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Abstract: This article provides a method for finding initial conditions of frozen orbits for a probe
around Mercury. Frozen orbits are those whose orbital elements remain constant on
average. Thus, at a given latitude, the satellite always passes at the same altitude.
This is very interesting for scientific missions that require close inspection of any
celestial body. The orbital dynamics of an artificial satellite about Mercury is governed
by  the potential attraction of the main body. Besides the Keplerian attraction, we
consider the inhomogeneities of the potential of the central body. We include
secondary terms of Mercury gravity field from J2 up to J6, and the tesseral harmonics
C22 that is of the same magnitude than zonal J2. In the case of science missions
about Mercury, it is also important to consider third-body perturbation (Sun). Circular
restricted three body problem can not be applied to Mercury-Sun system due to its
non-negligible orbital eccentricity. Besides the harmonics coefficients of Mercury's
gravitational potential, and the Sun gravitational perturbation,   our average model  also
includes solar acceleration pressure. This simplified model captures the majority of the
dynamics of low and high orbits about Mercury. In order to capture the dominant
characteristics of the dynamics, short-period terms of the system are removed applying
a double averaging technique.  This algorithm is a two-fold process which firstly
averages over the period of the satellite, and secondly averages with respect to the
period of the third body. This simplified Hamiltonian model is introduced in the
Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface
depending on three variables: the orbital semimajor axis, eccentricity and inclination.
We find frozen orbits for an average altitude of 400 km and 1000 km, which are the
predicted values for the BepiColombo mission. Finally, the paper delves into the orbital
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stability of frozen orbits and the temporal evolution of the eccentricity of these orbits.
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Planetary equations. Thus, frozen orbits are characterized by a surface depending
on three variables: the orbital semimajor axis, eccentricity and inclination. We
find frozen orbits for an average altitude of 400 km and 1000 km, which are the
predicted values for the BepiColombo mission. Finally, the paper delves into the
orbital stability of frozen orbits and the temporal evolution of the eccentricity of
these orbits.

1 Introduction

The long term effects on an artificial satellite about Mercury have already been
documented in the literature. It is of contemporary interest since current explo-
ration goals plan the exploration of the planet. The first mission to Mercury was
called Mariner 10, which mapped half of the planet’s surface during 1974 and
1975. More recently, MESSENGER went into orbit around Mercury and completed
the mapping of Mercury’s surface in 2013. Finally, BepiColombo is Europe’s first
mission to explore the planet Mercury in unprecedented detail. BepiColombo is
planned for launch in 2018 and planned to enter orbit around Mercury in 2025.

Frozen orbits are a subject of inalterable interest since these orbits allow to
minimize the cost of the orbit maintenance of the spacecraft. A search for frozen or-
bits in the context of BepiColombo mission is presented in this work. BepiColombo
is a joint mission of the European Space Agency and the Japan Aerospace Ex-
ploration Agency to the planet Mercury. The mission comprises of two satellites
to be launched together: the Mercury Planetary Orbiter (MPO) and the Mercury
Magnetospheric Orbiter (MMO). Perturbing forces acting on their keplerian orbits
include Mercury’s non-spherical mass distribution, the gravitational force of other
planets and the Sun, as well as radiation pressure from direct sunlight.

The spacecraft motion about Mercury has been studied by different authors.
Lara et al. (2010) [17] developed an analytical theory considering a dynamical
model based on the non-sphericity of the planet (J2 and J3) and the gravitational
effect of the third body in elliptical and planar orbit. Ma and Lie (2013) [20] pro-
posed a continuous control method to build artificial frozen orbits around Mercury.
While, Tresaco et al. (2016) [28] studied the long term dynamics around Mercury
using a simplified Hamiltonian that includes J2 and J3 and the gravitational at-
traction of the Sun, as well as radiation pressure. Nevertheless, these papers took
the values J2 = 6× 10−5 and J3 = J2/2 for the harmonic coefficients of Mercury’s
gravitational potential. This value was based on the Mariner 10 mission flybys,
while the value of J3 was not still determined (see Jehn et al. [14]). However,
recent studies by Mazarico [22], Verma [30] and Stark et al. [27] give new estima-
tion of Mercury’s gravity field up to degree and order 50 using data collected by
MESSENGER spacecraft after three years in orbit. Moreover, the second-degree
coefficient C22 has to be considered since it is only 1/2 of the J2 term. We will
see that other zonal coefficients have also a special significance in the context of
mission planning. In particular, J3, J4 and J6 are only one order of magnitude
smaller than J2 and C22. On the other hand, lower-degree coefficients (> 6) can
be ignored because they are 3 or 4 orders of magnitude smaller. Consequently,
we incorporate these new estimated values of the harmonic coefficients in order
to present a much more realistic dynamical system, and to reveal differences with
previous studies.
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Besides, in addition to Mercury’s gravitational forces, other forces included in
our disturbing function are: gravitational attraction of the Sun and the radiation
pressure from direct sunlight. We consider the acceleration due to solar radiation
pressure without shadowing effect. This inverse square radial thrust applies to
different forms of spacecraft propulsion, such as solar sails [11], [23] and mini-
magnetospheric plasma propulsion (M2P2) [32]. Both systems use the solar wind
as a free energy source. M2P2 system inflates a large magnetic bubble around the
spacecraft that enable to attain unprecedented speeds. It will be very useful for
exploration of the solar system and beyond. On the other hand, solar sails are very
promising for the scientific community. This technology opens new and challenging
possibilities to space-science missions such as deep-space exploration, space debris
removal strategies and long term missions in the solar system. Recent projects
consider these technological developments in mission-designing. For instance, in
Paul et al. [10] it is developed a configuration for a solar sail in a low Earth orbit
that allows operation in high-inclination orbits. Another example is a small space
probe from NASA, propelled by a solar sail, that is bound for an asteroid; this
mission is planned to be launched in 2018. Let us also mention the ambitious
project supported by Prof. Hawking that will send thousand of mini-solar sails
into the Earth’s orbit.

Summarizing, along this paper we analyse the orbital motion of a spacecraft
for an orbit altitude range from 400 km to 12000 km, which correspond to the limit
values provided for BepiColombo spacecraft. Our work has been conducted in the
frame of the double-averaging techniques of the disturbing function (see Broucke
[3], Carvalho et al. [4] and references therein). After removing the short–periodic
terms from the perturbing function of the Hill problem, the Lagrange planetary
equations capture the dominant characteristics of the dynamics. The solution of
the system that gives the variations of the eccentricity and argument of pericenter
ω̇ = 0, ė = 0, provides us the values of the equilibria of the reduced system.
These equilibria are orbits with constant mean eccentricity and mean argument
of pericenter, which are known as frozen orbits. These particular solutions may
provide useful information of the long term dynamics and may be of interest in
astrodynamics applications.

2 Dynamical model

Let Oxyz be a Mercury-centred inertial coordinate frame. The Oxy plane coincides
with the planet’s equator, the x-axis is defined by the intersection line of the
equatorial plane of the main body and the orbital plane of the third body: the Sun.
The spacecraft orbits about the central body with semimajor axis a, eccentricity e,
inclination i, right ascension of the ascending node Ω, argument of the pericenter
ω, true anomaly f and mean motion n. It is assumed that the third body follows an
elliptic inclined orbit around the main body with semimajor axis a�, eccentricity
e� and inclination i�.

Mercury rotates on its spin axis three times for every two revolutions around
the Sun with rotational rate γM ≈ 6.14 degrees per day. It follows a highly eccentric
orbit, its eccentricity is 0.206. Mercury’s orbit is inclined by 7 degrees to the ecliptic
(the plane of Earth’s orbit), while Mercury’s axial tilt is almost zero, with the best
measured value as low as 2.11±0.1 arcmin (0.034 degrees). This measured obliquity
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provided observational evidence that Mercury is very near a Cassini state (Margot
et al [21]), in which its spin vector is nearly perpendicular to the orbital plane and
precesses at the same rate as the orbital plane. Hence, as we define the equatorial
plane as the reference plane, the orbit inclination of the third body is set to 0.034
degrees (see Fig. 1 and Table 1).

Equatorial plane

Sun

0:034◦

Orbital plane

Fig. 1 Scheme of the dynamical system.

µ� = 132712442099 km3/s2 a� = 5.79× 107km e� = 0.206 i� = 0.034 ◦ γM = 6.14 ◦/day

Table 1 Orbital parameters (symbol � means relative to Mercury’s orbit around the Sun).

Further exploration of planet Mercury have improved the knowledge of its grav-
ity field. The major and most recent parameters of gravity field solution, termed
HgMUCLA40x40, were obtained from the tracking of MESSENGER during its
three years in orbit. They are listed in Table 2.

µ (km3/s2) 22032.09 Equatorial radius (km) 2439.7

C20 −2.25100× 10−5 C22 1.24973× 10−5

C30 −4.71444× 10−6 C40 −5.89291× 10−6

C50 2.98686× 10−7 C60 1.90218× 10−6

Table 2 Mercury’s bulk parameters and normalized harmonics coefficients (HgMUCLA40x40,
Verma 2016 [30]).

We consider the motion of a spacecraft around Mercury. Therefore, the main
perturbations that must be considered are the following:

– Sun gravitational perturbation
– Solar radiation pressure, and
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– Mercury non-sphericity effects.

Hence, the trajectory will be perturbed by the anomalies in the gravity field
of Mercury: the low level gravitational field (C20, C22, C30, C40, C50, C60), the
Sun’s gravity attraction and the direct radiation pressure of the Sun. As we want
analytic solutions, the Hamiltonian function has to be as simple as possible, yet
capable to account accurately for the orbital behaviour of real satellites. Let us
derive the equations of motion, and then, compute the accelerations caused by
each disturbing effect to check the validity of the model proposed.

The equation of motion of the spacecraft is given by

r̈ = r̈M + r̈3b + r̈SRP , (1)

where r̈M is the force induced by Mercury gravity field (Eq. 2), r̈3b is the resultant
of the gravitational attraction of the Sun (Eq. 7), and r̈SRP is the effect of direct
solar radiation pressure (Eq. 10).

2.1 Mercury’s gravity attraction

The force induced by Mercury gravity field can be expressed as the gradient of a
certain potential UM . It is written in terms of the position vector r of the spacecraft
with respect to the central planet Mercury,

r̈M = ∇UM (r). (2)

We take into account the disturbing potential due to the non-uniform distribu-
tion of mass of Mercury. The gravitational potential UM , expressed in the rotating
reference frame, is in terms of a double infinite series of spherical harmonics de-
pendent on latitude and longitude (see e.g. Battin [2])

UM =
µ

r
+
µ

r

∞∑
n=2

n∑
j=0

(
RM
r

)n
Pn,j(sinφ)

(
Cn,j cos(jλ) + Sn,j sin(jλ)

)
, (3)

where r is the distance from the spacecraft to Mercury: r = ‖r‖, µ is the standard
gravitational parameter, RM is the equatorial radius of the planet and γM the
rotation velocity of Mercury around its axis (see Table 1). On the other hand,
(λ, φ) are the planetographic coordinates of the spacecraft, Pn,j are the normalized
associated Legendre polynomials of degree n and order j. Cn,j and Sn,j are the
normalized dimensionless spherical harmonic coefficients [15].

Zero order terms are independent of longitude: the zonal harmonics Jn =
−Cn,0. The even zonal harmonics are symmetric about the equator. The odd zonal
harmonics are antisymmetric about the equator and define the pear-shape asym-
metry of the planet. Tesseral harmonics depend on longitude; in particular C22

represents the polar and equatorial flattening (see Fig. 2). According to the data
provided by MESSENGER mission, shown in Table 2, we consider zonal terms up
to the sixth order. Following these data, we observe that the coefficient of second
degree and order C22 plays a key role in Mercury gravity field, so we include it in
our disturbing function. Note that Mercury’s C22 is so significant with respect to
the one of the Earth due to the rotation rate. The Earth spins much faster than
it orbits, this fact tends to circularize its equatorial section. However, Mercury is
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Fig. 2 Types of spherical harmonics considered in the dynamical model.

locked into a 3:2 spin-orbit resonance, which favours the tidal deformation of the
planet and results in a significant triaxiality (see Noyelles et al. [26]).

Subsequently, and using the definition of the Legendre polynomials for the
zonal terms up to sixth degree and spherical trigonometry: sinφ = sin i sin(ω+ f),
we get that the perturbation due to the zonal terms, denoted by RJn , is given by

RJ2
= −

1

2
J2R

2
M

a3n2

r3

(
3si

2 sin2(ω + f)− 1
)
,

RJ3 = −
1

2
J3R

3
M

a4

r4
n2

a
(5si

3 sin3(ω + f)− 3si sin(f + ω)),

RJ4
= −

1

8
J4R

4
M

a5

r5
n2

a2

(
35si

4 sin4(ω + f)− 30si
2 sin2(ω + f) + 3

)
, (4)

RJ5
= −

1

8
J5R

5
M

a6

r6
n2

a3

(
63si

5 sin5(f + ω)− 70si
3 sin3(ω + f) + 15si sin(f + ω)

)
,

RJ6 = −
1

16
J6R

6
M

a7

r7
n2

a4

(
231si

6 sin6(ω + f)− 315si
4 sin4(ω + f) + 105si

2 sin2(f + ω)− 5
)
,

where si = sin i and ci = cos i.
On the other hand, the Legendre polynomial for the tesseral C22 term can be

written in the following form (details can be found in Giacaglia [12] and Celletti
et al. [6]),

P 2,2(sinφ) cos 2λ = 6
(
ξ2 cos2 f + χ2 sin2 f + ξχ sin 2f)− 3(1− s2i sin2(f + ω)

)
,

(5)
where we denote ξ = cosω cosΩ−ci sinω sinΩ and χ = − sinω cosΩ−ci cosω sinΩ.
After some trigonometric manipulations we get that the perturbation due to C22

term, denoted by RC22
, is given by

RC22
=
a3

r3
C22R

2
M n2

(
6ξ2 cos2 f + 6χ2 sin f2 + 12ξχ sin(2f)− 3 + 3si

2 sin2(ω + f)
)
.

(6)

2.2 Third body attraction

The term r̈3b is the resultant of the gravitational attraction of the Sun. It is
formulated using the third body perturbation in the inertial frame Oxyz centred
on Mercury (see e.g. Danby [7])

r̈3b = −µ�
(

r− r�
‖r− r�‖3

+
r�
‖r�‖3

)
, (7)

where µ� represents the standard gravitational parameter of the Sun (Table 1),
and r� is the position vector of the Sun with respect to Mercury. We perform the
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expansion as a series of Legendre polynomials up to second order (due to the fact
that every term of the expansion is bounded by r2(r/r�)n−2 and r � r�). Thus,
only n ≤ 2 terms of the direct perturbation remain (details can be found in [1],
[28]). Hence, after replacing the expressions of the Legendre polynomials, we get

U3b =
µ�

r�
+

µ�

2r�

(
r

r�

)2

(3 cosψ − 1), (8)

where ψ is the angle between radius vectors r and r� After some algebraic ma-
nipulations, the disturbing function due to the third body perturbation (Broucke
[3]), named R3b, is

R3b =
µ�
2r�

(
r

r�

)2 (
3(α cos f + γ sin f)2 − 1

)
, (9)

where coefficients α and γ depend on the orbital elements of the spacecraft and
the third body (Appendix 6.1).

2.3 Solar radiation pressure

We account for the effect of direct solar radiation pressure (SRP) on a spacecraft.
Radiation pressure is a non-gravitational force constantly acting on the spacecraft
in anti-solar direction. The acceleration exerted on a perfectly reflecting body by
solar radiation, expressed in the inertial frame Oxyz centred on Mercury, is

r̈SRP = −2P
A

m

r− r�
‖r− r�‖

, (10)

where (r − r�) is the vector in the direction from the spacecraft to the Sun and
A/m is the area-to-mass coefficient of the spacecraft. Note that the area referred
to in the expression A/m is the cross-sectional area of the illuminated object i.e.
the area that intercepts the radiation. For a non-spherical satellite, the area is a
function of the orientation of the body with respect to the Sun. In this work we
assume a cross-sectional area with fixed orientation perpendicular to the direction
of solar radiation. The minus sign in Eq. (10) arises because the positive direction
of this vector is defined oppositely to that of the acceleration. Finally, P indicates
the solar radiation pressure. It is given by P = I/c, where I is the solar flux at the
illuminated plane surface and c is the speed of light. The solar flux I is defined
as the amount of energy received at the surface of the illuminated satellite. Solar
constant at 1 astronomical unit (AU) is found to be 1358 W/m2.
Let us now consider the critical loading parameter σ∗ = 2P/µ� (McInnes [23]),
which is 1.53g/m2 for the Earth. Nonetheless, the solar flux varies inversely with
the square of the distance to the Sun. Therefore, the solar flux at Mercury is
increased. It is given by

I = I0

(
1

ρ

)2

,

where I0 is the solar constant at 1 AU and ρ is Mercury’s average distance to Sun:
0.387 AU. In consequence, the critical loading parameter for Mercury is rescaled
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accordingly: σ∗ = 1.53(1/ρ)2 = 10.26 g/m2. That means that, for a spacecraft or-
biting Mercury, the characteristic acceleration due to solar pressure, ac = 2P A/m,
is 10 times greater than for the same satellite orbiting the Earth.

Finally, we introduce the parameter σ =
m

A
and β =

σ∗

σ
(McInnes [23]). Thus,

the disturbing function due to solar radiation pressure can be written in terms of
β, a dimensionless parameter directly related to A/m,

USRP = − βµ�
‖r− r�‖

. (11)

Based on the procedure followed for the third body perturbation, this function
can be also expanded in terms of Legendre polynomials up to the second order,
obtaining

RSRP = −β

(
µ�

r

r2�
cosψ − µ�

2 r�

(
r

r�

)2 (
3(α cos f + γ sin f)2 − 1

))
. (12)

It is of interest to examine the range of variation in the ratio (A/m) encountered in
practice. A useful estimation of A/m values for some satellites can be obtained from
Table 3. Probably, inflatable magnetic balloons or solar sails represent the largest
coefficients (see Winglee [32] and references therein). Note that the coefficients β
and ac are calculated assuming that the satellites orbit Mercury.

Satellite name Dimensions (m2) Weight (kg) A/m (m2/kg) β ac (km/s2)

BepiColombo MMO 1.9× 1.1 288 7.2 · 10−3 7.4 · 10−5 4.4 · 10−10

Mariner 10 1× 8 503 1.2 · 10−2 1.6 · 10−4 7.3 · 10−10

Ikaros sail 14× 10 310 0.45 4.6 · 10−3 2.7 · 10−8

Sunjammer sail 34× 34 30 38.5 0.39 2.6 · 10−6

Table 3 Approximate values of A/m and β coefficients for a selection of spacecrafts.

2.4 Disturbing accelerations

To facilitate the discussion of the results, we summarize the processes by which
the disturbing functions described above alter the orbit of a satellite.

First of all, Figure 3 depicts the magnitude of the accelerations (km/s2) acting
on a spacecraft as functions of the distance from the center of Mercury (km).

It is observed that the main perturbations are caused by the non-sphericity of
the planet and the Sun attraction. The gravity field perturbations are obviously
stronger for satellites with low orbit. Nevertheless, solar radiation pressure may
be negligible when compared with the two other perturbations, or depending of
the area-to-mass ratio, may even exceed the low degree and order gravitational
acceleration at some orbit altitude.

The worse consequence of perturbations would be the influence in the argument
of pericenter and the eccentricity. It means that the pericenter altitude may rapidly
fall down and the spacecraft would end up by collision onto the planet. The increase
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Fig. 3 Orders of magnitude (perturbations) as functions of the distance from Mercury’s center
(log scale)

.

in eccentricity may be due either to the effect of higher zonal harmonics on a low-
altitude satellite, or to the third-body effect on a high-altitude satellite.

In particular, the oblateness of the planet, J2, causes orbital plane precession
and the rotation of the argument of pericenter. Odd J3 harmonic mainly affects
the eccentricity and the argument of pericenter, while the semimajor axis and the
orbital plane remain constant. Even J4 harmonic produces variations of the same
order of magnitude than J3 harmonic (see Fig. 3). And, as it can be seen in the
figure, the magnitude of these perturbations decreases as the degree of the zonal
harmonic increases. Regarding the equatorial ellipticity C22, the variability of the
right ascension of the ascending node (dependent on the angular velocity of the
planet) implies that the perturbation has a periodical character, which may give
rise to long-period perturbation due to commensurability of the orbital period of
the satellite and the rotational period of the central planet [31].

On the other hand, third-body perturbation makes the orbit to flatten in the
direction of the perturbing body. It produces secular effects on the argument of
pericenter and the right ascension of the ascending node. It mainly affects the
dynamics of high altitude satellites.

Finally, the effect of solar radiation pressure is non-negligible, especially for
those satellites that have a large surface exposed to the Sun’s rays. If it is not
properly taken into account, it might cause the orbiter to either crash into the
planet or get ejected from orbit. In the case of Mercury, it has been proved that the
radiation pressure from the Sun generates a perturbing acceleration of two orders
of magnitude less than the C22 effect (Milani and Gronchi [25]). Nevertheless, this
statement depends on the satellite’s altitude and its surface.

To sum up, zonal gravity terms, third body perturbation and radiation pres-
sure produce periodic variations in all orbital elements while only angular orbital
elements Ω and ω suffer from secular effects. On the other hand, tesseral gravity
term only produces periodic variations. Nonetheless, coupling effects may imply
that, for example, oscillations in the eccentricity cause lowering the pericenter
altitude.
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Apart from these perturbations, the reader is referred to Milani and Gronchi
[25] that shows a complete list of all perturbations acting on Mercury. These au-
thors state that the planetary albedo of Mercury, thermal emission from the planet
and from the spacecraft itself, tides and general relativity corrections are of lower
orders of magnitude than the perturbations considered in this work. Consequently,
we stress out that our proposed dynamical scenario, although simplified, is accu-
rate enough for the purpose of computing frozen orbits around Mercury.

3 Averaging procedure

We calculate the motion of the spacecraft numerically integrating the Lagrange
planetary equations that govern the variation of the osculating orbital elements
[15]. We are interested in the computation of frozen orbits, which are those whose
orbital eccentricity and argument of pericenter remain constant on average. The
equations of motion of this dynamical system involve two types of periodic terms:
one contains the period of the probe and the other contains the orbital period of
Mercury around the Sun. In this context, the motion of the satellite is studied
under the double-averaged analytical model with the aim of reducing the degrees
of freedom of the system and eliminating the short-period terms of the disturbing
function.

Hence, we apply a two-fold process that firstly averages over the period of the
satellite and secondly averages with respect to the period of the third body,

〈F 〉 =
1

2π

∫ 2π

0

F dM, (13)

where M stands for the mean anomaly. The development of the equations has
been carried out in closed form to avoid expansions in eccentricity and inclination.
Details of the application of this technique can be found in Tresaco et al. [28]
and Carvalho et al. [4]. The resulting expressions are derived in Appendix 6.1. We
depict here the result of the averaged potential of the tesseral term C22 given in
Eq. (6).

〈RC22
〉 = −3

2
C22R

2
M

n2

(1− e2)3/2
(ci

2 − 1) cos (2(Ω − γM t)) . (14)

Second average is applied with respect to the third-body orbital period. Note that
the orbital elements of the spacecraft are constant during this averaging process,
thus

〈〈RC22
〉〉 = 〈RC22

〉.

Hence, the secular disturbing potential of the orbital motion is given by the addi-
tion of the averaged perturbation terms, named R (explicit equations are listed in
Appendix 6.1),

R = 〈〈RJ2
〉〉+〈〈RJ3

〉〉+〈〈RJ4
〉〉+〈〈RJ5

〉〉+〈〈RJ6
〉〉+〈〈RC22

〉〉+(1−β)〈〈R3b〉〉. (15)

Note that the term 〈〈RSRP 〉〉 is not listed in Eq.15 because it has been combined
with the Sun gravitational perturbation after the double-averaging process (see
their expressions in Appendix 6.1).
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4 Frozen orbits computation

For observation and reconnaissance missions it is important to maximize the qual-
ity of the data collected from on-board instruments. Therefore, the orbit has to be
carefully selected in order to minimize the influence of orbital perturbations. As we
have explained in Section 2.4, most satellites experience noticeable variations in
orbital elements under the influence of orbital perturbations. Some studies about
BepiColombo extended mission state that the pericenter of MPO orbiter is ex-
pected to drift from the initial 15◦N up to 70◦S in three years, and the pericenter
altitude is expected to decrease from 480 to 250 km [13]. Consequently, altitude
control for an extended mission would require a continuous orbital maintenance.
Nevertheless, the number of corrective manoeuvres can be dramatically reduced
by a careful selection of the orbital parameters. By designing an orbit for which
the mean eccentricity and mean argument of pericenter remain static, the satellite
altitude will be constant and it will ensure a longer lifetime. This is called a frozen
orbit. Earth’s frozen orbits have been extensively studied in the past. In the case
of the Moon, asteroids or other planets, interest in frozen orbits has developed
recently.

The classical approach of computation of frozen orbits is based on the ma-
nipulation of the Lagrange planetary equations that describe temporal variation
of the orbital elements. To design a frozen orbit, the secular variations of the
eccentricity and argument of pericenter caused by orbital perturbations have to
be zero. Hence, the disturbing function is introduced in the Lagrange planetary
equations after eliminating short-period terms. Frozen orbits are identified as the
equilibrium points of these equations. Generally, this procedure is only based on
the zonal terms of the spherical harmonics. If the value for frozen eccentricity is
assumed to be small, a closed equation for the eccentricity is obtained for given
values of the semimajor axis and inclination (Vallado [29]):

e = ±

∞∑
k=1

(
kJ2k+1

(
RM
a

)2k+1 k∑
l=1

D2k+1
l s2k+1−2l

i

)
∞∑
k=1

J2k

(
RM
a

)2k

(X + Y + Z)

, (16)

where

X = 2c2i

k−1∑
l=0

(k − l)A2k
l s

2k−2l−2
i , Am

n =
(2n− 2m)!(−1)m

m!(n−m)!

(
n

2
−m

)
!

(
n

2
−m

)
! 22n−2m

,

Y = −k(2k − 1)
k∑

l=0

A
2k
l s

2k−2l
i , Dm

n =
(2n− 2m)!(−1)m

m!(n−m)!

(
n− 1

2
−m

)
!

(
n+ 1

2
−m

)
! 22n−2m

,

Z = −(k − 1)(2k − 1)

k−1∑
l=0

E
2k
l es

2k−2l
i , Em

n =
(2n− 2m)!(−1)m

m!(n−m)!

(
n− 2

2
−m

)
!

(
n+ 2

2
−m

)
! 22n−2m

.

This expression is valid in zonal potential models to an arbitrary degree. The
± sign depends on the signs of the coefficients and should be chosen such that
the final value be positive. Fig. 4 shows the variation in frozen eccentricity as a
function of the zonal terms in case of a satellite with an inclination of 90.4◦ and
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an altitude of 500 km. It represents the cumulative effect of the zonal coefficients
(first blue square means that only J2 and J3 are used in Eq. (16), second square
means J2 + · · ·+ J5, and so on). Thus, we observe that we need to include at least
the first seven terms to improve the value of the first predicted eccentricity (only
with J2 and J3) up to 20%.

J3 J5 J7 J9 J11 J13 J15 J17 J19 J21 J23 J25 J27 J29 J31
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

frozen ecc.

Fig. 4 Frozen eccentricity value depending on the degree of zonal harmonics considered.
Gravity field model HgMUCLA40x40, Verma 2016 [30].

This procedure of using the Lagrange planetary equations for an averaged
perturbing function can be repeated for more realistic perturbation models and,
although, the resulting expressions will nowhere near elegant, they can be solved
numerically. For a complete theory, we must average the Hamiltonian model pro-
posed to eliminate short-period terms. Afterwards, the secular variations of the
eccentricity and argument of pericenter caused by orbital perturbations listed in
Section 2 have to be zero. Thence, the resulting expressions for a given disturbing
function R are

dω

dt
=
−
√

1− e2
na2e

∂R

∂e
+

cot i

n a2
√

1− e2
∂R

∂i
,

de

dt
=

√
1− e2
na2e

∂R

∂ω
− 1− e2

na2 e

∂R

∂M
.

(17)

The expression of the double-averaged potential R given in Eq. (15) that must be
replaced on the previous system Eq. (17) is depicted in the Appendix 6.1. Remark
that this double-averaged potential does not include the C22 term. Thus, frozen
orbits are found as the equilibria of this system of equations:

dω

dt
= 0,

de

dt
= 0. (18)

So, the final stage is undertaken by solving this system of equations. Using this
approach, it is possible to have a three-dimensional surface parametrized by (a, e, i)
whose points are initial conditions of frozen orbits. Once we have computed these
orbits, the C22 term will be included in the numeric integrations in order to vi-
sualize its effect on the frozen orbits (see Sec. 4.2). Note that all the calculations
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along the paper were performed in Maple software and C language. In particular,
we used the numerical integrator dopri853 (Runge-Kutta order 8(5,3) with dense
output of order 7).

Frozen orbits have been extensively studied in the past. In this context, we
can find in literature various criteria in order to characterize and illustrate frozen
orbits. In particular, we will use the following ones:

– Frozen location
– 3-D surfaces (a, e, i): points on this surface correspond to equilibria of the

reduced system.
– Curves for constant-a: orbital altitude is fixed in order to go into more

detail.
– Frozen character

– Representation of the quantities (e cosω, e sinω). These figures exhibit closed-
circle trajectories centred on the frozen orbit values.

– Contour plots to visualize a discrete set of frozen solutions and their sta-
bility.

– Long-term propagations: numeric simulations in the original system of the
averaged frozen conditions.

4.1 Analysis without C22

As it is stated above, the equilibria of the equations of motion of the reduced
Hamiltonian given in Eq. (18) correspond to frozen orbit conditions. If we only
consider the non-spherical zonal perturbation of Mercury, the second equation
(de/dt = 0) clearly nullifies when ω = π/2, 3π/2 (see Appendix 6.2). This is due to
the fact that even zonal terms Jn imply trigonometric terms sin((n− 2)ω), while
if n is odd it appears cos((n − 2)ω). Therefore, ω = π/2, and ω = 3π/2 cancel
out a combination of disturbing zonal terms. When we consider third-body and
solar pressure perturbations the cancellation of de/dt also requires that Ω−Ω� =
2kπ, k ∈ Z. Without loss of generality, we can assume the inertial frame with the
x-axis in coincidence with the apsidal line of the third-body motion at the initial
time. This means Ω� = 0 and f� = 0. Hence, we set ω = π/2, 3π/2 to nullify the
eccentricity variation. Then, these values of ω are plugged in equation dω/dt = 0
that depends on three variables: the orbital eccentricity e, inclination i, and semi-
major axis a. This equation represents a surface; points on this surface correspond
to equilibria of the system (Eq. (18)), that is, to initial conditions (a, e, i) of frozen
orbits.

The following figures depict the location and behaviour of frozen orbits. The
results are first analysed in terms of the different disturbing functions (see Fig. 5
and Fig. 6), where we depict the initial conditions (e, i) of frozen orbits for a
given altitude. Note that the horizontal line that appears in the following graphs
represents the limit for impact orbits. The higher the eccentricity is, the shorter is
the distance at the pericenter. Thus, the impact value is the eccentricity value that
makes the distance at the pericenter shorter than Mercury’s radius. Consequently,
the orbital eccentricity must be lower than the impact value to avoid possible
collisions with the planet surface.
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Figures 5 (a-d) represent the effect of the zonal harmonics. Plots (a) and (b)
are important because they highlight the change in the behaviour of low eccentric
orbits. There is a decrease in the value of frozen eccentricity when we include
the harmonic J4. Then, J5 slightly produces any modification due to its small
value compared to the other terms (Fig. 5 (c)). Nevertheless, the inclusion of J6
is again important, see Fig. 5 (d). At ω = π/2, the frozen inclinations were only
concentrated in the vicinity of i = 0◦ or the critical inclination of the satellite
(cos2 i = 1/5) i.e. i = 67.0492◦. However, J6 magnitude allows to find near polar
eccentric frozen orbits.

(a) J2 + J3 (b) J2 + J3 + J4 (c) J2 + · · ·+ J5

(d) J2 + · · ·+ J6 (e) J2 + · · ·+ J6 + Sun (f) Sun

Fig. 5 Section (i, e) of frozen orbits with altitude of 500 km. Blue line: ω = 3π/2, red dashed
line: ω = π/2.

These results have been validated using the work performed by Mazarico et al.
[22], in particular, they presented the computation of frozen orbits when only the
zonal gravity coefficients of their estimated gravity field, termed HgM005 (2014),
were considered.
Summarizing, as long as we consider more terms in the gravity field of Mercury, the
frozen orbits at ω = π/2 are closer to the critical inclination value of the satellite.
Moreover, the eccentricity value on the higher branch at the polar region decreases,
while the eccentricity on the lower branch increases. In conclusion, although the
secular effects of the gravitational zonal terms are reduced with degree and altitude
(see Fig. 3), the figures obtained confirm that J2 and J3 are not sufficient to predict
the location of frozen orbits about Mercury.
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Regarding the effect of the Sun’s perturbation, we observe that the inclusion of
third-body in the dynamical model (Fig. 5 (e)) does not imply dramatic changes.
This is due to the fact that these figures are computed for a low-altitude orbit. The
real effect of the Sun’s gravity perturbation can be seen in Fig. 8, where different
altitudes are represented.

Now, we move to the complete dynamical model that includes the zonal

gravity field up to sixth degree, the gravitational attraction of the Sun and

SRP. In Fig. 6 we have computed the frozen eccentricity for a fixed altitude of
2000 km and two values of the area-to-mass ratio, in order to visualize the effect of
solar radiation pressure perturbation. Thus, we see that, when A/m increases, the
maximum value of frozen eccentricity is greater when approaching polar orbits.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0
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0.6

0.8

i HradL

e

Fig. 6 Frozen orbits for an altitude of 2000 km and A/m = 7.2 · 10−3 m2/kg (MMO) in
blue colour, and A/m = 38.5 m2/kg (Sunjammer) in red. Dashed line: ω = π/2, solid line:
ω = 3π/2. Right plot: zoom of the non-impact region for i ∈ (0, π/2) and eccentricity in
logarithmic scale. Dots represent initial conditions extracted for stability analysis.

Figures 7 and 8 are obtained for SRP coefficient β = 0.01 (an intermediate
value between the A/m coefficients represented in Fig. 6). Fig. 7 represents the
surface that correspond to equilibria of this dynamical system, that is, to initial
conditions (a, e, i) of frozen orbits.

Fig. 7 Surface of frozen orbits for ω = 3π/2 and ω = π/2 respectively.
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In order to go into more detail, the orbital altitude is fixed. Figure 8 depicts
the location of frozen eccentricity for increasing altitudes (500, 3000 and 6000
km). The eccentricity is in logaritmic scale, and its range is limited to non-impact
orbits. The inclination is varied up to 90◦ thanks to the symmetry of the sections
of frozen orbits.

(a) Altitude 500 km. (b) Altitude 3000 km. (c) Altitude 6000 km.

Fig. 8 The logarithm of frozen eccentricities vs. inclinations for an altitude range of 500, 3000
and 6000 km. Blue line: ω = 3π/2, red dashed line: ω = π/2.

In this figure, we can observe that, for high-altitude orbits, the Sun exerts a
large perturbation and dominates the dynamic. Fig. 8(a) shows that frozen orbits
at all inclinations can be derived. Four families of frozen orbits are discovered. S1
begins with a quasi-circular equatorial orbit with argument of pericenter equal to
π/2, but soon, the eccentricity grows to the impact region. Family S2 has small
eccentricity and the argument of pericenter equal to 3π/2. It begins with circular
planar orbits, then the inclination increases until its termination with orbits of
critical inclination. Then, family S3 appears. This family, with the argument of
pericenter equal to π/2, is composed of orbits on a small range of inclination close
to the critical value, and eccentricities that change rapidly from an ellipse to a
circle. Finally, polar frozen orbits with ω = 3π/2 belong to family S4. As it can be
seen, when the altitude increases, the behaviour of near circular orbits changes.
In addition to the critical inclination of the satellite, the critical inclination of the
third-body problem (cos2 i = 3/5) i.e i = 55.1736◦, also plays a role. As long as
the altitude takes higher values, the region of non-impact orbits is dramatically
reduced, families S2 and S3 merge at the value of the critical inclination of third-
body, while family S4 disappears. Thus, the existence of frozen orbits is limited to
the critical inclination of the third-body interval: i ∈ (0.684719, 2.45687) rad. This
phenomenon is clearly observed in Fig. 5 (f), where only the Sun perturbation is
considered. In this case, the curves ω = π/2 and ω = 3π/2 completely overlap.
Note also that non-impact frozen orbits at polar inclination exist for all altitudes,
and their eccentricity values decrease with the altitude.

Lastly, frozen orbits exist for many of the inclinations and semimajor axis va-
lues. If we focus on near-polar orbits, which are interesting because they could
provide global coverage, we observe the following behaviour. Limiting to the non-
impact regions, outside of a narrow range near the critical inclination values of
the satellite and the third-body, the majority of useful frozen orbits obtained have
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argument of pericenter of 270◦. That is, the pericenter of the orbit is near the
south pole. This is due to the fact that J3 is dominant among the odd degree
zonals and it has the same sign than J2 (as in the case of the Moon).

With regard to stability, the character of the frozen orbits may be ascertained
either from the evaluation of the Jacobian matrix of the averaged Hamiltonian
or from the graphic representation of the reduced flow, where elliptic fixed points
correspond to stable equilibria and hyperbolic fixed points to unstable equilib-
ria. For example, Fig. 9 shows the stability character of some polar frozen orbits
encountered.

Fig. 9 Phase portrait of polar frozen orbits for an altitude of 2000 km and A/m = 7.2 · 10−3

m2/kg. Left plot depicts low eccentricity map and right plot is for high values of the eccentricity.
Dots represent equilibrium points (black color means stable points and red color unstable).

Thus, following our initial conditions, extracted from Fig. 6, the three black
dots correspond to frozen polar orbits. Figure 9 allows us to identify them as
two stable equilibrium with ω = 270◦ (e = 0.023 and e = 0.736) and one stable
equilibrium with ω = 90◦ (e = 0.758). Besides, we also get four unstable equilibria
in the right plot of Fig. 9 (red dots). Two of them with eccentricity e = 0.78
(for ω = 49◦ and ω = 129◦), and another two with eccentricity e = 0.76 (for
ω = 229◦ and ω = 309◦). All these unstable points correspond to orbits in the
impact region due to their large eccentricity value. It is important to point out
that these unstable frozen orbits are not represented in Fig. 6 because it only
depicts the “easiest cases” of ω = π/2, 3π/2. Examples of the analytical treatment
of the case cosω 6= 0 that nullifies de/dt for simplified dynamical models can be
found in Abad [1] and Delsate et al. [8].

Another example of phase portrait representation is shown in Fig. 11, where we
have fixed two different values of the ratio between the inclination and eccentricity:

η =
√

1− e2 cos i, equal to η = 0.95 and η = 0.41. For each value of η we can obtain
a discrete number of frozen orbits. In these particular cases we get two stable
equilibrium (elliptic points) that can be identified as black dots in Fig. 10, and an
unstable orbit (hyperbolic point) marked in red. These three points correspond
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to frozen orbits with altitude 400 km and the following orbital elements (e, i, ω):
(0.275, 8.8◦, 90◦), (0.05, 17.9◦, 270◦) and (0.074, 65.7◦, 270◦).
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Fig. 10 Section (i, e) of frozen orbits with an altitude of 400km and A/m = 7.2 · 10−3 m2/kg
(MMO).

Fig. 11 Phase portrait for an altitude of 400 km and A/m = 7.2 · 10−3 m2/kg. Left plot for
η = 0.95 and right plot for η = 0.41.

These representations of the eccentricity vector phase space are interesting
approaches in order to get the stability of a frozen orbit. They were previously
used by Lara et al. (2010) in the analysis of Mercury frozen orbits [17]. Note
that the differences in the dynamical model considered in each case make that
our phase portraits are quantitatively different from the eccentricity vector phase
space shown in their paper. Nonetheless, the use of phase space representations as
a stability analysis tool has the drawback that, for each value of the inclination,
only a discrete set of frozen orbits exists. Consequently, it does not constitute a
systematic procedure to analyse the orbital stability. Next piece of work will be to
achieve the stability through the computation of natural families of frozen orbits
(Lara et al. [16], Elipe and Lara [9]).
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4.2 Effect of C22

Mercury is less flattened than the Earth (see Table 1), which makes the C22

coefficient to come closer to J2. In fact, C22 is the greatest harmonic joined to
J2, so it needs to be considered. If we look at the averaged term corresponding
to C22 in Eq. (14), we observe that it depends on time. Accordingly, we cannot
parametrize surfaces (a, e, i) to identify conditions of frozen orbits. Fortunately, we
can derive the effect of C22 applying other techniques.

When we only consider the second order harmonics J2 and C22, we get that the
critical inclination of the satellite due to the main problem (J2) may be affected
by the C22 coefficient and by the value of the right ascension of the ascending
node Ω. That is, when we replace the corresponding averaged expressions of both
perturbing terms in the Lagrange planetary equations (see Eq. (25) and Eq. (26)
in Appendix. 6.2) we get the following expression:

dω

dt
= − 3R2

Mµ1/2

4a7/2(1− e2)2

(
J2(5c2i − 1) + C22(6− 10c2i ) cos(2(Ω − γM t))

)
. (19)

This equation vanishes when

c2i =
J2 − 6C22 cos(2Ω − 2 γM t)

5 J2 − 10C22 cos(2Ω − 2 γM t)

If we consider the isolated effect of C22, we find a new critical inclination c2i = 3/5.
However, when both effects are considered, the new value of the critical inclination
is a function of the ratio J2/C22 and cos(2Ω−2 γM t). Fig. 12 represents the value of
the inclination and all the valid range for cos(2Ω−2 γM t) that set dω/dt = 0. There
is a big dependence of the critical inclination with respect to Ω. We observe that the
critical inclination value ranges from 58.56◦ to 90◦. And, for some high value of Ω,
it will not give rise to a critical inclination. Note that critical inclination orbits are
natural frozen orbits (system of Eq. (17) becomes equal to zero). Subsequently,
if there is interest in critical inclination orbits, we must take into account the
modification of the inclination value due to the tesseral term C22.

Fig. 12 New value of critical inclination due to the effect of J2 and C22.

A deep study about the influence of C22 in the temporal variation of the
eccentricity can be found in Carvalho et al. [5]. In the next section we continue
analysing the effect of this tesseral term in the behaviour of frozen orbits.
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4.3 Long-term propagations

Orbital stability is important from a practical point of view. A spacecraft in an
unstable frozen orbit will impact the planet after a short period of time. Then, the
initial conditions of frozen orbits should be carefully considered, as they play an im-
portant role on the orbital lifetime. As it has been explained, the main effects from
the disturbing functions are secular variations of the eccentricity and argument of
pericenter. The following figures present the behaviour for these orbital parameters
close to the frozen conditions during 25 years of mission. This approach was also
followed by Carvalho et al. [4] and Delsate et al. [8] to show the behaviour of the
solutions (orbits) close to the libration equilibrium (frozen orbits). In particular,
we derived the results presented in Fig. 10 and 11 of Delsate’s paper with their sim-
plified dynamical model in order to test our propagator. Subsequently, following
that procedure, Figure 13 presents the libration of the eccentricity and argument
of pericenter around an equilibrium point (a low eccentricity polar frozen orbit),
whose initial conditions have been extracted from Fig. 6: a = 4440 km, i = π/2,
Ω = π/2, ω = 3π/2. Note that the location of this equilibrium differs from the
location presented in the cited Delsate’s figures due to the differences in the values
of the zonal harmonics. Remember also that these equilibria were obtained for the
time-independent averaged system i.e. without the C22 perturbation. We observe
in Fig. 13 that the equilibrium point corresponds to the frozen eccentricity value
e = 0.023. In the vicinity of this equilibrium the eccentricity vector describes a
rotation, this known behaviour is the basis of most passive eccentricity control
strategies.

(a) (e, ω) diagram (b) eccentricity vector (c) equilibrium

Fig. 13 (e, ω) diagram (a) and eccentricity vector representation (b,c) for different initial
conditions. (c)-plot: zoom of the eccentricity vector for the equilibrium point e = 0.023.

If we add the perturbation due to the tesseral C22 term, we observe that the
eccentricity of the frozen orbit decreases, from 0.023 to 0.00985. Fig. 14 shows the
behaviour for different initial conditions close to the frozen eccentricity value.

In addition to this, Fig. 15 presents the long-term evolution over 25 years of the
eccentricity, argument of pericenter, and altitude of pericenter when C22 tesseral
is included. Along that period of time, the eccentricity averages to 0.00975, which
is very close to the frozen value 0.00985. We observe that the orbital elements
remain frozen on average. The pericenter altitude is very stable, varying only by
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Fig. 14 (e, ω) diagram when C22 perturbation is included.

one km over the 25 year orbit integration. However, it is important to remark
that the long-term propagation is computed from the averaged orbital elements.
Since we are not recovering the non-averaged model. Subsequently, the periodic
oscillations observed in Fig. 15 are due to the elimination of periodic terms in the
double-averaging process.

Fig. 15 Frozen orbit long-term propagation for the complete dynamical model. Initial condi-
tions a = 4440 km, e = 0.00985, i = π/2, Ω = π/2, ω = 3π/2.

We perform a similar test to unstable frozen orbits. We extract the orbital
parameters for the hyperbolic point of Fig. 11. The long-term propagation of its
initial conditions: a = 2840 km, e = 0.0737609, i = 65.72◦, Ω = π/2, ω = 3π/2, is
shown in Fig. 16.

Fig. 16 (e, ω) diagrams and eccentricity vector representation for initial conditions close to
an unstable frozen orbit (black).
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It depicts the frozen orbit (black curve) and a very close orbit with an ec-
centricity equal to 0.07375 (blue curve). We observe that the unstable character
unfrozens the orbit after a few years.
Finally, Fig. 17 shows the behaviour of the eccentricity of a frozen orbit when dif-
ferent terms of the perturbation function are considered. Frozen eccentricity value
is computed from the simplest case, considering only J2 and J3 harmonics (Eq. 16).
The initial conditions are a = 4440 km, e = 0.058, i = π/2, Ω = π/2, ω = 3π/2.
Then, we have integrated these initial conditions for different dynamical models in
order to show that it is important to provide a good approximation to the real dy-
namics. Note that we have considered a large SRP value of A/m=10 m2/kg

in order to highlight its effect.

Fig. 17 Long-term evolution of the frozen eccentricity for different disturbing terms.

We can also observe in this figure a known effect (see details in Lidov [18]).
Although third-body effect makes the eccentricity to increase, perturbations due
to the non-sphericity of the central planet may counterbalance the planetary per-
turbations to some extent. That means, higher gravitational inhomogeneities may
extend the lifetime of a satellite as they counteract the third-body effect. Besides,
as we have seen previously, coupling effects due to C22 perturbation may imply that
the periodic oscillations produced in the eccentricity cause lowering the pericenter
altitude. To sum up, in order to provide useful information for mission-planning
purposes, it is important to incorporate the most important disturbing effects in
the Hamiltonian dynamical model.

5 Conclusions

The location of frozen orbits is essential for understanding the dynamics of non-
integrable system, and for efficient design of Mercury’s orbiter missions, since
minimal orbital control is required in the vicinity of that kind of orbits. In order
to determine the initial conditions of the frozen orbits, we apply averaging tech-
niques. Frozen orbits are found as equilibria of the equations of motion after the
elimination of short-period terms. These terms are due to disturbing forces acting
on the orbiting probe. The case of the motion around Mercury is mainly governed
by the gravitational attraction of the main body and the Sun, whose orbit exhibits
a non-negligible eccentricity. In this approach, we use the recent MESSENGER
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gravity determination [30] to update previous works where we considered simpli-
fied models. Tesseral term C22 reveals to be the greatest harmonic joined with J2,
so it is included in the proposed dynamical model. These improved values of the
harmonic coefficients imply modifications in the initial orbit design.
Along this paper, we have provided different criteria to analyze frozen orbits
around Mercury, and to examine their basic nature. Using the techniques de-
scribed above, we have obtained a set of surfaces that characterize frozen orbits
depending on three variables: the orbital semimajor axis, eccentricity and incli-
nation. Some important facts emerge from Figures 7, 5 and 8. (i) For low and
moderate-high altitudes, there are frozen orbits over all the range of inclinations.
We have identified four different families of frozen orbits, labelled S1, S2, S3 and
S4. (ii) The critical point in the family S3 occurs close to the critical inclination
of the satellite. However, as long as the altitude increases, this inclination value
migrates to the left i.e. decreases. The reason for this decrease is the reduction
in strength of the perturbation caused by the gravitational harmonics as they are
inversely proportional to powers of the altitude. This could be an interesting lo-
cation for missions requiring frozen circular orbits. (iii) For very high altitudes,
the Sun attraction dominates and consequently, there are only frozen orbits in the
interval limited by the critical inclination of the third-body. (iv) The majority of
useful frozen orbits obtained have the pericenter near the south pole (ω = 270◦).
This is because J3 is dominant among the odd degree zonals and it has the same
sign than J2.
On the other hand, concerning the effect of solar radiation pressure, we observe
that it produces a characteristic acceleration 10 times greater than for the same
satellite orbiting the Earth. We have seen that, for probes with large area-to-mass
coefficient, this perturbation mainly affects frozen polar orbits increasing the value
of their eccentricity. This is due to the fact that the value of frozen eccentricity
drops because of the third body attraction exerted by the Sun, and we have as-
sumed that solar pressure is a constant force acting in anti-solar direction.
Furthermore, the orbital stability has been portrayed in phase portrait diagrams,
these figures together with long-term propagations give us the behaviour of frozen
orbits. Thus, we have observed that higher gravitational terms may counteract
the third-body perturbation and so, extend the orbit lifetime. Moreover, the effect
due to equatorial ellipticity of Mercury contributes strongly to maintain the frozen
orbits for low-altitude orbits.
Finally, this paper provides initial conditions of frozen orbits that can be used
for numerical correction methods in more complex models. Because the averaging
procedure applied to this problem is analytic, this approach is not restricted to
the case of the motion about Mercury, and may be applied to other dynamical
systems.
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6 Appendix

6.1 Double-averaged disturbing functions

This appendix shows the expressions of the double-averaged Hamiltonian. This is
a two-fold procedure which firstly averages over the orbital period of the spacecraft
and secondly averages with respect to the third body period. Details can be found
in Tresaco et al. [28].

〈〈RJ2
〉〉 = −

1

4
R2

M J2
n2

(1− e2)3/2
(−2 + 3s2i ),

〈〈RJ3 〉〉 = −
3

8
R3

M J3
n2 si e

a(1− e2)5/2
(−4 + 5s2i ) sinω, (20)

〈〈RJ4
〉〉 =

3

128
R4

M J4
n2

a2(1− e2)7/2

(
10 e2s2i (7s2i − 6) cos(2ω)− (3e2 + 2)(35s4i − 40s2i + 8)

)
,

〈〈RJ5
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5

256
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M J5
n2 si e

a3(1− e2)9/2

(
14e2s2i (9s2i − 8) cos(2ω) + e2(−315s4i + 448s2i − 144)

−24(21s4i − 28s2i + 8)
)

sinω,

〈〈RJ6
〉〉 = −

5

4096
R6

M J6
n2

a4(1− e2)11/2

(
−2(15e4 + 40e2 + 8)(231s6i − 378s4i + 168s2i − 16)
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,

〈〈RC22 〉〉 =
3

2
R2

M C22
n2

(1− e2)3/2
s2i cos(2(Ω − γM t)).

For the third-body and SRP we have the disturbing terms (Liu et al. [19])
written in terms of the coefficients α and γ given by:

α = cosω cos(Ω −Ω�) cos f� + sin i sin i� sinω sin f� + cosω cos i� sin(Ω −Ω�) sin f�

− sinω cos i sin(Ω −Ω�) cos f� + sinω cos i cos i� cos(Ω −Ω�) sin f�.

γ = − sinω cos(Ω −Ω�) cos f� + sin i sin i� cosω sin f� − sinω cos i� sin(Ω −Ω�) sin f�

− cosω cos i sin(Ω −Ω�) cos f� + cosω cos i cos i� cos(Ω −Ω�) sin f�.
(21)

Rewritting α and γ as α = α1 cos f� + α2 sin f� and γ = γ1 cos f� + γ2 sin f� ,

α1 = cosω cos(Ω −Ω�)− sinω cos i sin(Ω −Ω�),
α2 = sin i sin i� sinω + cosω cos i� sin(Ω −Ω�) + sinω cos i cos i� cos(Ω −Ω�),
γ1 = − sinω cos(Ω −Ω�)− cosω cos i sin(Ω −Ω�),
γ2 = sin i sin i� cosω − sinω cos i� sin(Ω −Ω�) + cosω cos i cos i� cos(Ω −Ω�).

(22)

we get the following equations after averaging:

〈〈R3b〉〉 =
3a2n2

�

4
(

1− e2�
)3/2 (α2

1 + α2
2

2
(1 + 4e2) +
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2
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(2

3
+ e2

))
. (23)

〈〈RSRP 〉〉 = −β
3a2n2

�

4
(

1− e2�
)3/2 (α2

1 + α2
2

2
(1 + 4e2) +

γ21 + γ22
2

(1− e2)−
(2

3
+ e2

))
. (24)
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6.2 Lagrange equations of averaged disturbing functions

The disturbing double-averaged function, named R and given in Eq. 15, is the sum
of each term shown in Appendix 6.1. Frozen orbits are the zeros of the Lagrange
planetary equations that give the secular variation of e and ω, (see Eq. (17)).
Now, we present here the expression of these equations. For the sake of clarity, it
is shown in three parts, for the zonal contribution, for the tesseral term C22 and
for the Sun plus SRP perturbations.

– Zonal disturbing function: 〈〈RJ2
〉〉+ 〈〈RJ3

〉〉+ 〈〈RJ4
〉〉+ 〈〈RJ5

〉〉+ 〈〈RJ6
〉〉.
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– C22 term: 〈〈RC22
〉〉.
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= −
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nC22R2
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,

de
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= 0. (26)
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– Sun gravitational perturbation and solar radiation pressure: 〈〈R3b〉〉+〈〈RSRP 〉〉.
These terms can be combined after double-averaging process: (1− β)〈〈R3b〉〉.

dω

dt
= (1− β)

[
−
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. (27)
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