000130420 001__ 130420
000130420 005__ 20240125162930.0
000130420 0247_ $$2doi$$a10.1007/s10569-017-9801-9
000130420 0248_ $$2sideral$$a104170
000130420 037__ $$aART-2018-104170
000130420 041__ $$aeng
000130420 100__ $$0(orcid)0000-0003-4859-7224$$aTresaco, E.
000130420 245__ $$aAveraged model to study long-term dynamics of a probe about Mercury
000130420 260__ $$c2018
000130420 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130420 5203_ $$aThis paper provides a method for finding initial conditions of frozen orbits for a probe around Mercury. Frozen orbits are those whose orbital elements remain constant on average. Thus, at the same point in each orbit, the satellite always passes at the same altitude. This is very interesting for scientific missions that require close inspection of any celestial body. The orbital dynamics of an artificial satellite about Mercury is governed by the potential attraction of the main body. Besides the Keplerian attraction, we consider the inhomogeneities of the potential of the central body. We include secondary terms of Mercury gravity field from J2 up to J6, and the tesseral harmonics C¯ 22 that is of the same magnitude than zonal J2. In the case of science missions about Mercury, it is also important to consider third-body perturbation (Sun). Circular restricted three body problem can not be applied to Mercury–Sun system due to its non-negligible orbital eccentricity. Besides the harmonics coefficients of Mercury’s gravitational potential, and the Sun gravitational perturbation, our average model also includes Solar acceleration pressure. This simplified model captures the majority of the dynamics of low and high orbits about Mercury. In order to capture the dominant characteristics of the dynamics, short-period terms of the system are removed applying a double-averaging technique. This algorithm is a two-fold process which firstly averages over the period of the satellite, and secondly averages with respect to the period of the third body. This simplified Hamiltonian model is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semimajor axis, eccentricity and inclination. We find frozen orbits for an average altitude of 400 and 1000 km, which are the predicted values for the BepiColombo mission. Finally, the paper delves into the orbital stability of frozen orbits and the temporal evolution of the eccentricity of these orbits.
000130420 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/2013-44217-R
000130420 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130420 590__ $$a1.837$$b2018
000130420 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b42 / 104 = 0.404$$c2018$$dQ2$$eT2
000130420 591__ $$aASTRONOMY & ASTROPHYSICS$$b38 / 69 = 0.551$$c2018$$dQ3$$eT2
000130420 592__ $$a0.781$$b2018
000130420 593__ $$aApplied Mathematics$$c2018$$dQ1
000130420 593__ $$aAstronomy and Astrophysics$$c2018$$dQ1
000130420 593__ $$aSpace and Planetary Science$$c2018$$dQ1
000130420 593__ $$aMathematical Physics$$c2018$$dQ1
000130420 593__ $$aModeling and Simulation$$c2018$$dQ1
000130420 593__ $$aComputational Mathematics$$c2018$$dQ1
000130420 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130420 700__ $$aCarvalho, J.P.S.
000130420 700__ $$aPrado, A.F.B.A.
000130420 700__ $$0(orcid)0000-0001-5208-4494$$aElipe, A.$$uUniversidad de Zaragoza
000130420 700__ $$ade Moraes, R.V.
000130420 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000130420 773__ $$g130, 2 (2018), 9 [26 pp.]$$pCelest. mech. dyn. astron.$$tCelestial Mechanics and Dynamical Astronomy$$x0923-2958
000130420 8564_ $$s2891629$$uhttps://zaguan.unizar.es/record/130420/files/texto_completo.pdf$$yPostprint
000130420 8564_ $$s2381327$$uhttps://zaguan.unizar.es/record/130420/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130420 909CO $$ooai:zaguan.unizar.es:130420$$particulos$$pdriver
000130420 951__ $$a2024-01-25-15:09:24
000130420 980__ $$aARTICLE