control 142.8 

Source: Pardo et al. (2016) 213 

2.3.2. Profit margin function 214 

The profit margin function represents the farmer benefits from planting each crop, 215 

conditional on control strategy i. For the case of continuous corn crop with no rotations 216 

(i=1, 2, 3) the profit margin function is defined as: 217 

   titititi wymwv ,,,,   for i= 1, 2, 3,      [2] 218 

where vi,t(wi,t) is the profit margin obtained from corn (in €∙ha-1), m denotes the per unit 219 

profit margin of corn (in €∙t-1) calculated as the difference between market price and per 220 

unit production costs; and yi,t(wi,t) is the yield function of crop when teosinte is 221 

controlled using strategy i (in t-1∙ha). Note that yield function depends on weed density 222 

(wi,t). The per unit profit margin of corn m is from Lonja del Ebro (2011-2015) and 223 

Magrama (2011-2015), calculated as the average per unit profit margin of the last five 224 

years. The yield function yi,t(wi,t) takes into account the competition between teosinte 225 

and corn. Following experimental evidence, we assume that yields of other crops 226 

different to corn are not affected by teosinte. Thus, the values of variable vi,t (total profit 227 

margin) for barley, wheat, alfalfa, pea and sunflower are calculated as the average of the 228 

difference between revenues and production costs during cropping seasons 2010-2014 229 

(Magrama, 2011-2015).  230 

For the case of the corn (when i=1,2,3), we estimate a corn yield-weed competition 231 

function using experimental data in field trials collected during a 3-year period in areas 232 
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affected by teosinte.5 The specification of this corn yield-weed competition function is 233 

linear and it is estimated using the statistical package R,v-2-14.2 (R Development Core 234 

Team, 2014) as: 235 

  iii wwy  10   for i=1, 2, 3,       [3] 236 

where δ0 and δ1 are the intercept and slope coefficients of the function, with δ0>0 and 237 

δ1<0, meaning that corn yield decreases as the weed density increases (see Cirujeda 238 

2017 for a complete presentation of the competition function and its validation).  239 

2.3.3. Weed dynamics 240 

Figure 1 shows a schematic diagram of the teosinte annual population dynamics. 241 

Figure 1: Demographic diagram for teosinte. 242 

Source: Authors 243 

creation. 244 

Figure 1 illustrates the main biological processes and the teosinte plant stages 245 

considered in our bioeconomic model. We consider three main plant phenological 246 

stages in each period t: (1) seeds; (2) seedlings; and (3) adult plants. These stages are 247 

determined by three corresponding biological growth processes (emergence, 248 

                                                 
5 A detailed trial design description can be found in Pardo et al. (2017). 
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development and seed production) which affect the amount of weed and the size of the 249 

seed bank in the following period (t+1).  250 

Figure 1 starts with the amount of teosinte seeds in the soil (stage 1). A percentage e of 251 

total seeds in the soil become seedlings (stage 2) (see top of figure 1). Thereafter, some 252 

of the seedlings develop fully into teosinte adult plants (stage 3). Seedling recruitment 253 

and survival is determined by a linear function denoted by xddd  10 , where d is the 254 

number of adult plants and x is the number of seedlings. This function determines the 255 

number of adult teosinte plants, which in turn produce F new seeds as teosinte starts 256 

gradually producing seeds before the corn harvest. Finally, the process includes a 257 

mortality percentage rate M affecting mature seeds in the adult plants due to fungal 258 

diseases and corn borers. The remaining viable seeds increase the size of the seed bank 259 

in period t+1. At the end of the growing season, all adult plants are harvested as the 260 

same time as corn.  261 

In addition to the process described above, seeds that not emerge in stage 1 (1-e) 262 

become part of the seed bank in period t (see bottom of figure 1). A proportion of these 263 

seeds survive in the next period, with ss denoting the survival percentage rate, becoming 264 

part of the seed bank in period t+1. Thus, the size of the seed bank in period t+1 265 

decreases due to rotted or predated seeds (1-ss) and increases with the newly generated 266 

viable seeds by adult plants F·(1-M). In turn, this determines the size of the seed bank 267 

and the number of weeds in future periods.  268 

Therefore, the weed density in period t+1 depends only on the amount of seeds in the 269 

soil that emerge in period t+1. The amount of seeds in period t+1, for its part, is 270 

affected by two variables: the size of the seed bank in period t (seeds that did not 271 

germinate in the previous period and remain viable in the soil); and the weed density in 272 

period t (plants that have produced new viable seeds in period t). 273 
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The dynamics of teosinte population growth described in Figure 1 is represented 274 

mathematically in equations [4] and [5] below. Two variables are then considered in the 275 

model: wt, which affects agricultural output directly; and st, which affects the weed 276 

population potential to increase in future periods. The initial values for these variables 277 

are denoted by w0 and s0 respectively. In addition, the mathematical formulation takes 278 

into account that control strategy i affect the dynamics of both variables wt and st. 279 

Mathematically: 280 

 titi sfw ,1,            [4] 281 

 tititi swgs ,,1, ,          [5] 282 

where st is the size of the teosinte seed bank at time t (seeds∙m-2). The functions f(·) and 283 

g(·) represent the spread of wt and st, and they depend on control strategy i selected by 284 

the farmer. These functions are estimated from the data collected in field experiments. 285 

The function f(·) follows a Mitscherlich-Baule specification. This function allows for 286 

plateau growth and convex, but not necessarily, right angle isoquants. The intuition 287 

behind this specification is that weed density grows until a maximum value w* and 288 

thereafter the density remains constant due to plant competition for space and nutrients. 289 

It imposes a plateau growth which fits well with the observed behaviour of teosinte. 290 

This specification yields: 291 

     titi swsf ,10
*

, exp1         [6] 292 

Equation [6] implies that the increase in teosinte density in period (t+1) due to a one-293 

unit increase in the state variable (st) is proportional to the difference between that state 294 

variable (st) and the maximum value w*. After reaching a certain high level, the density 295 

no longer increases due to high competition among teosinte plants, at which point the 296 

weed density reaches its maximum level w*.  297 

Function g(·) represents the evolution of the size of the seed bank: 298 
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     [7] 299 

The size of seed bank in period (t+1) is a linear function of the weed density in period t 300 

and on the size of the seed bank in the period t, provided that the amount of seeds is 301 

lower than the maximum number s* observed in experimental trials. 302 

In other words, the amount of seeds in period (t+1) is calculated as the sum of the seeds 303 

surviving from period (t) and the seeds generated by adult weed plants in period t with 304 

the upper limit at s*. In this case, the linear relationship among variables affecting the 305 

dynamics of the seed bank incorporates the demographic processes observed in 306 

experimental trials.  307 

The population dynamics sub-models were validated by comparing predicted to 308 

observed population growth rates in field experiments conducted by co-authors. 309 

Observed data from 2014 were used as the initial conditions for the model in the 310 

validation of the estimated weed and seed growth functions. This asymptotic behaviour 311 

of weeds and seeds has also been observed in other invasive weeds. For example, it has 312 

been used to study sericea (Lespedeza cuneata), a perennial legume threatening native 313 

grasslands in the Great Plains of Kansas, United States (Büyüktahtakın et al. 2015). The 314 

parameters of the population dynamics, the coefficients values of functions, as well as 315 

the sources are presented in Table 3.  316 

Table 3: Biological parameters and coefficients of the functions. 317 

Parameters Value Description Source 

F (plants∙m-2) 414 Seed production Cirujeda (2017) 

e (%) 47.7 Emergence  Cirujeda (2017) 

ss (%) 7.38 Seeds survival Cirujeda (2017) 

M (%) 50.0 Mortality  Cirujeda (2017) 

w* (plants∙m-2) 22 Maximum value of weeds Cirujeda (2017) 
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s* (plants∙m-2) 31.8 Maximum value of seeds Cirujeda (2017) 

d0 

d1 

0.0704 

0.03933 

Coefficients of seedling survival 

function 

Cirujeda (2017) 

δ0 

δ1 

11.334 

-0.5456 

Coefficients of yield-weed 

competition 

Pardo et al. (2017) 

α0 

α1 

0.0704 

0.1876 

Coefficients of weed spread 

function 

Pardo et al. (2017), 

Cirujeda et al. (2017) 

β1 

β2 

0.0738 

98.97 

Coefficients of seed bank 

evolution function 

Pardo et al. (2017), 

Cirujeda et al. (2017) 

 318 

Figure 1 also illustrates how the control strategies alter the biological expansion of 319 

teosinte. Basically, control strategies directly affect the seed survival parameter (ss) and 320 

the development function (d). Following results from data analysis collected in the field, 321 

rotation strategies (i=4,5,6,7) can eliminate weed density and reduce seed bank size as 322 

already observed in selected commercial plots (Cirujeda et al. 2017).  323 

Table 4 shows the influence of control strategies on the parameters of weed density and 324 

seed bank size expressed as multipliers or proportions of the initial parameter values in 325 

Table 3. For example, a parameter value 1.0 indicates no effect on initial values, i.e. no-326 

control option. Also, parameter values of 0.1 and 1.0 for manual control in Table 4 327 

indicate that this strategy reduces the probability that a seedling becomes an adult plant 328 

to 0.9 of their original values, but there is no expected effect on seed survival. Values of 329 

the parameters in Table 4 were estimated based on the logical relationship between the 330 

control strategy and the parameter and on the observations taken in field trials, i.e., 331 

whether the parameter is expected to increase or decrease with a particular control.  332 

Table 4: Effects of control strategies on parameter values. 333 

Control method Multipliers 

Weed 

(development) 

Seed 

(seed survival) 
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1. No control 1.00 1.00 

2. False seedbed technique 0.20 0.90 

3. Manual control 0.10 1.00 

4. Barley-sunflower 0.00 0.30 

5. Pea-sunflower 0.00 0.30 

6. Alfalfa 0.05 0.50 

7. Wheat-alfalfa 0.05 0.50 

Source: Pardo et al. (2017), Cirujeda et al. (2017) 334 

Figure 2 illustrates the effect control strategies with continuous corn crop (controls 1, 2 335 

and 3) on weed and seed density dynamics using the multipliers in Table 4 when a 336 

given strategy is used consistently. For the case of fields with low infestation scenarios, 337 

the initial values of weed and seed densities are w0=0.001 plants∙m-2 and s0=0 seeds∙m-2, 338 

respectively; and for the high initial infestation they are w0=0.1 plants∙m-2, s0=0.074 339 

seeds∙m-2 respectively. For example, in a scenario with initial low weed density and no-340 

control strategy, teosinte attains the maximum weed density in year six and the 341 

maximum seed density value in year five, given that the entire corn crop is lost due to 342 

teosinte competition. The false seedbed technique delays the total loss of corn 343 

production to year eight, while manual control delays it until year ten.  344 

Figure 2: Evolution of weed and seed dynamics depending on control and infestation 345 

scenarios. 346 
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High infestation (w0=0.1 plants∙m-2; s0= 0.074 seeds∙m-2) 349 

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W
e

e
d

 d
e

n
si

ty
 (

p
la

n
ts

·m
-2

)

Time (years)

No control False seedbed Manual control

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Se
e

d
 d

e
n

si
ty

 (
se

e
d

s·
m

-2
)

Time (years)

No control False seedbed Manual control
 350 

 351 

When the initial teosinte density is high, the evolution is similar to the low density case, 352 

but the total loss of the corn crop occurs one period earlier (year five). The dynamics of 353 

weeds and seeds under manual control and false seedbed strategies show that they are 354 

unable to eradicate the infestation completely because they only delay the total loss of 355 

corn production by two or three years. Thus, these strategies recommended by CSCV 356 

are supposed to delay the teosinte infestation both in low and high-density situations but 357 

need additional control methods to reduce infestations. 358 

When crop rotations combining winter and summer crops are considered (strategies i=4 359 

and 5) teosinte is completely eliminated in year two (multipliers in table 4 are 0.0) while 360 

the incorporation of alfalfa (strategies i=6 and 7) eliminates infestations in year three 361 

through the use of herbicides and tillage.  362 

These results suggest that only effective strategies to eradicate teosinte imply rotating 363 

corn with other commercial crops. Other cultural control strategies (e.g., false seedbed 364 

and manual control) have partial impact on reducing seed bank and limited effect on 365 

reducing weed dynamics.  366 

 367 

2.3.4. Economic model 368 
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The economic model is stated as the maximization of benefits from agricultural 369 

production activities, subject to the dynamics of teosinte in the field. In the model, a 370 

farmer selects the sequence of control strategies (i) in his/her land without considering 371 

any other costs different to the cost of the control strategy (e.g. negative externalities 372 

and public costs to regulatory services). Using a discrete time framework, the dynamic 373 

private benefit maximization model is defined as follows: 374 

 
   tiititi

i

T

t
tiz

private zcwv
r

MaxB
i

,,,

7

1 1
 , 1

1



 

 

     [8] 375 

subject to: 376 

 tititi swfw ,,1, ,          [9] 377 

 tititi swgs ,,1, ,          [10] 378 

Zz
i

ti 


7

1
,           [11] 379 

where r is the discount rate (3%); the planning horizon T is 15 years which is 380 

considered appropriate to capture the main biological and economic aspects of 381 

controlling teosinte and the fact that alfalfa (a key rotation crop) has a lifecycle of five 382 

years; ci is the cost per ha associated with each control strategy i, and zi is the amount of 383 

land allocated to control strategy i. The objective equation [8] is the net private benefit 384 

through the planning horizon expected from each control strategy. Constraints [9] and 385 

[10] capture the weed and seed bank density dynamics explained in the previous 386 

section, and equation [11] is the total land (in has) constraint. Hence, the main decision 387 

variable in the model is zi,t, which is the amount of land devoted to each control strategy 388 

i. The model incorporates two state variables (wt, st). The objective of the analysis is to 389 

choose the sequence of control strategies (i) that maximise the present value of net 390 

benefits given an initial state of teosinte infestation scenario (w0, s0). This private 391 
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benefit optimization problem reflects a farmer’ behaviour when no mandatory control 392 

strategy is imposed by the regulator. Note that the problem described in equations [8]-393 

[11] does not take into account the public costs of regulatory agencies from establishing 394 

a program to control the teosinte problem (i.e., carrying out divulgation activities, 395 

conductions surveys in affected areas, monitoring and enforcing mandatory strategies). 396 

Thus, this maximization problem reflects the initial situation of the region, when 397 

teosinte became a problem for farmers and the CSCV did not have a program to control 398 

this invasive weed. 399 

The economic model defined in equations [8] to [11] can be extended to represent the 400 

problem of a social planner who maximizes the social benefit (SB) by including 401 

additional equations. Following current land-use patterns on the study area, the model 402 

assumes that a total area of 385 has is affected by teosinte infestations, the affected area 403 

in 2014 (CSCV, 2017). 404 

In this setting, we assume that there are two types of perfectly competitive farmers j, (j= 405 

1, 2). Both types of farmers have identical characteristics (i.e. they can be described by 406 

the same profit margin functions vj(·), the same control costs cj and the same functions 407 

governing weed and seed dynamics). The main difference between these two farmer 408 

types are 1) the initial teosinte infestation scenarios in field, 2) the number of farmers nj 409 

that belong to group j and 3) the total area 
j

Z  of group j. Mathematically, the SB is 410 

given by: 411 
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 419 

The SB is defined as the total benefit from production activities in the region minus the 420 

sum of the private costs of implementing control strategies and the public costs accruing 421 

to the control program to manage teosinte infestations set by the regulating agency. In 422 

order to capture these public costs we formulate a linear function Di(·), which depends 423 

on the number of hectares under control strategy i by each type of farmers j. The 424 

function incorporates the information on actual spending from the CSCV in affected 425 

areas (CSCV, 2017).6 The public costs function is defined as follows:  426 

j
ti

j
i

jj
tii zbbzD ,1,0, )(          [18] 427 

where jb0  represents a fixed cost (in €) of establishing the control program (divulgation 428 

activities, research on plant biology, etc), and j
ib 1,  is a variable cost which depends on 429 

control strategy i (in €∙ha-1) and is related with the amount of land under control 430 

(surveys in infested plots, monitoring farmer’ strategy, etc). Equation [18] assumes that 431 

the first derivative of function Di(·) is positive (Di’>0) when control strategies include 432 

corn crop (strategies i=1,2,3). In the case of rotation strategies (i=4,5,6,7), the model 433 

assumes that Di’<0. This means that the costs of monitoring the infested areas increase 434 

when corn is planted but decrease when rotations are introduced.  435 

                                                 
6 The control program includes the monitoring of more than 7,000 ha of crops in the areas where the 
presence of teosinte was detected. 
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Equations [13] to [15] and [17] are extended versions of equations [9] to [11] for the 436 

case of multiple farmers belonging to the low or high infestation group. Finally, 437 

equation [16] is a crop rotation restriction that affects all rotations except for those that 438 

include alfalfa. The left side of equation [16] denotes the area allocated to strategy i in 439 

period t ( j
tiz , ); and the right side (




5

1
1,

k

j
tkz ) is the sum of areas covered by all crops that 440 

use control strategies different than strategy i in period t-1, which could be followed by 441 

strategy i in the same area. Including this restriction in the model is necessary for 442 

agronomic reasons (i.e., improved soil fertility, pest and disease control) and implies 443 

that each crop cannot be planted in the same plot for more than one year in a row. This 444 

crop rotation restriction is a mandatory measure introduced by the CSCV in the affected 445 

areas with high infestation scenarios but not in areas with low infestation scenarios. The 446 

coefficient values of the function as well as the economic parameters of the model (and 447 

their sources) are shown in Table 5.  448 

Table 5: Economic parameters of the model 449 

Parameters Value Description Source 

ci (€∙ha-1) i=1,4,5,6,7 

                 i=2 

                 i=3 

0 

547 

142.8 

Control costs Pardo et al. (2016) 

m (€∙t-1) 152.3 Per unit profit margin of 

corn 

Lonja del Ebro (2011-2015) 

and Magrama (2011-2015) 

b0 

bi,1; i=1,2,3 

     i=4,5,6,7 

1600 

134.43 

-25.80 

Coefficients of public 

costs function  

Pardo et al. (2016) 

j
Z (ha) ; j=1 

              j=2 

27 

 

358 

Area with low 

infestation 

Area with high 

infestation 

CSCV (2017) 
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H (ha) 385 Total infested area  CSCV (2017) 

 450 

The solution of the social planner problem in equations [12] to [17] allow us to obtain 451 

the optimal choice of control strategies in the area taking into account all the private and 452 

social costs associated with the dynamics of teosinte. Both private and social problems 453 

were programmed with GAMS (General Algebraic Modeling System, Brooke et al., 454 

1998) and solved with the CONOPT2 algorithm.  455 

 456 

3. Results 457 

3.1. Optimal private farmer decision 458 

The problem defined in equations [8]-[11] is solved to provide the optimal decision rule 459 

for farmers with low and high initial infestation scenarios. These optimal decisions are 460 

specified in a ‘package’ of control measures that can be used to tackle the private 461 

problem each year depending on the current weed density and seed bank.  462 

Figure 4 shows the optimal control strategies for the private farmer problem. From the 463 

economic point of view, farmers with low infestation scenarios (top cells in figure 4) 464 

would select a no control strategy during the first three years, and then adopt manual 465 

control during year four. Corn is then substituted by alfalfa for five years and then the 466 

farmer would return to plant corn mono-cropping in year ten. 467 

For farmers with highly-infested plots (bottom cells in figure 4), the model suggests that 468 

they select a no control strategy during the first two years, adopt a false seedbed 469 

technique in the third year followed by alfalfa during its total cropping cycle of five 470 

years. Farmers plant continuous corn starting in year nine, because rotations are not 471 

mandatory in the model.  472 

Figure 4: Optimal private control strategies under different infestation scenarios. 473 
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Low infestation

High infestation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AlfalfaManual control     No control (corn)
Time (years)

False seedbed  474 

These decisions maximize benefits and result in optimal transitions for state variables 475 

(wt and st), i.e. the relationship between the state at period t and the state at t+1 when 476 

control strategies are employed. Figure 5 illustrates the optimal weed and seed densities 477 

path under low and high infestations if the optimal control strategies are followed by an 478 

individual farmer. The objective of this figure is to show the effect of control measures 479 

obtained in figure 4 (optimal strategies) on the state variables. 480 

Figure 5: Optimal trajectory of the state variables for the private problem for both 481 

situations of low and high initial density: weed density (a) and seed density (b). 482 
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 485 

Trajectories for the state variables indicate that farmers with low infestation scenarios 486 

tend to adopt rotations later than those owing plots with high initial infestation 487 

scenarios. This causes that weed and seed density increase up to period five, when 488 

rotation with alfalfa is introduced. At this point, weed density attain up to 6.2 plants∙m-2 489 
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and seed bank density up to 9.4 seeds∙m-2. In contrast, highly-infested plots adopt the 490 

alfalfa rotation one year earlier, which allows the elimination of invasive species 491 

already in year eight.  492 

3.2. Optimal social control strategies 493 

Figure 6 presents results for the optimal set of control strategies when the social 494 

problem is solved. In the case of plots with low infestation scenarios (top of the Figure 495 

6), the model suggests that rotations are adopted in the second year, after the first year 496 

of no control. Half of the low infested area (13.5 ha) is allocated to alfalfa in year two 497 

which is a crop that will remain for five years in field (i.e., through year six). The other 498 

half of low infested area is allocated to pea-sunflower or barley-sunflower (alternating 499 

each year) in years 2 to 6. Thereafter, corn can be planted again because teosinte and its 500 

seed bank are eradicated. The area allocated to alfalfa from year 2 to 6 (13.5 ha) is 501 

planted to pea-sunflower and corn alternating each year, starting in year seven. The 502 

remaining area is allocated to alfalfa from years 8 to 12. In contrast, results suggest that 503 

fields with high scenarios of infestation should adopt rotations starting in the first year 504 

of the period and could return to corn crop in half the area (179 ha) by the fourth year.  505 

Figure 6: Optimal social control strategies for the total area under different infestation 506 

scenarios. 507 

Low infestation
(27 ha)

High infestation
(358 ha)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pea-sunflower      Barley-sunflower
Time (years)

      Alfalfa       No control (corn)  508 

Note: Divided columns indicate that half of the cultivated area is sown with each crop. 509 

Figure 7 illustrates the optimal trajectories of state variables (i.e., weed and seed 510 

densities) in the case of adopting the optimal control strategies obtained in Figure 6 511 
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from the social problem point of view. In this case, plots with low infestation scenarios 512 

attain weed density up to 0.12 plants∙m-2. Next, half the area is allocated to alfalfa and 513 

the other half to rotation annual crops until teosinte is eradicated in year five. Under this 514 

set of optimal control strategies, the seed bank would be totally eliminated in year six, 515 

when corn crop could be planted again. The evolution of weeds in plots with high 516 

infestation decreases until total eradication in year four, after which corn is planted in 517 

half the area. The seed bank decreases until its complete elimination in year five. In 518 

comparison with Figure 5, both weed and seed bank densities attain much lower values 519 

because rotations are adopted earlier when public costs are considered in the model (we 520 

note that the scales of vertical axis in Figures 5 and 7 are quite different). 521 

Figure 7: Optimal trajectory of the state variables in the social problem for both 522 

situations of low and high initial density: weed density (a) and seed density (b) 523 
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  525 
 526 

3.3. Estimation of economic impacts  527 

In Table 6 we present the estimated economic impacts of teosinte in three possible 528 

cases: i) doing nothing (i.e., no control strategy); ii) implementing the optimal private 529 

control strategies; and iii) implementing the optimal social strategies. Economic losses 530 
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caused by teosinte are calculated as the average net present value of 15-year period for 531 

1) losses for the total area and 2) per hectare.  532 

Table 6. Estimates of economic impacts in the study area. 533 

 Total discounted benefit 

(in 103 €) 

Average annual benefit per 

hectare (in €∙ha-1) 

 Doing 
nothing 

Private 
Optimal 

Social 
Optimal 

Doing 
nothing 

Private 
Optimal 

Social 
Optimal 

(1) Benefits, No-
Infestation (baseline) 

7,933 7,933 7,933 

(5,314)a 

1,374 1,374 1,374 

(920)a 

(2) Benefits, Low-
Infestation Area 
(3) Public costs, Low-
infestation Area 

105.3 
 

78.4 

424.3 
 

20.9 

281.3 
 

5.2 

260 
 

193.6 

1,048 
 

51.6 

695 
 

12.9 

(4) Total Benefit, 
Low-Infestation Area* 
(4)=(2)-(3) 

26.9 403.4 276.1 66.4 994.6 682.1 

(5) Benefits, High-
Infestation Area 
(6) Public costs, High-
infestation Area 

943.2 
 

745.8 

5,423 
 

149.2 

3,562 
 
0 

175.6 
 

138.8 

1,010 
 

27.8 

663 
 
0 

(7) Total Benefit, 
High-Infestation Area* 
(7)=(5)-(6) 

197.3 5,274 3,562 36.8 982.2 663 

(8) Losses relative to 
No-Infestation 
(8)=(1)-(4)-(7) 

7,709 2,256 4,095 1,271 391 709 

a Values in brackets in row (1) inform on benefits under no-infestation and mandatory 534 
rotations.  535 
*The low-infestation area is 27 has, and the high-infestation area is 358 has. 536 

To do this, we first calculate the benefits obtained from corn production for the private 537 

and the social benefit maximization problems under the no-infestation scenario (see row 538 

(1) in Table 6). We use these values as the baseline for comparison across control 539 

strategies. We note that these baseline scenarios are the same for the private and the 540 

social maximization problems, given that farmers are not compelled to rotate crops 541 

under a no-infestation scenario. However, we also consider the case of mandatory 542 

rotations under no-infestation to estimate the economic impacts of the social problem 543 
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(see values in parenthesis in row 1 under the ‘Social Optimal’ column) to understand 544 

why farmers do not rotate crops voluntarily.  545 

Second, we calculate private benefits obtained with in the three cases (doing nothing, 546 

optimum private and optimal social) under two infestation scenarios (low- and high-547 

infestation scenarios) which account for losses in production as well as costs of 548 

implementing control strategies. We calculate the public costs associated to low- and 549 

high-infestations and calculate total costs (i.e., private plus public costs) of controlling 550 

for teosinte. 551 

According to our model, if a farmer selects a do nothing strategy, then corn production 552 

is completely lost by period four and three, for the low- and high-infestation scenarios 553 

respectively (Figure 4). This implies that private economic benefits are 105.3 and 943.2 554 

103 € for low and high infestation scenarios, respectively; and public costs are 78.4 and 555 

745.8 103 € for low and high infestation scenarios, respectively. Consequently, if 556 

nothing is done to control teosinte, economic losses for the 15-year planning horizon 557 

can reach up to 249,199 (9,229 €∙ha-1) in the low-infested area and 3,364,700 € (9,398 558 

€∙ha-1) in the high-infested area, in comparison to the socially-optimal strategies.7  559 

When optimal private control strategies are adopted by farmers, results indicate that the 560 

private annual average benefits of low- and high-infested plots is 1,048 and 1,010 €∙ha-1 561 

per year, respectively. This implies a margin reduction of 23.7% and 26.5% with respect 562 

to the non-infestation case (1,374 €∙ha-1), respectively. When optimal strategies from the 563 

social point of view are adopted, these values are substantially lower, reaching 695 and 564 

663 €∙ha-1 for the low- and high-infestation scenarios respectively. This implies margin 565 

reductions of 49% and 52% with respect to the baseline scenario without rotations 566 

(1,374 €∙ha-1) and 24.4% and 27.9% when we consider the no-infestation scenario with 567 

                                                 
7 These results are obtained from Table 6 by subtracting values on ‘Social Optimal’ column minus ‘Doing 
nothing’ column in rows (4) for low infestation and (7) for high infestation scenarios, respectively.  
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rotations (920 €∙ha-1). These results explain the reluctance of farmers to adopt rotations 568 

when public costs are not considered. 569 

The impact of teosinte is quite different when public costs are taken into account. Recall 570 

that farmers do not take into account the public costs in their decisions in the private 571 

benefit maximization problem. However, under infestation scenarios (high and low) 572 

public costs do exist when corn is grown, although farmers do not consider them when 573 

making control decisions. In this case, public costs for the total period are 170,096 € 574 

(20.9 and 149.2 103€ corresponding to low- and high-infestation scenarios, 575 

respectively), and only 5.2 103 € for the social problem. Interestingly, if annual average 576 

per hectare public costs is considered in the private optimization problem, then we 577 

observe that low-infested plots cause higher economic costs than highly-infested plots 578 

(51.6 €∙ha-1 versus 27.8 €∙ha-1, respectively) because corn is produced during a longer 579 

period in plots with initial low-infestation scenarios. Thus, if public costs are taken into 580 

account, the average annual per hectare benefit from the optimal private strategies 581 

diminishes by 28.5% with respect to the no infestation scenario, while the socially 582 

optimal strategies diminish it slightly less, by 27.7%.  583 

The estimates for the case of no infestation allow us to calculate the total economic cost 584 

of teosinte in the infested area for the period considered. The total costs if nothing is 585 

done to control for teosinte is 7.7 million euros. In the private benefit maximization 586 

model, such losses are lower, amounting to 2.25 million euros. In the social benefit 587 

maximization problem, the losses are 4.09 million euros when rotations are enforced, 588 

which are higher than in the private benefit maximization problem. Nevertheless, if crop 589 

rotations are adopted by farmers as a preventive measure, for the social optimal 590 

strategies result in the smaller losses (1.4 million euros) due to teosinte.  591 

4. Discussion  592 
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The definition of private and social benefit maximization problems facilitates a 593 

comparison between the strategies currently used by farmers to control teosinte in the 594 

focal area and the socially optimal strategy. The analysis of optimal private versus 595 

social control strategies indicate that farmers who are not forced to introduce rotations 596 

will maintain continuous corn until year six under low infestation scenario, and until 597 

year four under high infestation scenario (see Figure 4). This behaviour was in fact 598 

observed in many monitored plots of the study area during the initial stages of teosinte 599 

detection in the study area: farmers with low-infested plots did not control for teosinte, 600 

nor used cultural controls (manual or false seedbed control) because of high corn market 601 

prices and lack of knowledge regarding the potential competition of teosinte with corn. 602 

Afterwards, most farmers introduced rotations because the invasion was becoming out 603 

of control and they realized that other cultural control methods were too costly and 604 

ineffective for eradication. 605 

Socially optimal control strategies require that corn is planted only in the first year with 606 

low-infestation scenarios; and rotations are used afterwards to avoid teosinte 607 

propagation and public costs caused to society (Figure 6). The mandatory inclusion of 608 

rotations implies that farmers in the affected area would diversify crops with half the 609 

land allocated to alfalfa and the other half allocated to rotations with winter and summer 610 

crops. In addition, this proposed behavior reduces the public costs for low-infested plots 611 

and would eliminate them for highly-infested ones.  612 

Since rotations are the only way to completely eradicate teosinte plants and seeds in 613 

fields, our results indicate that rotations should be adopted in the first 5 or 4 years in the 614 

case of low- and high-infestation scenarios, respectively. Thereafter, corn can be 615 

cultivated again under the assumption that teosinte has been totally eradicated. 616 

Although teosinte can be eliminated with the use of herbicides, given the botanical 617 



 30

similarity between corn and teosinte, there is no herbicide for teosinte that does not 618 

affect corn. Thus, the only way to avoid re-appearance of the invader is to use crop 619 

rotations, as far as teosinte seeds remain in the soil. These results suggest that the 620 

introduction of rotations could have prevented the teosinte propagation and the 621 

associated economic costs, as has been often claimed by scientists for other plant and 622 

pest diseases (Altieri and Liebman, 1988). 623 

The examination of optimal trajectories obtained for weed and seed bank as a result of 624 

the optimal private strategies application (Figure 5) shows that the total elimination of 625 

teosinte infestation in low-infested plots is attained in a later period in comparison to 626 

high-infested plots. The reason is that rotation strategies are adopted later in low-627 

infestation plots because farmers expect higher benefits from adopting no-control 628 

strategies in the short-run and underestimate the potential of this weed to compete with 629 

corn in subsequent years. As a consequence, low-infested plots become highly-infested 630 

plots after three years of no teosinte control, and farmers have to adopt rotation 631 

strategies thereafter to minimize teosinte negative impacts. The optimal trajectories of 632 

state variables (Figure 5) also confirm that other cultural control strategies (i.e., false 633 

seedbed and manual control) do not eradicate teosinte infestations. In addition, data 634 

from experimental trials reveal that the survival of teosinte seeds is drastically reduced 635 

by crop rotations. Thus, data used in this paper regarding the survival capacity contrast 636 

with the hypothesis of long survival rate stated in Tritikova et al. (2017) and Pardo et al. 637 

(2016).  638 

When social strategies are adopted, the teosinte eradication is attained in year five 639 

because rotations are adopted earlier and reduce the public costs for the 15-year 640 

production plan horizon (Figure 6). The comparison of private and social trajectories 641 

suggest that control strategies based in false seedbed and manual means are not optimal 642 
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from the social point of view since eradication of teosinte is achieved only with crop 643 

rotations. Hence, this result indicates that the regulatory authority must reconsider these 644 

measures not only in high-infested plots but also in the case of low-infested plots. 645 

With respect to the economic impacts of the optimal strategies, results suggest that 646 

private strategies are not optimal from a social perspective and impose a total public 647 

cost of 170,096 €. The reason is that in the private optimization problem, corn is 648 

produced in infested plots during the first three or two years, given that public costs are 649 

not considered by the farmers. In contrast, when socially optimal strategies are adopted, 650 

public costs are reduced dramatically because control strategies planting corn in the 651 

presence of an infestation are only selected in the first year, and monitoring costs are not 652 

incurred when rotations are introduced.  653 

The economic estimates of average losses show that the socially-optimal strategies 654 

reduce private benefits by 33%. Therefore, farmers have no incentive to adopt them 655 

voluntarily in the short-run because public costs are not taken into account in their 656 

private decisions. These results highlight the importance of considering the public costs 657 

in the social problem and underscore the importance of mandatory rotations to avoid 658 

public costs of teosinte control. 659 

Regarding the temporal and spatial evolution of teosinte in the region, Figure 8 660 

summarizes the available data obtained by the CSCV on the monitored area and the 661 

infestation scenarios from 2014 to 2016. The figure indicates that although the total 662 

infested area has increased since 2014, the number of plots with high infestation 663 

scenarios has decreased rapidly from 93% (358 ha) to 9% (72 ha) of the total area due to 664 

mandatory rotations. According to the data (consistent with CSCV technicians' 665 

assessment), the new infected areas located in 2015 and 2016 were plots with previous 666 

infestations but not yet identified in 2014. The observed temporal evolution confirms 667 
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that rotations have been effective in reducing the infestation incidence in the affected 668 

plots. 669 

Figure 8: Data on the real evolution of infested areas.  670 
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Source: CSCV (2017) 672 

Of course, the results depend heavily on the ability of the models to represent reality 673 

and on the values of the parameters used to calibrate them. The economic model 674 

incorporates actual data obtained by the CSCV on invested areas, farmer behavior, 675 

actual evolution of the invasive species in the affected regions, and actual costs of 676 

monitoring. This feature of the model provides face validity to the economic impact 677 

estimates in the focal region of this investigation.  678 

If certain economic parameters change (e.g., the crop prices), the economic value of the 679 

control strategies would also change because some of the crops may become more 680 

economically attractive with respect to others. For example, higher (lower) prices for 681 

alfalfa could make this strategy more (less) desirable compared to corn and this could 682 

affect the period when corn would be substituted by this rotation in the benefit 683 

maximization problem. However, the average prices of the last five years have been 684 

used in our calculations to partially avoid the impact of price effects on the validity of 685 
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the results. Hence, although the estimates of losses associated to the optimal strategy 686 

path would change, the critical conclusions on private versus social decisions would 687 

remain valid. Changes in parameters would affect all farmers in the same way but the 688 

biological process of teosinte is not affected. 689 

Finally, regarding the teosinte population dynamics, results are validated using data 690 

obtained in experimental trials from 2014 to 2017. These data confirm that rotations are 691 

the most effective measure to eradicate Spanish teosinte and its seed banks. 692 

 693 

5. Conclusions 694 

The bio-economic model developed here integrates a dynamic model of teosinte’s 695 

population growth and an economic model selecting control strategies to optimise 696 

private and social benefits. The teosinte biology is characterized by its formidable 697 

ability to compete with corn and its fast propagation rates. In contrast, the survival 698 

capacity of the seed bank has proved to be limited (Cirujeda, 2017). The dynamic model 699 

developed here takes into account these characteristics by introducing two state 700 

variables. The specification of both private and social optimization problems allows a 701 

comparison of teosinte impacts between the farmer optimal decisions and the adoption 702 

of socially-optimal control strategies. In addition, considering two infestation scenarios 703 

(low and high) allows modeling the effect of control strategies in a more realistic way 704 

and estimating the public costs of the regulatory authority.  705 

A key result of our analysis is that controls based in false seedbed and manual control 706 

are not optimal strategies to eradicate teosinte because they extending the problem in 707 

the future. Therefore, the regulatory authority must reconsider recommending these 708 

control strategies in low-infested plots. Our results indicate that, if the proposed social 709 

optimal strategies are introduced in all infested plots, the invasion will be totally 710 
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eradicated after six cropping periods and public costs would disappear completely 711 

thereafter. Of course, this estimate depends on farmers’ compliance with the technical 712 

advice of the regulatory authority in terms of control and prevention strategies.  713 

Our results also shed light on approaches to completely eradicate teosinte. First, it is 714 

crucial that incipient infestations are monitored due to the fast propagation capacity of 715 

the weed. In addition, the use corn mono-cropping has contributed to the rapid 716 

expansion of initial infestations in the area. Both aspects reveal the importance of 717 

farmer involvement in adopting control strategies, and to train them on the economic 718 

and agronomic negative effects of not following the recommendations of the regulatory 719 

authority. 720 

Although possible externalities associated with the spatial diffusion of teosinte has not 721 

been analyzed in this paper, field observations indicate that preventive actions play an 722 

important role in the spatial dispersion of this invasive weed. That is, the control 723 

strategies adopted by a farmer may influence teosinte infestation in neighbouring farms 724 

and vice versa. To account for such externalities, future research should incorporate the 725 

spatial dimension of teosinte invasions into the model to evaluate the influence of 726 

preventive actions on the optimal control strategies. Future research can also incorporate 727 

other externalities in teosinte control. For example, what the benefits of cleaning 728 

harvesters after using them are (in terms of reduced weed spread), considering that 729 

farmers in the same district share the same harvester. 730 
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