000130428 001__ 130428
000130428 005__ 20240125162930.0
000130428 0247_ $$2doi$$a10.2166/hydro.2013.153
000130428 0248_ $$2sideral$$a80708
000130428 037__ $$aART-2013-80708
000130428 041__ $$aeng
000130428 100__ $$0(orcid)0000-0002-2985-1023$$aCarmelo Juez, Javier$$uUniversidad de Zaragoza
000130428 245__ $$aNumerical assessment of bed-load discharge formulations for transient flow in 1D and 2D situations. Autores
000130428 260__ $$c2013
000130428 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130428 5203_ $$aTwo-dimensional (2D) transient flow over an erodible bed can be modelled using shallow-water equations and the Exner equation to describe the morphological evolution of the bed. Considering the fact that well-proven capacity formulae are based on one-dimensional (1D) experimental steady
flows, the assessment of these empirical relations under unsteady 1D and 2D situations is important.
In order to ensure the reliability of the numerical experimentation, the formulation has to be general enough to allow the use of different empirical laws. Moreover, the numerical scheme must handle correctly the coupling between the 2D shallow-water equations and the Exner equation under any
condition. In this work, a finite-volume numerical scheme that includes these two main features will be exploited here in 1D and 2D laboratory test cases. The relative performances of Meyer-Peter and Müller, Ashida and Michiue, Engelund and Fredsoe, Fernandez Luque and Van Beek, Parker, Smart,
Nielsen, Wong and Camenen and Larson formulations are analysed in terms of the root mean square error. A new discretization of the Smart formula is provided, leading to promising predictions of the erosion/deposition rates. The results arising from this work are useful to justify the use of an
empirical sediment bed-load discharge formula among the ones studied, regardless of the hydrodynamic situation.
000130428 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000130428 590__ $$a1.336$$b2013
000130428 591__ $$aENGINEERING, CIVIL$$b38 / 124 = 0.306$$c2013$$dQ2$$eT1
000130428 591__ $$aWATER RESOURCES$$b35 / 81 = 0.432$$c2013$$dQ2$$eT2
000130428 591__ $$aENVIRONMENTAL SCIENCES$$b124 / 215 = 0.577$$c2013$$dQ3$$eT2
000130428 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b57 / 101 = 0.564$$c2013$$dQ3$$eT2
000130428 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130428 700__ $$0(orcid)0000-0002-1386-5543$$aMurillo Pilar García-Navarro$$uUniversidad de Zaragoza
000130428 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000130428 773__ $$g15, 4 (2013), 1234-1257$$pJ. hydroinform.$$tJOURNAL OF HYDROINFORMATICS$$x1464-7141
000130428 8564_ $$s2139108$$uhttps://zaguan.unizar.es/record/130428/files/texto_completo.pdf$$yVersión publicada
000130428 8564_ $$s1701580$$uhttps://zaguan.unizar.es/record/130428/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130428 909CO $$ooai:zaguan.unizar.es:130428$$particulos$$pdriver
000130428 951__ $$a2024-01-25-15:09:58
000130428 980__ $$aARTICLE