000130455 001__ 130455
000130455 005__ 20240125162930.0
000130455 0247_ $$2doi$$a10.1142/S021812742030030X
000130455 0248_ $$2sideral$$a120312
000130455 037__ $$aART-2020-120312
000130455 041__ $$aeng
000130455 100__ $$0(orcid)0000-0002-8089-343X$$aBarrio, R.$$uUniversidad de Zaragoza
000130455 245__ $$aExperimentally Accessible Orbits near a Bykov Cycle
000130455 260__ $$c2020
000130455 5203_ $$aThis paper reports numerical experiments done on a two-parameter family of vector fields which unfold an attracting heteroclinic cycle linking two saddle-foci. We investigated both local and global bifurcations due to symmetry breaking in order to detect either hyperbolic or chaotic dynamics. Although a complete understanding of the corresponding bifurcation diagram and the mechanisms underlying the dynamical changes is still out of reach, using a combination of theoretical tools and computer simulations we have uncovered some complex patterns. We have selected suitable initial conditions to analyze the bifurcation diagrams, and regarding these solutions we have located: (a) an open domain of parameters with regular dynamics; (b) infinitely many parabolic-Type curves associated to homoclinic Shilnikov cycles which act as organizing centers; (c) a crisis region related to the destruction or creation of chaotic attractors; (d) a large Lebesgue measure set of parameters where chaotic regimes are dominant, though sinks and chaotic attractors may coexist, and in whose complement we observe shrimps.
000130455 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E24-17R$$9info:eu-repo/grantAgreement/EUR/ERDF/PT2020-2020$$9info:eu-repo/grantAgreement/ES/FEDER/UID/MAT/00144/2013$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2015-64095-P$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-096026-B-I00
000130455 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130455 590__ $$a2.836$$b2020
000130455 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b30 / 108 = 0.278$$c2020$$dQ2$$eT1
000130455 591__ $$aMULTIDISCIPLINARY SCIENCES$$b29 / 72 = 0.403$$c2020$$dQ2$$eT2
000130455 592__ $$a0.761$$b2020
000130455 593__ $$aApplied Mathematics$$c2020$$dQ1
000130455 593__ $$aMultidisciplinary$$c2020$$dQ1
000130455 593__ $$aModeling and Simulation$$c2020$$dQ1
000130455 593__ $$aEngineering (miscellaneous)$$c2020$$dQ1
000130455 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130455 700__ $$aCarvalho, M.
000130455 700__ $$aCastro, L.
000130455 700__ $$aRodrigues, A.A.P.
000130455 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000130455 773__ $$g30, 10 (2020), 2030030 [24 pp]$$pInt. J. Bifurcation Chaos$$tINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS$$x0218-1274
000130455 8564_ $$s2866370$$uhttps://zaguan.unizar.es/record/130455/files/texto_completo.pdf$$yPostprint
000130455 8564_ $$s1582192$$uhttps://zaguan.unizar.es/record/130455/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130455 909CO $$ooai:zaguan.unizar.es:130455$$particulos$$pdriver
000130455 951__ $$a2024-01-25-15:12:09
000130455 980__ $$aARTICLE