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Abstract: This study’s primary objective was to identify individuals whose physiological responses
deviated from the rest of the study population by automatically monitoring atmospheric pressure
levels to which they are exposed and using parameters derived from their heart rate variability (HRV).
To achieve this, 28 volunteers were placed in a dry hyperbaric chamber, where they experienced
varying pressures from 1 to 5 atmospheres, with five sequential stops lasting five minutes each
at different atmospheric pressures. The HRV was dissected into two components: the respiratory
component, which is linked to respiration; and the residual component, which is influenced by factors
beyond respiration. Nine parameters were assessed, including the respiratory rate, four classic HRV
temporal parameters, and four frequency parameters. A k-nearest neighbors classifier based on
cosine distance successfully identified the atmospheric pressures to which the subjects were exposed
to. The classifier achieved an 88.5% accuracy rate in distinguishing between the 5 atm and 3 atm
stages using only four features: respiratory rate, heart rate, and two frequency parameters associated
with the subjects’ sympathetic responses. Furthermore, the study identified 6 out of 28 subjects as
having atypical responses across all pressure levels when compared to the majority. Interestingly,
two of these subjects stood out in terms of gender and having less prior diving experience, but they
still exhibited normal responses to immersion. This suggests the potential for establishing distinct
safety protocols for divers based on their previous experience and gender.

Keywords: hyperbaric environments; autonomic nervous system; heart rate variability; subject
classification; orthogonal subspace projection

1. Introduction

The core premise of this study is centered around the notion that changes within the
autonomic nervous system (ANS), which is responsible for facilitating a diver’s adjustment
to dynamic hyperbaric conditions, can be measured non-invasively through the recording
of physiological signals. These ANS modifications can be investigated by analyzing the
variability in heart rate, which is derived from the electrocardiographic (ECG) signal [1]
and is known as heart rate variability (HRV). The ANS is composed of two divisions:
the sympathetic nervous system and the parasympathetic, or vagal, nervous system. An
analysis of the HRV spectra unveiled two primary components: a high-frequency (HF)
component attributed to respiratory sinus arrhythmia and a low-frequency (LF) component
that reflects the activity of both the sympathetic and parasympathetic nervous systems.
The power within the HF band is commonly utilized as a marker for parasympathetic
activity. Normalized power within the LF band, along with the ratio between LF and HF
power, is often employed as a measure of sympathovagal balance [2]. In addition to HRV,
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the respiratory signal presents another compelling avenue for investigating the ANS. This
signal can be directly recorded or extracted from the ECG [3–6].

Some studies have confirmed that changes in respiratory patterns can significantly
affect the spectral characteristics of HRV [7], thus influencing the interpretation of sym-
pathetic or vagal activations [8,9]. In the conventional analysis of HRV, individuals with
a respiratory rate exceeding 0.4 Hz (the upper limit of the high-frequency (HF) band) or
lower than 0.15 Hz (the upper limit of the low-frequency (LF) band) are typically excluded
to avoid erroneous assessments of the ANS response. To address this challenge, this study
employed an orthogonal subspace projection (OSP) method [10]. By effectively separating
the respiratory influences that are linearly associated with HRV, the OSP method enables
a more accurate estimation of the sympathovagal balance by providing insights into the
extent to which the respiratory component is reflected in HRV. This methodology has been
previously validated in the examination of ANS response under induced states of worry
and mindfulness [11], as well as with the implementation of pharmacological blockades to
manipulate the sympathetic and parasympathetic branches [10].

The ANS response has been extensively examined in various studies via the utilization of
data from hyperbaric chambers. Unlike actual dives, hyperbaric chambers enable the precise
control of atmospheric pressure without the need for immersion. This controlled environment
allows for the isolated investigation of pressure effects, thus eliminating the influence of
other external variables. The response of the ANS has been widely analyzed in multiple
works, where the conditions of high atmospheric pressures in hyperbaric chambers have been
simulated without the need to actually immerse people in water [12–14]. Their results point
to an increase in the power related to HF bands, and they are associated with an increase in
the parasympathetic activity. Another conclusion of the studies in hyperbaric environments is
the reduction in the HR [12–14], although there are also studies in which this trend was not
observed [14]. The number of studies analyzing the activity of the ANS during immersion in
open waters is smaller due to the implicit difficulty of obtaining adequate registers. In these
immersions, in contrast with the expected increase in the sympathetic activity produced by
the diving reflex and cold water stimulation [15,16], results have shown an increase in the
parasympathetic activity (HF power) [17,18].

Previous research that has employed OSP methods on a hyperbaric database was
documented in [19,20]. The findings revealed that parasympathetic activity gradually
increases until reaching the maximum pressure of 5 atm, and this is followed by a sub-
sequent decrease until the protocol’s conclusion at 1 atm. Similarly, sympathetic activity
demonstrates a comparable pattern, displaying an initial rise from the immersion’s onset to
the 5 atm stage, which is followed by a sudden decline until reaching its minimum levels
during the last two stages (3 atm and 1 atm). Therefore, by utilizing HRV analysis with OSP
techniques, the ANS response within hyperbaric chambers can be accurately characterized,
thereby overcoming the limitations associated with respiratory rate restrictions that would
have otherwise necessitated the exclusion of certain data points.

Diving is an adventurous activity that carries inherent risks such as decompression
syndrome, narcosis, hyperoxia, nasal, auditory, or pulmonary barotraumas, etc. When div-
ing with compressed air, the body’s tissues absorb nitrogen, the amount of which depends
on the depth reached and the duration spent at maximum depth. To ensure safe ascent, this
dissolved nitrogen must be gradually eliminated by incorporating decompression stops.
These stops are meticulously planned based on decompression tables established in 1980 for
recreational diving, and they are typically applicable to dives of up to 5 atm. It is important
to note that these standardized tables cater to the general population without accounting
for variations in sex, age, weight, diving expertise, as well as other individual factors.

Enhancing safety during dives involves adhering to important precautions, such as
planning dives according to decompression tables, avoiding solo diving, and utilizing
communication gesture codes among divers. Modern wearable devices like smartwatches
hold potential in further augmenting immersion security. By monitoring the diver’s
physiological response and identifying any inadequate reactions to the prevailing pressure,
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early warning systems can be established to prevent potential accidents during the dive.
Various feature selection and classification methods based on pattern recognition [21] can
be employed to accomplish this task successfully. In this study, feature selection is carried
out using a wrapping method, which entails the selection of a subset of features based on
the classifier’s accuracy.

The ultimate goal of the research framework of this study is to develop an automated
system capable of accurately identifying the atmospheric pressure experienced by subjects.
The correct identification of pressure signifies that the subject’s response aligns with that
of the majority within the study population. Conversely, misidentification of the pressure
indicates that the subject’s physiological response deviates from the norm, thereby poten-
tially highlighting a non-normal reaction to immersion. Such instances serve as warnings
and indicate a heightened risk of diving accidents. By achieving the precise identification
of atmospheric pressure, this research aims to enhance safety measures and minimize
potential risks during dives. To achieve this, a device equipped with a barometer should
be used to label the class of the subject, and a sensor should be used to record the ECG,
which determines the physiological state of the subject. If the classifier indicates that this
physiological state corresponds to the class indicated by the barometer, the subject will be
responding appropriately to the immersion.

To achieve the ultimate goal of this research, it is essential to identify which of the
characteristics of the subjects can modify the response of their ANS—without this alteration
being pathological or posing a risk to them—to variations in atmospheric pressure. This
is the objective studied in this work. Identifying the characteristics that modify the ANS
response during a dive will allow us to group subjects according to these characteristics,
thus avoiding the erroneous identification of a risk state due to these variations.

2. Materials and Methods
2.1. Database

The generated database includes recordings of 28 subjects (25 males and 3 females)
with a mean age of 28.73 ± 6.39 years and with an annual average of dives of 30 ± 14 for 27
of the 28 subjects. In addition, Subject 9 reported 200 dives per year. Moreover, 20 of the
subjects were army divers. The database was recorded inside the hyperbaric chamber of
the Hospital General de la Defensa en Zaragoza with the approval of the ethics committee
Comité de ética de la investigación con medicamentos de la inspección general de sanidad de la
Defensa (30 June 2015) . The recordings of signals in the subjects were conducted in July
2015, from May to June 2016, and December 2016. In the designed protocol, five stages
were studied. The protocol consisted of 5 min stops at 1 atm (pressure at sea level), at
3 atm (simulating 20 m depth), at 5 atm (simulating 40 m depth), and then coming back to
3 and 1 atm. These stages were named 1D, 3D, 5, 3A, and 1A (where the number reflects
the pressure in standard atmospheres, and the letter D or A refers to descent or ascent,
respectively). During the stop stages, the subjects remained relaxed and sat comfortably
in silence without moving. The hyperbaric chamber was ventilated during the entire
test to avoid changes in temperature and humidity. More details of this dataset can be
found in [22]. The recordings were performed using the Nautilus device created by the
University of Kaunas, Lithuania [23]. This device records three-lead ECG signals using a
sampling frequency ( fs) of 2000 Hz with a resolution of 24 bits. It also records the ambient
temperature (accuracy ±0.1 ◦C, fs = 50 Hz) and pressure ( fs = 250 Hz, range 0–14 Bar,
resolution 1.2 mBar, accuracy 50 mBar, response time 35 ms). The ECG is recorded with four
electrodes placed on the chest: one near the right shoulder, another near the left shoulder,
and the last two at the level of the navel, with the one near the right leg serving as the
neutral ECG electrode.

The recordings of all the subjects were successful except for two subjects: (1) the
Nautilus turned off unexpectedly during stages 3A and 1A in Subject 7; (2) the high-power
noise signal observed in stage 5 for Subject 28 made the parameters of that stage unreliable.
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The HRV parameters under investigation may be influenced by fluctuations in am-
bient temperature. The median and interquartile range values of the hyperbaric chamber
temperature at each stage are shown in Table 1.

Table 1. Hyperbaric chamber temperature at each stage. Results shown as median/interquartile
range values.

1D 3D 5 3A 1A
◦C 31.3/3.2 33.7/2.5 34.3/2.4 31.8/2.8 32.8/2.8

2.2. Respiratory Information from the ECG Signals

Respiratory data can be derived from the ECG signal. The initial stage involves
obtaining all the derived respiration signals from the ECG (EDR). Next, an algorithm is
employed to combine the information from all EDR signals for the purpose of estimating
the respiratory rate.

The method utilized to estimate the respiratory rate from the ECG signal, as described
in [24], capitalizes on respiration-induced changes in the ECG signal’s morphology. This
is achieved through the use of three EDR signals: the upward slope of the R-wave, the
downward slope of the R-wave, and the R-wave angle [24]. The method assigns to each
beat occurrence the value of its two associated R-wave slope or R-wave angle.

To perform this, the first time instants associated with the maximum variation points
of the ECG signal between the Q and R points (nQl,i and nRl,i ), as well as between the R and
S points (nRl,i and nSl,i ), were computed as follows:

nUl,i = max
n∈[nQl,i

,nRl,i
]

{∣∣l′l(n)∣∣}, (1)

nDl,i = max
n∈[nRl,i

,nSl,i
]

{∣∣l′l(n)∣∣}, (2)

where l′ is the first derivative of lead l and i indicates the beat index.
Then, a straight line was fitted to the ECG signal by least squares in two 8 ms length

intervals: one centered at nUl,i and the other at nDl,i . The slopes of these lines—denoted as
IUSl,i and IDSl,i , respectively—were determined.

The R-wave angle was also used to derive the respiratory rate. This angle corresponds
to the smallest one formed by the straight lines that define IUSl,i and IDSl,i [25]. The
equation that defines this angle is as follows:

ϕRl,i = arctan

∣∣∣∣∣ IUSl,i − IDSl,i

0.4(6.25 + IUSl,i · IDSl,i )

∣∣∣∣∣. (3)

Figure 1 shows an example of this algorithm over a QRS complex.
An EDR signal was generated for each one of the QRS slopes series by assigning to

each beat occurrence (Rl,i), the value of its associated QRS slope:

du
US,DSl

(n) = ∑
i
IUS,DSl,i · δ(n − Rl,i), (4)

du
Rl
(n) = ∑

i
ϕRl,i · δ(n − Rl,i). (5)

The method assigned to each beat occurrence the value of its two associated R-wave
slopes or R-wave angle. These signals were unevenly sampled, so it was necessary to
resample them at 4 Hz for the purpose of standardization.
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Figure 1. Estimation of the up slope, down slope and R-wave angle, as extracted from [24]. The thick
magenta lines represent the two straight lines from which the slope series were obtained. The R-wave
angle series were obtained from the smallest angle formed by these two lines.

Finally, a MAD-based outlier rejection and a band-pass filter (with cut-off frequencies
of 0.07–1 Hz) were applied to study only the frequency range where the respiratory rate
was expected to be found [5]. Therefore, the three filtered EDR signals were labeled Ra,
Us, and Ds. An example of these three signals can be seen in Figure 2. Three leads were
registered in this study, with three EDR signals estimated for each lead. This arrangement
resulted in nine final EDR signals used in the ensemble to extract respiratory information.
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Figure 2. An example of the three EDR signals extracted from one ECG lead.

The fusion algorithm, as based on [24], was applied to the nine EDR signals (j = 1...9)
to estimate the respiratory rate (FX

R ), with X ∈ [H,P], from the peaked-conditioned averaged
spectra. A power spectral density, denoted as SX

j,k( f ), was estimated every 5 s from the kth
40 s running window, and this was achieved using Welch’s periodogram with sub-windows
of 12 s and a 50% overlap for each EDR signal (j). The location of the largest peak, denoted
as f X

I (j, k), was determined for each SX
j,k( f ). A reference interval ΩX

R (j, k) was subsequently
established as follows:

ΩX
R (j, k) =

[
FX

R (j, k − 1)− δ, FX
R (j, k − 1) + 2δ

]
, (6)

where FX
R (k − 1) is the respiratory rate estimated from the previous (k − 1) window and

δ = 0.1.
All peaks larger than 85% of f X

I (j, k) within ΩX
R (j, k) were detected, and f X

II (j, k) was
selected as the nearest peak to FX

R (j, k − 1) since respiratory variations in 5 s are supposed
to be slow. Note that f X

II (j, k) could be the same as f X
I (j, k) if the largest peak was also the

nearest peak to FX
R (j, k − 1).

A measure of peakness was subsequently obtained from SX
j,k( f ) as the percentage of

power around f X
II (j, k) with respect to the reference interval ΩX

R (j, k).
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Then, a peaked-conditioned average spectrum, SX
k ( f ), was obtained by averaging

those SX
j,k( f ) that were sufficiently peaked:

SX
k ( f ) =

Ls

∑
l=−Ls

Ns

∑
j=1

χA
j,k−l · χB

j,k−l · SX
j,k−l( f ), (7)

where Ls was set to 2 in order to average a maximum of 5 spectra for each EDR and PDR
signal, as in [24]. Ns is the number of signals (9 for ECG and 3 for PPG), and χA

j,k−l and

χB
j,k−l are the two criteria used to determine whether the power spectrum SX

j,k−l( f ) was
sufficiently peaked:

χA
j,k =

{
1, PX

j,k ≥ 85
0, otherwise

, (8)

χB
j,k =

{
1, PX

j,k ≥ maxj (PX
j,k)− λ

0, otherwise
. (9)

Therefore, only those SX
j,k( f ) whose peakness, PX

j,k, was above 85% and had a total
power close to the maximum (λ = 0.05) were averaged.

Consequently, the respiratory rate was estimated as the maximum of SX
k ( f ) as follows:

FX
R (k) = arg max

f
SX

k ( f ). (10)

2.3. Time Parameters of the HRV Signal

A low-pass FIR filter was applied, with a cutoff frequency of 0.03 Hz [26], to the ECG
signal to eliminate the baseline interference by subtracting it from the original signal. A
wavelet-based algorithm was applied to the second frontal bipolar lead of the ECG signal
to detect the heartbeat [27]. Ectopic beats, as well as missed and false detections, were
identified and rectified in accordance with that described in [28]. This process resulted in
the precise localization of the QRS complexes in the ECG, and the intervals between the
consecutive R-waves formed the RR time series. Subsequently, the investigation applied
a time-varying integral pulse frequency modulation model, the same as detailed in [29],
to assess the impact of the autonomic nervous system (ANS) on the occurrence of beats.
This model compensates for the influence of the mean heart rate on the modulating signal,
thereby providing a more accurate representation of ANS activity. Through the application
of this model, an instantaneous heart rate signal (HR) was derived at a sampling rate of
4 Hz. The mean heart rate (mHR) was obtained by low-pass filtering the HR with a cut-off
frequency of 0.03 Hz. Finally, the heart rate variability (HRV) signal was obtained as the
difference between the following two terms: HRV = HR − mHR.

Four time parameters were computed, from the beat to beat time series, as the mean
value of the last four minutes selected for each stage (i.e., 1D, 3D, 5, 3A, and 1A):

• NN: the median value of the normal-to-normal (NN) intervals between the fiducial
points (units of time: s);

• IQRNN: the interquartile range of NN as a measure of statistical dispersion of all NN
intervals (units of time: s);

• RMSSD: calculated as the square root of the mean of the squares of successive differ-
ences between adjacent NN intervals (units of time: s);

• pNN50: the number of pairs of successive NN intervals that differ by more than 50 ms,
which are then divided by the total number of NN intervals (measurement units: %).

2.4. Analysis of HRV Using Orthogonal Subspace Projections

The inclusion of the respiratory signal was essential to enhance the analysis of the
ANS. Specifically, it helps to capture the respiratory sinus arrhythmia, which synchronizes
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with respiration. Consequently, it becomes crucial to account for the relationship between
respiratory rate and the parasympathetic system in our analysis. As a result, participants
with a respiratory rate falling outside the range of 0.15 Hz (the upper limit of the LF band) to
0.4 Hz (the upper limit of the HF band) are typically excluded from HRV studies to prevent
potential misinterpretations concerning ANS activity, as was described in [8]. However, the
utilization of the OSP method in this paper obviated the need for such exclusions.

OSP is a technique designed to break down the HRV signal into two distinct compo-
nents: the respiratory component, which encompasses the variations linearly associated
with respiration; and the residual component, which describes the dynamics influenced by
mechanisms other than respiration. The residual component embodies dynamics regulated
by the sympathetic nervous system and other potential vagal modulators unrelated to
respiration, as referenced in [10,11]. For this method to work effectively, both the HRV
signal and the respiratory signal are required, and this is achieved by assuming that the res-
piratory signal induces fluctuations in the HRV signal, as was outlined in [30]. Notably, one
of the EDR signals utilized for extracting the respiratory rate also serves as the respiratory
signal (see Section 2.2).

To isolate all the HR dynamics linearly tied to respiration, a subspace denoted as V
was constructed using the respiratory signal and its delayed versions, as was detailed
in [10]. Subsequently, the HRV signal was projected onto this respiratory subspace V,
thereby allowing for the description of all HRV dynamics that were linearly linked to respi-
ration in the respiratory component, referred to as HRVR. Simultaneously, an orthogonal
component, which represented HR modulators other than respiration, was computed as
HRV⊥ = HRV − HRVR.

The relative power of each component (PR for the respiratory component and P⊥
for the residual component) indicated the extent to which respiration and the HR share
information. When PR >> P⊥ , it suggests that most HR variations can be explained by
changes in respiration and vice versa. Moreover, PR can serve as an index for assessing
respiratory sinus arrhythmia (RSA), and due to the association between RSA and vagal
tone, PR can be interpreted as a marker for parasympathetic activity.

Finally, four frequency parameters were defined as the mean value of the last four
minutes that were selected for each stage (1D, 3D, 5, 3A, and 1A).

• PR: the relative power of respiratory component (measurement units: arbitrary units,
a.u.);

• P⊥ : the relative power of the residual component (measurement units: a.u.);
• PLF⊥ : the power of the residual component in the LF band that could be interpreted as

a marker of the sympathetic system (0.04–0.15 Hz; measurement units: a.u.);
• PHF⊥ : the power of the residual component in the HF band that could be interpreted as

a marker of the parasympathetic system (0.15–0.4 Hz; measurement units: a.u.).

2.5. Statistical Analysis

In order to minimize the effects of the intersubject variability, the relative change (R)
of each parameter (Y) with respect to the reference stage (1D) for each studied stage was
calculated as follows:

R(YS) =
YS −Y1D
YS + Y1D

, (11)

where 1D is the reference state and S can be 3D, 5, 3A, or 1A.
The parameters were referenced to the basal state to minimize the effects of the

intersubject variance. The Shapiro–Wilk test was used to check the normality of the ratios
R(YS). When the normal distribution of one ratio was verified, the t-Student paired test
was applied. When not, the Wilcoxon paired test was applied. A p-value of <α defines
the significance in value with respect to basal state 1D, where the significance level α can
be 0.05, 0.01, or 0.001. This test allows for identifying the significant differences in each
parameter for each stage with respect to the basal state. Finally, a test using ANOVA
statistics with a Bonferroni correction for multiple comparisons was applied to assess the
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differences between the estimated relative changes in the four stages. When the normal
distribution of one relative change in the considered group was not verified, a Friedman
test was applied instead of the ANOVA test. These tests were applied to the relative change
in each parameter in each of the following four stages: 3D, 5, 3A and 1A.

2.6. Feature Selection and Classification

The objective of this study is to automatically identify the atmospheric pressure to
which a subject is exposed based on changes, with respect to the basal state, in the diverse
parameters extracted from the HRV.

The MATLAB R2017b Classification Learner App allows to perform multi-class classi-
fication with 27 types of classifiers and three validation methods. This app can be used to
perform a first approximation and to select the classifiers that give the best response for the
study population [31–34].

Among the great diversity of classifiers, in this study, we propose four of them to
identify the four hyperbaric states to which the subjects were exposed. To select these
four classifiers, the following procedure was implemented: A classification of stages 5
and 1A, i.e., the two stages most distant in pressure, was performed using the MATLAB
Classification Learner App, thereby obtaining the accuracy of the 27 classifiers of the app. A
K-fold validation was used (k = 28, matching with the number of subjects). For the rest of
the study, the four classifiers with the highest accuracy were selected: a linear discriminant
analysis (LDA) classifier, a medium Gaussian support vector machine (SVM) classifier, a
k-nearest neighbors (KNN) classifier based on cosine distance, and a discriminant ensemble
classifier (DEC). All classifiers had a binary output that indicated whether the feature
values correspond to the evaluated state or not. A true positive (TP) was considered when
the classifier assigned the state that matches the pressure to which the subject was subjected.
A true negative (TN) was reached when the classifier indicated that the subject did not
correspond to the evaluated state and, indeed, when the subject was under a pressure
different from the evaluated state. Accuracy was determined as TN+TP divided by the
total cases and multiplied by 100.

A feature selector known as the wrapping method was employed. This method
involves the following steps:

1. The training and validating of a classifier were performed for each of the nine features
using leave-one-out validation. In the study population, one subject was selected from
all of the evaluated states, and this subject constituted the test group. The remaining
subjects (27 in total) formed the training group.

2. The feature with the highest accuracy was selected as the first feature (F = {F1}, where
F is the set of selected features). If more than one feature obtained the maximum
classification, one of them was randomly selected.

3. The training and validating of classifiers using a leave-one-out approach with the
following two features: the previously selected one and each of the remaining features.

4. Selecting the two features with the highest accuracy (F = {F1, F2}).
5. Repeating Steps 3 and 4 while progressively adding more features in the sequence

(F = F1, F2, . . . , Ff , where f = 9 represents the maximum number of features that can
be selected).

This method has been applied with each of the four classifiers and for the identification
of the following set of classes: 3D and 5 (C.3D-5); 5 and 3A (C.5-3A); 5 and 1A (C.5-1A);
and 3A and 1A (C.3A-1A). A final set with three classes was considered, where the first
class was formed by unifying states 3D and 3A into a class called C.3DA, the second class
was formed by Stage 5, and the third class was formed by 1A (C.3DA-5-1A).

2.7. Anomaly Subject Identification Algorithm

The study population predominantly consisted of young, healthy men, with a few
individuals varying in gender and possessing extensive prior diving experience. The
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primary objective of this work was to determine whether a classifier can identify subjects
exhibiting an anomalous response compared to the majority within the population.

To address the potential limitation of a somewhat narrow study population for the
stated objective, the following algorithm was implemented to identify subjects with a
hyperbaric environment response that was different from the majority: Classifiers with
two states are trained utilizing four different classifiers. Each of these classifiers consider
a variable number of features, ranging from 1 to 9. This implies that, for each pair of
the states studied, every subject has 72 results (2 × 4 × 9 = 72). To identify subjects
with an anomalous response, only the results corresponding to classifiers exceeding a
70% precision are considered out of these 72 results. The subjects identified as having
an anomalous response are those most frequently misclassified compared to the results
obtained by the rest of the population. This algorithm ensures that the identification of the
anomalous subjects is not based on the results of a single classifier but on the accumulation
of classification errors (i.e., those that are misclassified).

3. Results

The challenge of this study was the automatic identification of various hyperbaric
stages. In order to reduce the impact of intersubject variance, all parameters were referenced
with respect to a Y1D baseline stage using Equation (11). The boxplot in Figure 3 shows
the described ratios of the respiratory rate obtained from ECG, as well as the time and
frequency parameters of the HRV that were extracted using the OSP method, and this was
performed for each stage referenced to the baseline 1D.

These results showed a significant increase in all the time parameters relative to the
baseline, as well as among the descending (3D and 5) and ascending (3A and 1A) stages.
These results showed an increase in FR, which was significant for Stage 3A with respect to
the baseline and also with respect to Stages 3D and 5. The FR, NN, and RMSSD reached
their maximum values for Stage 1A, whereas IQRNN and pNN50 reached a maximum
increase at Stage 5 and 3A, respectively. For the frequency domain results, PHF⊥ increased
its value in all stages with respect to the basal state, but it was only significant for Stages
3A and 5. This increase reached its maximum at the deepest, i.e., Stage 5. PLF⊥ increased its
value with respect to the baseline during descent, i.e., Stages 3A and 5, and then decreased
in value during the ascent, i.e., Stages 3A and 1A. When comparing stages, significant
changes were obtained between each of the two ascending stages with each of the two
descending ones. No changes in the residual power component P⊥ were observed, except
for a small increase in Stage 1A, while there was a large dispersion in the changes in the
respiratory power components, PR, with respect to the basal stage.
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Figure 3. Boxplots of all the parameters of the ECG signal. The significance level α of the t-Student
or Wilcoxon test was indicated with ⋆ for α = 0.05, ⋄ for α = 0.01, and † for α = 0.001. The arrows
indicate the statistically significant differences between the compared groups, and this was achieved
using ANOVA or Friedman statistics with the Bonferroni correction for multiple comparisons tests
when the median value of one stage (arrow start) was significantly higher or lower than the other
(arrow end). The colors of the start and end of the arrows indicate the stages analyzed.
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Feature Selection and Classification

The following five sets of classes were considered for automatic identification: C.3D-5;
C.5-3A; C.5-1A; C.3A-1A; and C.3DA-5-1A (Section 2.6). Due to problems in recording
the ECG signal, as described in the Materials section, Subject 7 only became part of the
population for the set of classes C.3D-5, and Subject 28 was only part of the population for
the set of classes C.3A-1A.

The method of feature selection was repeated for each of the four classifiers (LDA,
SVM, KNN, and DEC) and for each of the five set of classes considered (C.X-Y, where X
and Y stand for the stages compared). Figure 4 illustrates the accuracy obtained in the
identification in each of the cases considered, which was achieved by increasing the number
of the selected features, starting from one to nine. For the three-class classification, like
C.3DA-5-1A, the accuracy was well below 65%, so it iswas considered that these classes
could not be separated with current features, and these three-class classifiers were not
considered in the rest of the paper. For the two-class classifiers, optimal results were those
obtained with one, three, or four features due to both their high accuracy and low number
of features.
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Figure 4. Accuracy of the subject stage identification as the number of selected features rose in each of
the four classifiers used. The 70% accuracy was highlighted in the images with a gray horizontal line.
(a) Stages 3D and 5 (C.3D-5). (b) Stages 5 and 3A (C.5-3A). (c) Stages 5 and 1A (C.5-1A). (d) Stages
3A and 1A (C.3A-1A). (e) Stages 3D, 5, 3A, and 1A (C.3DA-5-1A).

Table 2 shows the order of the features obtained in the selection process. In this table,
the feature sets with the best accuracy for each of the class sets are highlighted in blue. In
the highlighted cases, the accuracy was higher than 70%, whereby the maximum of a 88.5%
accuracy was reached with the two-class classifier C.5-3A with four features. This table
also shows the subjects misclassified in the classifiers that obtained the best accuracy. If a
subject was misclassified for the two classes considered, its number appears duplicated in
the table.
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Table 2. Selected features in each classifier. The features of the classifier with the best results for each
pair of stages are marked in blue. The last column shows the misclassified subjects in the classifiers
with the highest accuracy.

Classes Classif. Order of Features
Misclass.

Subjects

C.3D-5

LDA PHF⊥ ; pNN50; IQRNN; RMSSD; NN; P R; FR; PLF⊥ ; P⊥ ;

SVM IQRNN; pNN50; PLF⊥ ; P R; P⊥ ; PHF⊥ ; NN; FR; RMSSD;

KNN pNN50; NN; FR; PHF⊥ ; RMSSD; P⊥ ; IQRNN; PLF⊥ ; P R; 2 3 4 5 6 7 8 9 10 10

DEC PHF⊥ ; pNN50; P R; P⊥ ; PLF⊥ ; FR; RMSSD; IQRNN; NN;

C.5-3A

LDA NN; PLF⊥ ; P R; RMSSD; IQRNN; PHF⊥ ; FR; pNN50; P⊥ ;

SVM NN; P⊥ ; PHF⊥ ; FR; RMSSD; PLF⊥ ; IQRNN; pNN50; P R;

KNN NN; P⊥ ; FR; PLF⊥ ; RMSSD; P R; pNN50; PHF⊥ ; IQRNN; 6 8 10 16 25 26

DEC NN; FR; PLF⊥ ; P⊥ ; PHF⊥ ; P R; IQRNN; RMSSD; pNN50;

C.5-1A

LDA NN; PHF⊥ ; RMSSD; FR; pNN50; IQRNN; PLF⊥ ; P⊥ ; P R;

SVM NN; PLF⊥ ; P⊥ ; FR; P R; IQRNN; PHF⊥ ; RMSSD; pNN50; 2 3 4 9 10 12 22 25 26

KNN NN; P⊥ ; pNN50; PLF⊥ ; PHF⊥ ; P R; RMSSD; FR; IQRNN;

DEC NN; P⊥ ; PLF⊥ ; pNN50; PHF⊥ ; RMSSD; FR; IQRNN; P R;

C.3A-1A

LDA pNN50; P⊥ ; FR; RMSSD; NN; PHF⊥ ; PLF⊥ ; P R; IQRNN;

SVM P R; PLF⊥ ; PHF⊥ ; P⊥ ; FR; NN; IQRNN; pNN50; RMSSD;

KNN IQRNN; pNN50; PLF⊥ ; NN; FR; P⊥ ; RMSSD; P R; PHF⊥ ; 1 2 3 4 5 6 8 9 11 12

DEC pNN50; P⊥ ; FR; RMSSD; PLF⊥ ; P R; IQRNN; PHF⊥ ; NN;

Figure 5 shows how many times each subject was misclassified, and it shows the
accumulation of the results of all the classifiers that obtained an accuracy higher than
70% (these were most of the results in C.5-3A and C.5-1A, but just few were found in
C.3A-1A and C.3D-5, as shown in Figure 4). In total, for each pair of classes, there were
four different classifiers with a number of features that varied from 1 to 9, thus producing a
total of 72 (2 classes × 4 classifiers × 9 features) classification results for each subject. Thus,
for example, in the C.3D-5 classifiers, the accuracy only exceeded 70% for one, four, and
seven features for the KNN classifier, so it was considered that the subjects may have been
misclassified a maximum of 6 times (2 classes × 1 classifier × 3 features). The number of
classification results considered for each subject in each pair of classes is indicated in the
caption of each panel.

In this paragraph, we compare the results obtained by applying the methodology
from Section 2.7, and the aim is to identify the subjects with a response different from the
majority population (i.e., those who were misclassified), with the results obtained using
what is considered the best classifier in each group of the analyzed classes. In Figure 5a,
for the C.5-1A classifiers, Subjects 2, 3, 6, 9, 10, 12, 16, 22, and 25 were misclassified more
than 20 times. Comparing this result with the one obtained by the best classifier (Table 2), it
was shown that it classified Subjects 6 and 16 well, but it failed to classify Subjects 4 and
26. Only Subject 12 was misclassified in more than 40 occasions. For the C.5-3A classifiers,
Subjects 3, 9, and 21 were misidentified more than 20 times, and this would then be added
to the results of the best classifier. In Figure 5b for C.3A-1A, it was shown that Subjects 1, 2,
3, and 5 were misclassified once with the best classifier (Table 2). These four subjects were
not army divers. In Figure 5b, if we consider the subjects that were misclassified on 3 or
more occasions, the number of misclassified subjects was reduced to 7, and then to 10 for
the C.3D-5 classifiers. In the Discussion section, the possible cause for these subjects being
misclassified is analyzed.
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Figure 5. Number of times each subject was misclassified. The caption of each panel indicates the
number of cases considered, i.e., those whose accuracy exceeded 70% and those multiplied by the two
classes considered in each classifier. The maximum possible number of misclassifications considered
in each panel is highlighted in the graphs with a horizontal line in the color associated with each set
of classes. (a) C.5-1A: 66 cases. C.5-3A: 70 cases. (b) C.3A-1A: 8 cases. C.3D-5: 6 cases.

4. Discussion

This study aims to automatically identify the atmospheric pressure to which a diver
is exposed to. An incorrect classification of a subject may indicate that the subject is not
responding adequately to the increased pressure, which would allow one to take premature
actions against possible accidents during dives in hyperbaric environments. To achieve this,
a database was constructed using parameters extracted from the ECG signals of 28 subjects,
and these were recorded during five designated hyperbaric stages. The respiratory rate
and HRV time parameters were extracted, and four HRV frequency parameters were also
extracted by the OSP method.

To ensure an accurate analysis of the HRV parameters, it was crucial to eliminate
the variations in ambient temperature that could potentially impact the parameters being
studied. Table 1 illustrates that an increase of 4 atm in atmospheric pressure results in
an approximate 3 ◦C rise in ambient temperature. Interestingly, within the hyperbaric
chamber, there was only one instance of temperature decrease, specifically from 5 to 3A.
This decrease in temperature triggered the reflex activation of sympathetic vasoconstrictor
nerves, leading to cutaneous vasoconstriction and reduced blood flow to the skin [35].
However, this sympathetic activation was not observed in the PLF⊥ parameter depicted
in Figure 3. Before returning to 1 atm (Stage 1A), the divers were required to undergo
decompression stops lasting between 50 and 55 min. These stops allowed the divers to
gradually acclimatize to the minor temperature change in relation to the preceding stage.
Notably, significant temperature variations occurred between consecutive stages, except
for the transition from Stages 3A to 1A.

As a secondary objective, this study sought to automate the identification of the
specific hyperbaric stages experienced by subjects using a single signal, namely the ECG
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signal. Reducing the number of signals required for this identification would facilitate
the integration of these findings into electronic devices, thereby enhancing the safety of
individuals in hyperbaric environments. Such devices are more readily accepted by the
general public when they have minimal impact on the subject’s comfort. However, it is
important to include the respiratory signal in this study for two key reasons: it provides
valuable information regarding the subject’s adaptation to the hyperbaric environment,
and it is essential for the implementation of the OSP method. One limitation of relying
solely on a single signal is the omission of a dedicated respiratory signal recording. To
address this limitation, an algorithm was implemented to extract the respiratory rate from
the ECG signals [24]. It is worth noting that this algorithm was tested against a reference
device, and its favorable results validate its use for estimating respiratory rates. The
reported margin of error for the EDR methods was approximately 0.025 Hz in the worst
case [24]. These algorithms provide sufficient accuracy through which to identify subjects
with respiratory rates outside the [0.15 Hz, 0.4 Hz] range. In our database, there are nine
subjects with respiratory rates below 0.15 Hz or above 0.4 Hz, which could potentially
lead to the overestimation of power in the LF band or underestimation of power in the HF
band when extracting the classical frequency parameters of HRV. However, the frequency
parameters extracted in this study pertain to the residual component of HRV, thus capturing
the modulated dynamics unrelated to respiration. As a result, none of these nine subjects
needed to be excluded from the study, and the mean respiratory rate of all subjects was
included as predictors in the classifiers. Furthermore, the OSP method necessitated the
use of the respiratory signal to construct the subspace V and project the HRV signal onto
this subspace. For the creation of subspace V, a respiratory signal derived from the ECG,
specifically one of the EDRs described in Section 2.2, was employed.

To mitigate the impact of intersubject variability, the classification study was conducted
using the proposed parameter ratios, which was achieved by focusing on the stages under
study referenced with the subject’s baseline stage through Equation (11).

Figure 3 shows a significant increase in NN, which corresponds to a decrease in
HR, as well as a significant increase in the rest of time domain parameters from the
baseline to the hyperbaric stage. Previous hyperbaric studies [12–14,36] have reported a
reduction in HR, which could be attributed to the influence of pressure and the diving
reflex [37,38]. This may be the cause as to why this parameter was the most frequently
selected as the first feature (Table 2). The significant increase in the rest of the temporal
parameters (especially in RMSSD), together with the decrease in the HR, seems to point
out an increase in the parasympathetic activity or a decrease in the sympathetic one.
This increased parasympathetic activity can also be observed in the frequency parameter
PHF⊥ , which is increased in all hyperbaric stages when compared to the basal stage and
reaches its maximum change for Stage 5. Regarding the sympathetic system, an increase
in the parameter PLF⊥ for the pressure increase stages, i.e., 3D and 5, can be observed;
meanwhile, a decrease in sympathetic activity in Stages 3A and 1A was observed, thereby
coinciding with the largest increase in the time domain parameters NN and RMSSD. These
three parameters also showed the same significant differences among the descending
(3D and 5) and ascending (3A and 1A) stages. Although several studies have shown
that parasympathetic activation occurs to adapt to pressure increases [12–14,22,39], in
our results, we can observe sympathetic activation in Stages 3D and 5 with the pressure
increase. In a hyperbaric chamber, during increases in atmospheric pressure, respiratory
effort increases. In addition, the environment is more humid and hostile, which can induce
a slight stress in the subjects that justifies the increase in sympathetic activation. In Stages
3A and 1A, the reduction in atmospheric pressure, i.e., returning to baseline conditions,
reduces the stress that the hyperbaric chamber can induce in the subject, and this is reflected
in a decrease in the PLF⊥ parameter in relation to the baseline.

The results of this study have direct application in the practice of diving. Bearing
in mind that the maximum pressure reached is 5 atm, we are still within the limits of
recreational diving. In these dives, there are no sudden changes in pressure, and divers
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go through each stage sequentially. That is why, in this work, sequential changes of 2
and 4 atm were compared. Comparing Stages 3D and 3A was ruled out since the subjects
were exposed to the same pressure. A classifier with the three classes considered in the
study was also included, but the results showed that, with the current features, these stages
cannot be separated.

The MATLAB Classification Learner App allows us to perform multi-class classifica-
tion with 27 types of classifiers. This app was used to perform a quick classification of all
the considered multi-classes using the nine features and a K-fold validation, where K = 28.
With the pair of classes C.5-3A and C.5-1A, the results were higher than 65%. For this
paper, the four classifiers that presented the best results separating the classes C.5-1A were
selected as they were the stages that experienced the highest change in pressure.

With the four classifiers selected (LDA, SVM, KNN, and DEC), we proceeded to
separate the five sets of classes considered. The classifiers with the best results were those
that separated the ascending stages C.5-3A and C.5-1A, as well as reached an accuracy of
88.5% and 82.7% (both of which with only four and three features), respectively. Selected
features included NN and PLF⊥ (Table 2), which showed significant changes between Stage
5 and Stages 3A and 1A (Figure 3). As previously mentioned, these parameters showed
us a dominance of the parasympathetic system over the sympathetic when the pressure
decreases and until it recovers to the basal pressure.

To separate the classes C.5-3A, feature FR was also selected, which showed significant
changes between these stages (Figure 3). This was something that did not happen with
P⊥ , which was the fourth feature selected to separate these stages (Table 2). An accuracy
above 80% was obtained in the four classifiers used. The KNN classifier based on cosine
distance exceeded 85% with the four features mentioned (Figure 4). The complexity of this
classifier made it difficult to interpret the relationship between the selected features and
the different stages studied, and this made it possible to identify the hyperbaric state in
which the subject was immersed. Likewise, it was difficult to justify why a feature that did
not show significant differences between the stages studied was essential for achieving this
high accuracy.

Analogously, to separate the classes C.5-1A, feature P⊥ was selected, which did not
show significant changes between those stages (Figure 3). In this class, the maximum
accuracy was achieved with a medium Gaussian SVM classifier (Figure 4). The medium
Gaussian kernel used in this classifier made it difficult to interpret the results, as was the
case with the KNN classifier.

Between Stages 3D and 5, and 3A and 1A, there were no significant differences for
any of the nine parameters (Figure 3); however, they did reach an accuracy of 81.5% with
one feature. Table 2 shows that the best results were achieved with features pNN50 and
IQRNN, but the same accuracy would be obtained if the selected feature were NN. The
classifiers managed to separate the stages using only this feature, while the addition of any
other feature reduced the accuracy considerably. These accuracies were reached with the
KNN classifier, thus leaving the accuracy below 65% for the C.3D-5 stages, and 67% for the
C.3A-1A stages with the rest of the classifiers considered (Figure 4).

A limitation of this study is that the selected classifiers did not allow for an interpre-
tation of the physiological changes underlying the atmospheric pressures to which the
subjects were exposed. A future research line could be to separate these classes with meth-
ods that facilitate the characterization of a normal physiological response to immersion in
hyperbaric environments.

Figure 5 shows that Subjects 3, 6, 9, 10, 16, and 25 were misclassified more than
20 times in the pair of C.5-1A and C.5-3A classes, and they were misclassified at least one
time in the rest of the pair of classes. Subjects 3 and 6 were two of the three women of
the sample population who entered a hyperbaric chamber for the first time and practiced
diving recreationally. The average annual dives of the subjects that made up the sample
was 30, while the annual dives of Subjects 3 and 6 were 14 and 4, respectively. Subject 16
was a man with only 15 annual dives. Subject 25 was an army diver, but he did not indicate
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the number of annual dives. Subjects 9 and 10 were men who were army divers and were
familiar with the hyperbaric chamber, so their characteristics matched with the majority
of the sample population. However, Subject 9 reported 200 dives per year—well above
the population average. No subject indicated having had complications during the dive or
derived from the dive, so it was considered that all had a normal physiological response to
the dive. The results seemed to indicate that this response could be different depending on
the sex or/and the previous experience of the subjects. It will be necessary to expand the
database to confirm this hypothesis.

5. Conclusions

In this study, it was possible to automatically identify the atmospheric pressure to
which the subjects were exposed, and an accuracy of 88.5% was reached in the differences
between the stages at 5 atm and 3 atm. These results were achieved with just four features:
NN, P⊥ , FR, and PLF⊥ . The misclassified subjects, 6 of the 28, were identified as subjects
with an altered physiological response compared to the rest of the subjects that made up
the study population. Two of these subjects differed from the majority of the population
in gender, and three of the subjects had much less previous diving experience. However,
their response to immersion was considered normal. These findings suggest that it may be
necessary to establish distinct safety protocols for diving based on divers’ prior experience
and/or gender. Further studies with more subjects will be needed to verify this trend.
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