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Abstract

Recent advances in free surface flows over mobile bed have shown that accu-
rate and stable results in realistic problems can be provided if an appropriate
coupling between the shallow water equations (SWE) and the Exner equa-
tion is performed. This coupling can be done if using a suitable Jacobian
matrix. As a result, faithful numerical predictions are available for a wide
range of flow conditions and empirical bed load discharge formulations, al-
lowing to investigate the best option in each case study, which is mandatory
in these type of environmental problems. When coupling the equations, the
SWE are considered but including an extra conservation law for the sedi-
ment dynamics. In this way the computational cost may become unfordable
in situations where the application of the SWE over rigid bed can be used
involving large time and space scales without giving up to the adequate level
of mesh refinement. Therefore, for restoring the numerical efficiency, the cou-
pling technique is simplified, not decreasing the number of waves involved in
the Riemann Problem but simplifying their definitions. The effects of the
approximations made are tested against experimental data which include
transient problems over erodible bed. The simplified model is formulated
under a general framework able to insert any desirable discharge solid load
formula.

Keywords: Finite volume method, 2D Shallow water, Bed load sediment
transport, Exner equation
2000 MSC: 65N06,76B15,76M20,76N99

∗Corresponding author
Email address: carmelo@unizar.es (C. Juez)

Manuscript accepted in Advances in Water Resources March 20, 2014



1. Introduction1

The study of sediment transport is focused on the crossed relation between2

the moving water and the sediment materials. Despite having been analyzed3

since the 1950s and being widely employed in real-life engineering [1, 2], the4

develop of sediment transport modeling remains at present a relevant issue5

within the framework of the environmental modeling.6

It is generally accepted that two of the fundamental concerns in modern7

sediment hydraulic engineering practice is the need for accurate and, in the8

same level of importance, efficient schemes for computing the shallow water9

equations together with the movement of sediment particles. The numerical10

strategy proposed must mimic the principal phenomenae observed in the flow11

field and in the movable bed.12

In the search for capturing this physically significant processes Hudson13

et al., [3, 4] studied the influence of steady and unsteady approaches in14

the mathematical model when computing free surface flows considering a15

bed-load transport. It was commanded to consider the unsteady system16

contrary to what was assumed in earlier works [5, 6]. Ignoring unsteady17

hydrodynamical effects means that the time scales of the morphodynamics18

changes are smaller in comparison with the morphodynamic ones and only19

nearly steady process where the bed changes are generated in a slow way20

could be computed.21

Focusing on the numerical techniques employed for obtaining the solution,22

a classification between asynchronous and synchronous strategies can be es-23

tablished [7]. Asynchronous procedures imply that the changes in the bed24

level are not of enough importance for affecting the hydrodynamic equations25

during a computational time step. This way, the continuity and momen-26

tum equations for the fluid phase are decoupled of the sediment continuity27

equation. They are also known as uncoupled models. On the other hand,28

numerical methods which solve at the same time step the hydrodynamic29

and morphodynamic equations are called synchronous and also, coupled. De30

Vriend [5] justified that asynchronous/uncoupled techniques were only valid31

for a limited range of hydrodynamic regimes governed by low Froude numbers32

and weak interactions between the flow and bed dynamics. For this reason,33

other authors, [8, 9, 10, 11, 12], have studied synchronous/coupled proce-34

dures, able to handle a wider range of hydrodynamic and morphodynamic35

situations. In some of those previous works, despite considering an extra36

equation for computing the sediment dynamics no additional conditions to37
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the classical Courant-Friedrichs-Lewy (CFL) were provided for controlling38

the numerical stability. In particular, the lack of knowledge of an automatic39

numerical stability condition in [13] has driven to calibrate, by trial and error40

a CFL condition for obtaining a stable solution to each particular case.41

In order to overcome the challenge when building a self-stable numerical42

scheme, several strategies have been proposed in order to derive the eigen-43

values, which are responsible of the numerical stability. Ones are based on44

the development of the exact [14, 15, 16] or approximate form [17] of the45

eigenvalues of the coupled Jacobian matrix derived through the mathemat-46

ical model. Other strategies are based in the numerical treatment of the47

whole set of equations [3, 4]. This work is focused on this last idea. In48

[3, 4] thanks to the Riemann theory and using a Roe’s approximate Jaco-49

bian matrix of the whole system of equations was developed. Hence, the50

hydrodynamic and morphodynamic equations were not only solved at the51

same time step but also the wave celerities, which participate in the stability52

condition, incorporated information from both phases: water and sediment.53

The term coupled-Jacobian will be used for that model from now on. The54

main drawback of this Jacobian matrix was a strong dependence on the bed55

reference level. Additionally, this Jacobian matrix included the definition of56

the sediment transport formula through the Grass law, [18]. This formula57

is based in a power law of the velocity, which is nicely differentiable, and58

in a global calibration parameter, which is unique for all the computational59

domain and must be tuned in each particular problem.60

Following with the Jacobian-coupled strategy, other schemes have been61

proposed and extended to 2D triangular meshes more recently. In [19] the62

identification of the approximate Jacobian matrix was achieved by means63

of the distribution theory [20]. However, this numerical technique needs to64

select families of paths that cannot be generalized. In [21] a first order HLLC65

scheme was proposed and a novel wave-speed estimator was provided for the66

Exner equation. The results were affected by numerical diffusion and a fine67

mesh was required by obtaining accurate results. The work in [22] described68

a Roe solver for a two-phase problem where the attention was devoted to the69

non-linear relations between primitive and conserved variables. Only the 1D70

approach of the problem was studied. In [23] and [24] high order and second71

order numerical techniques, respectively, were applied over fixed and mobile72

beds. However, the computational cost of such schemes was not addressed.73

In [25] a novel coupled-Jacobian model was proposed and the Jacobian74

matrix was built with independence of the bed level reference. Regarding the75
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calibration coefficient of Grass law, the uniqueness of this parameter in all the76

problem was avoided, [25, 26], by writing the law in terms of a wide number77

of bed-load sediment transport formulae. Although the numerical scheme of78

[25] was tested and verified in [26] against several experimental cases, leading79

to accurate and robust solutions, its applicability to a real situation, where80

the domain contains kilometers of river and several types of sediment, is in81

somehow limited by the computational cost, which is prohibitively expensive.82

The computational time is highly penalized by the number of algebraic oper-83

ations need for computing the eigenvectors and eigenvalues of the augmented84

Jacobian matrix. In order to overcome this huge numerical effort in [27] a85

partially coupled model was proposed, although the quality of the results86

were compromised by the poor sediment transport law employed. Further-87

more, no clear evidence of the effect of the bed wave speed in the time step88

restriction was provided.89

Following the previous effort made by the authors, mentioned above, the90

main concern of this work is focused on studying a weakly-coupled way of91

modeling the hydrodynamic and morphodynamic 2D equations, leading to92

obtain a stable, generalizable and efficient numerical scheme able to run on93

unstructured triangular meshes. The bed-load formula employed for com-94

puting the solid discharge is the Smart-CFBS, which in [26] obtained the95

best agreement against experimental data and under a wide range of hydro-96

dynamic and morphodynamic situations. The work is outlined as follows:97

Section 2 describes the mathematical model while in Section 3 the numerical98

strategy is explained. Section 4 shows the numerical results obtained, vali-99

dated against 1D and 2D experimental test cases. In Section 5 conclusions100

arising from the work are pointed out.101

2. Mathematical model102

The relevant formulation of the model is based on the conservation laws103

applied over an infinitesimal part of the domain and evaluated on the fluid104

layer and to the sediment layer. The resulting system of equations is written105

here by means of the depth averaged shallow water equations and by the106

Exner equation.107

2.1. Hydrodynamic model108

Whether the diffusion of momentum term associated to viscosity and109

turbulence is omitted as well ass the Coriolis and wind effects, then the two-110
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dimensional SWE can be expressed as in [28]:111

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S (U, x, y) (1)

where112

U = (h, qx, qy)
T (2)

are the conserved variables with h being the water depth, qx = hu and113

qy = hv, with (u, v) the depth averaged components of the velocity vector u114

along the (x, y) coordinates respectively. The advection terms of the above115

variables are expressed as:116

F =

(
qx,

q2y
h

+
1

2
gh2,

qxqy
h

)T

, G =

(
qy,

qxqy
h

,
q2y
h

+
1

2
gh2

)T

(3)

where g is the gravity vector. The source terms of (1) are written as117

S =

(
0,

pb,x
ρw

− τb,x
ρw

,
pb,y
ρw

− τb,y
ρw

)T

(4)

which express the x-component and y-component of: i) the term associated to118

the pressure force pb,x and pb,y, being ρw the water density, that in differential119

form are expressed as a function of the bed slope, So120

pbx
ρw

= ghSo,x So,x = − ∂z
∂x

pby
ρw

= ghSo,y So,y = −∂z
∂y

(5)

and ii) the bed shear-stress, τb,x and τb,y, that in this work is computed121

through the well-known Manning-Strickler’s coefficient n,122

τb,x
ρw

= ghSf,x Sf,x = n2u
√
u2+v2

h4/3

τb,y
ρw

= ghSf,y Sf,y =
n2v

√
u2+v2

h4/3

(6)

System (1) depends on time, is not a linear problem and additionally123

is non-homogeneous due to the presence of source-terms. The pure shallow124

water model is hyperbolic since the eigenvalues of its Jacobian matrices are al-125

ways real. The presence of the source-terms leads to a non-strictly hyperbolic126

system. However, it is assumed that under the hypothesis of dominant ad-127

vection it can be classified and numerically treated as an hyperbolic systems.128
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Hence, from system (1) is possible to define a Jacobian matrix, Jn based on129

the flux normal to a direction given by the unit vector, n, En = Fnx +Gny,130

defined as131

Jn =
∂En

∂U
=

∂F

∂U
nx +

∂G

∂U
ny (7)

whose components are132

Jn =




0 nx ny

(gzh− u2)nx − uvny vny + 2unx uny

(gzh− v2)ny − uvnx vnx unx + 2vny


 (8)

The eigenvalues of this Jacobian matrix (λ1 = un − c, λ2 = un and133

λ3 = un + c, with c =
√
gh) constitute the wave speeds in the linearized134

problem and provide information about directions in which the information135

travels.136

2.2. Morphodynamic model137

Sediment dynamics are assumed to be well modeled through the Exner138

equation [29] where sediment continuity is achieved imposing that the flux139

of solid transport crossing through the boundaries of the mentioned volume140

is the responsible of the temporal bed evolution. The Exner equation has a141

limit of applicability because it is based on severe assumption regarding the142

concentration of sediments as it was justified earlier in [30] and more recently143

in [31]. This point has to be retained in mind for practical simulation in order144

to address suitable environmental situations. Nevertheless, it is assumed that145

for the problems studied in this work is perfectly valid. Moreover, we are146

focused on the bed load transport and therefore the suspended transport is147

neglected driving to obtain the following expression,148

∂z

∂t
+ ξ

∂qs,x
∂x

+ ξ
∂qs,y
∂y

= 0 (9)

where z represents the bed level, ξ = 1
1−p

, p takes into account the mate-149

rial porosity, qs,x and qs,y are the terms which compute the solid transport150

discharge in both directions, (x, y).151

The formulation of the bed load discharge, qs, assumes an instantaneous152

adaptation of the flow transport capacity to the hydrodynamic conditions,153

and following [25], is based on Grass law [18],154
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qs,x = Agu
(
u2 + v2

)
qs,y = Agv

(
u2 + v2

)
(10)

where the constant Ag can be written by means of several empirical formulae155

as in [25, 26].156

Despite of the fact that the Exner equation is not actually hyperbolic, it157

is possible to write a wave speed estimation associated to the sediment flux158

as follows159

λb = ξ
∂qsn

∂z
(11)

This wave speed is not related to the speed of waves having significant160

impact on the bed evolution in the linear analysis of the coupled-Jacobian161

problem [17], but instead it represents a numerical celerity to be taken into162

account for the stability of the uncoupled numerical solver, [12], and for the163

basis of the upwind strategy that is explained in the following sections.164

3. Numerical model165

3.1. Finite Volume Model166

Initially system (1) and equation (9) are integrated in a grid cell Ωi167

∂

∂t

∫

Ω

UdΩ +

∫

Ω

(
−→∇E)dΩ =

∫

Ω

SdΩ (12)

∂

∂t

∫

Ω

zdΩ +

∫

Ω

ξ(
−→∇qs)dΩ = 0 (13)

Using Gauss theorem (12) and (13) are written as168

∂

∂t

∫

Ωi

UdΩ +

∮

∂Ωi

Endl =

∫

Ωi

SdΩ (14)

∂

∂t

∫

Ωi

zdΩ +

∮

∂Ωi

ξqsndl = 0 (15)

where vector n is outward to the cell Ωi, as displayed in Figure 1. The second169

integral in (14) and (15) can be explicitly expressed as a sum over the cell170

edges,171
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e3

Uj1
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Uj3

Figure 1: Cell parameters

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

∫
Enkdlk =

∫

Ω

SdΩi (16)

∂

∂t

∫

Ωi

zdΩ +
NE∑

k=1

ξ

∫
qsnkdlk = 0 (17)

with nk = (nx, ny) the outward unit vector normal to the cell edge k, dlk is172

oriented with the edge and NE takes into account the number of walls which173

belongs to each cell i, as shown in Figure 1.174

Considering a spatial discretization of first order, (16) and (17) become175

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

Enklk =

∫

Ω

SdΩi (18)

∂

∂t

∫

Ωi

zdΩ +
NE∑

k=1

ξqsnklk = 0 (19)

Also, the volume integrals of the source terms are expressed in terms of176

appropriate contour integrals since it is required to project the source terms177

on the normal direction of each cell edge,178

∫

Ωi

SdΩi ≈
NE∑

k=1

∫

x′

[Skdx
′
k] lk (20)
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being x′ the coordinate normal to cell edge k, as shown in Figure 2. Then,179

the initial system of equations in (1) is transformed in180

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

(
En −

∫

x′

Skdx
′
)

k

lk = 0 (21)

System (21) and equation (19) will be solved using approximate linear181

solutions of initial value problems according to the Godunov method, where182

Un
i represent the averaged value of the solution U(x, y, t) for each cell at183

time tn184

Un
i =

1

Ai

∫

Ωi

U(x, y, tn)dΩ (22)

being Ai the cell area. In this way, a uniform representation of the computed185

variables is considered within each cell.186

The development of the numerical strategy in the Godunov method is187

complemented by the building of an approximate solver of the Riemann prob-188

lem, hereafter RP, governed by the fluxes at each side of each edge, Ej and189

Ei for the hydrodynamic model and qsj,qsi for the morphodynamic model.190

For the sake of brevity the detailed description of the two-dimensional191

hydrodynamic numerical scheme is omitted, since it can be found in [32, 33].192

Nevertheless, the numerical method employed for computing the morphody-193

namic part is deeply explained in the following subsections.194

3.2. Approximate Riemann Solution for the Morphodynamic model195

A local 1D RP is obtained projecting the sediment fluxes onto the normal196

direction nk of each k edge of each cell197

∂z

∂t
+ ξ

∂(qsn)

∂x′ = 0 (23)

Using the integral form of (23) the weak solutions associated to the RP198

are obtained. For this purpose an adequate control volume, Figure 3, is199

integrated over the following space interval [−∆x′,∆x′], being x′ sufficiently200

large and the time interval [0,∆t].201

∫ +∆x′

−∆x′

z(x′, t = ∆t) dx′ = ∆x′ (zi + zj)− ξδqsn∆t (24)

Again, the piecewise representation of the variables is hypothesized and202

the first order Godunov method is used for updating the averaged quantities.203
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Un
i Un

j

U

Un
i

Un
j

nk

x′

x′

x′ = 0

Figure 2: Riemann problem in 2D along the normal direction to a cell side

3.2.1. Consistency condition for the Morphodynamic Model204

Following the philosophy employed for the hydrodynamic model in [32]205

a Roe approach is going to be used, i.e., the exact solution of a locally206

linearized problem defined by an approximate solution ẑ(x, t) provides the207

solution associated to each RP. This constant linear problem is based on the208

definition of an approximate wave speed of the non-linear sediment flux, qsn.209

This following equivalent equation is written210

∂ẑ

∂t
+ λ̃bn,k

∂ẑ

∂x′ = 0 (25)

with the following initial conditions211

ẑ(x′, 0) =

{
zi if x′ < 0
zj if x′ > 0

(26)

The approximate derived solution has to guarantee the Consistency Con-212

dition [34], forcing the fact that the integral of the exact solution (23) and213

the integral of the locally linearized solution, (25) to be the same. Thanks214

to this constraint it is derived the following expression for the wave speed215

which updates the bed level,216

10



t

x′

∆t
(qsn)i (qsn)j

∆x′ ∆x′

zi zj

z(t > 0)

x′=0

x′

zi

zj

λb

Figure 3: Suitable integral control volume

λ̃bn,k =
δ(ξqsn,k)

δz
(27)

with δz = zj − zi and δqsn,k = qsn,j − qsn,i. Regarding equation (10) it is217

necessary to compute the Grass coefficient for defining the bed load discharge218

in each cell. Following [25] as the coefficient Ag is not a constant but varies219

from cell to cell, at every edge k a local Ag,k value is defined as an arithmetic220

mean between neighboring cells. Consequently, the term δqsn,k is written as221

δqsn,k = Ag,kδunk.222

Additionally, when applying numerical modeling techniques under a flat223

bottom situation, the bed level difference is null and consequently the bed224

wave speed is not defined. In order to overcome this difficulty the com-225

putation of the friction slope, Sf,k [32], is proposed. The friction slope226

is commonly used in a high number of sediment transport empirical laws,227

[35, 36, 37, 38], as these formulae were derived from 1D steady solid trans-228

port experiments. Additionally, its employment is coherent with the fact229

that transport process implies a loss of energy through the interrelationship230

of the flow and the particles of sediment [36, 39].231

It must be stressed that the linearization of λ̃bn,k in cases of almost flat232

bottom can lead to unphysical huge values of the bed wave speed. This is233
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avoided by imposing a lower threshold for the bed level difference between234

cells: up to grain size, ds, the approximation of the friction slope will be235

considered. This limitation ensures coherent values in the estimation of the236

bed wave speed, and wave celerity in (27) is approximated by237

λ̃bn,k =
ξδqsn,k

δz′
(28)

with238

δz
′

=

{
δz if δz

′

> ds
−Sf,kdn if δz

′

< ds
(29)

being dn the normal distance between cell centers, [32].239

3.2.2. 2D first order finite volume for the Morphodynamic Model240

The evaluation of the wave speed, λ̃bn,k as in (28), brings the opportunity241

of splitting the sediment flux difference δqsn,k in right-going and left-going242

wave propagations. Consequently the Godunov first order method is defined243

as244

δqsn,k = δqsn
+
i,k + δqsn

−
j,k (30)

with245

δqsn
+
i,k = λ̃+

bn,kδzk δqsn
−
j,k = λ̃−

bn,kδzk (31)

and λ̃±
bn,k =

1
2
(λ̃bn,k ± |λ̃bn,k|). Therefore,246

zn+1
i = zni −

NE∑

k=1

δqsn
−
i,k

∆t lk
Ai

−
NE∑

k=1

δqsnIi,k

∆t lk
Ai

(32)

where the second term of the right side in (32) evaluates the flux in the247

cell edge and the third term completes the updating formula to consider the248

spatial variation of Ag, as it was justified in [25].249

Another possibility for defining the Godunov first order method is through250

a flux scheme, considering outcoming and incoming fluxes through the edges251

of the cell. Hence the bed level is updated as252

zn+1
i = zni −

NE∑

k=1

ξq∗
sn,k

∆t lk
Ai

(33)
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where253

q∗
sn,k =

{
qsn,i if λ̃bn,k > 0

qsn,j if λ̃bn,k < 0
(34)

being qsn,i and qsn,j the bed load discharge computed in the cell i and in the254

cell j.255

Although both numerical schemes (32) and (33) are completely equiva-256

lent, it must be stressed that the flux version is computationally more ef-257

ficient, as minor algebraic operations are need. Additionally, with the flux258

form of the numerical scheme in (33), ghost cells must be considered in the259

boundary cells for completing the information required over the entire cell,260

[34]. The application of ghost cells almost does not penalize the computa-261

tional effort. In this fashion, since the computational cost when using the262

flux scheme in (33) is less, this alternative has been chosen for obtaining the263

results displayed in the next sections.264

3.3. Stability region265

Updated values of Un+1
i and zn+1

i are defined after averaging the cell266

contributions of the local RPs, and in consequence the time step ∆t has267

to be taken small enough so that there is no interaction of waves from the268

k neighboring RPs. In the 2D framework, considering unstructured meshes,269

the relevant distance, that will be referred to as χi in each cell i must consider270

the volume of the cell and the length of the shared k edges, [32]271

χi =
Ai

maxk=1,NE lk
(35)

Considering that each k RP is used to deliver information to a pair of272

neighboring cells of different size, the distance min(Ai, Aj)/lk is relevant, so273

in case that the water depth is greater than zero in all the regions of the RP274

solution the time step is limited by275

∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

max |λ̃m|
(36)

with CFL=1 in case of 1D meshes, CFL=1/2 in case of 2D structured or276

unstructured meshes, [40] and being λ̃m the water wave speeds.277

When the advection structure of the problem is all contained in the system278

matrices, i.e. coupled-Jacobian approach [25, 19, 24], the linearised wave279
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speeds provided by the matrices eigenvalues allow to define a suitable CFL280

condition, retaining the sediment transport part of the system. However,281

when using uncoupled/asynchronous [5] or coupled/synchronous models [8,282

9, 10, 11], it has been considered traditionally that since the wave speeds283

associated to water surface and bed level present different magnitudes, not284

straightforward limitation has to be considered in the stability condition.285

Nevertheless, this is no longer admissible when the celerities are in the same286

order of magnitude. Therefore, an extra limitation linked to the bed wave287

speed is need288

∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

|λ̃m, λ̃b|
(37)

4. Results289

This section gathers the validation tests that allow to show the assess-290

ment of the numerical schemes described in the previous sections. Numerical291

results have been compared with exact and experimental data considering 1D292

and 2D situations. The bed-load discharge law employed for computing the293

bed evolution, except in the exact solution test, is the Smart CFBS, which294

was introduced in [26]. Furthermore, in all the simulations a conservative295

mechanism of slope sliding failure has been considered [25] which allows to296

check simultaneously the bed slope and the angle of repose of saturated bed297

material.298

4.1. Exact solution299

Following [25], the first step in order to validate the numerical scheme300

is to test the computed solutions against exact solutions A, B and C which301

are summarized in Table 1. The exact solution has been built through the302

Riemann problems for the movable bed equations. Frictionless situations are303

considered and the porosity of the material is considered p = 0.4. The exact304

solutions were built by nesting several waves, departing from a left state until305

reaching to define the right state. The CFL condition is equal to 1.0, the306

mesh size is x = 0.1m and the simulation is computed up to t = 2s. It is307

worth remarking that the slope sliding failure mechanism is not considered in308

these tests, since it could have a positive impact on the method stabilization309

and our wish is to verify the self-stable nature of the weakly-coupled strategy310
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Test hL hR uL uR vL vR zL zR
A 2.0 2.0 0.25 2.3247449 0.05 0.04 3.0 2.846848
B 2.25 1.18868612 0.20 2.4321238 0.045 0.02 5.0 5.124685
C 6.0 5.2 0.3 15.167196 0.015 0.04 3.0 4.631165

Table 1: Summary of dam break test cases with exact solution

proposed in this work. The value of the parameter Ag for the Grass law is311

considered as312

Ag =
Ag,o

hr
(38)

being Ag,o = 0.01 in all cases, r = 0 in test cases A and B, and r = 1 in test313

case C.314

In order to compare the accuracy of the weakly-coupled model (WCM)315

proposed in this work, the results obtained with the coupled-Jacobian tech-316

nique used in [25] (CJM) are also plotted.317

TestA: the solution proposed in this test case is based on two outcoming318

rarefaction-waves and a central shock together with a contact wave evolving319

downstream, Figure 4. The numerical solution is able to capture the general320

trend of the flow behavior, without arising numerical problems at the step321

area. The unit sediment discharge in both directions is also displayed.322

TestB: the second solution analyzed is built through two-rarefaction323

waves, a contact wave and a shock, Figure 5. The computed results are able324

to depict the moving waves in all the wet domain with an adequate level of325

accuracy.326

TestC: this solution is constituted by two rarefaction waves, a contact327

wave and a rarefaction, Figure 6. Despite of being the Ag variable, the328

resulting computed results follows closely the exact ones.329
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Figure 4: Exact and computed solution for Test A
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Figure 5: Exact and computed solution for Test B
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4.2. 1D Dam break tests case330

These experiments were performed in a channel built at the UCL Civil331

Engineering Department [41]. The channel had 6 m length, and in the middle332

a central gate was operated for simulating a dam break. The sand employed333

for the bed of the channel was coarse uniform sand with d50 = 1.82 mm,334

and the following characteristics: density ρs = 2683 kg m−3, a friction angle335

ϕ = 30o, porosity p = 0.47 and Manning’s coefficient equal to n = 0.0165336

sm−1/3.337

Table 2 summarizes the set of experiments selected in this work. The338

regions upwards and downwards the central gate were filled with different339

water and sand depths. Test A allows to test the numerical assessment in a340

situation where morphological changes are produced in presence of dry bed341

and a flat bottom. Test B allows checking the numerical assessment against342

the different type of waves that may arise in a dam break case over wet bed.343

Numerical simulations have been performed using ∆x = 0.01 m and CFL =344

1.0. No outlet condition is considered downward the channel.345

Test hL hR zL zR

A 0.35 0.00 0.00 0.00
B 0.25 0.10 0.10 0.00

Table 2: Initial conditions of the test cases

4.2.1. Test A346

Test A is a dam break over dry bed with an initially plane bed level.347

The flow evolves in time generating a left rarefaction wave upstream the348

gate ending in a flooding front dominated by friction. The experimental349

results are close to those obtained for dam break cases over dry and fixed350

bed [42]. Figure 7 displays numerical results and experimental data, for times351

ranging from 0 to 1.5 seconds. The front wave is numerically well reproduced352

temporally and spatially and the production of a little scour is also provided353

by the computed results.354

As the numerical stability is one of the concerns of this work, the time355

step associated to the hydrodynamic and morphodynamic terms is plotted in356

Figure 8. Harder restriction is required by the bed movement, which justifies357

the inclusion of the bed wave speed in the stability condition as it has been358

proposed in section 3.3.359
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Figure 7: Numerical results and experimental data for the dam break test case A at times
t = 0.25, 0.50, 0.75, 1.0, 1.25 and 1.5 s, using a variable value of Ag computed using Smart
CFBS: measured water level surface (−•−), measured bed level surface (−◦−), computed
water level surface (−4−), measured bed level surface (−N−)
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Figure 9: Numerical results and experimental data for the dam break test case A at times
t = 1.0 and 1.5 s, when CFL limitation related to the bed speed is removed

Whether the CFL limitation related to the bed speed is removed the360

scheme becomes unstable as it is displayed in Figure 9 at times t = 1.0 and361

1.5 s.362

4.2.2. Test B363

Test B represents the case of a bed step with a level of water downwards364

the gate. The flows evolves in time leading to a left moving rarefaction365

wave upstream the gate, followed by a steady hydraulic jump downstream366

the gate and finishing with a shock wave which evolves to the right side.367

Figure 10 gathers computed and experimental data for the free surface and368

bed level at different times, where it can be observed how the shock celerity369
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is well captured by the numerical schemes. Small differences produced in the370

shock wave are attributable to fast transient energy variations associated to371

the existence of a hydraulic jump and also to the density variations of the372

vertical column associated to sediment concentration.373

Figure 11 shows newly that the time step associated to bed wave celerity374

is governing the stability condition since the bed changes observed in the375

bottom configuration are of utmost importance.376

Additionally, in Figure 12 is plotted the water level surface and the bed377

evolution at times t = 1.0 and 1.5 s when the CFL restriction associated378

to the bed wave celerity is removed. As it is expected, the scheme becomes379

unstable since it is not able to handle with the bed changes.380

4.3. 1D Knickpoint test case381

Morphological changes due to the transition between two planes with dif-382

ferent slope (knickpoint) were measured in [43]. Thanks to this experiment383

is possible to compare the capacity of the numerical schemes to handle with384

a sudden flow transition from subcritical regime over a mild slope to super-385

critical regime over a steep slope. A sketch of the experiment, with the initial386

conditions of bed slope, is shown in Figure 13. The knickpoint is defined as387

the point of abrupt change in the longitudinal bottom profile of the channel.388

This experiment was carried out using a coarse and uniform size sand389

with the following properties ρs = 2680kgm−3, d50 = 1.65mm, ϕ = 30o,390

negligible cohesion, porosity p = 0.42 and a Manning’s coeffcient, n = 0.0165391

sm−1/3. Initial conditions employed are: upstream, water level surface (0.028392

m) and discharge (9.8 l/s); downstream, a known water surface level at the393

end of the flume (0.11 m). The domain, 7.4 meters long, is divided using ∆x394

= 0.05 m. In all simulations CFL = 1.395

Bed level variation in the longitudinal profile was recorded in time and is396

compared with the predictions supplied by the numerical schemes in Figure397

14. The computed solution describes a good trend when comparing with the398

experimental solution. The erosion located in the knickpoint is predicted at399

the same rate as the experiment and the final bottom is also well achieved.400

Since in this experimental case an important change in the bottom mor-401

phology takes place, Figure 15 shows the more restrictive time step associated402

to the wave speeds of water and bed in time simulation. Bed time step im-403

poses a harder restriction than the fluid flow and for this reason has to be404

considered in (36) for preserving the numerical stability of the numerical405

scheme.406
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Figure 10: Numerical results and experimental data for the dam break test case B at
times t = 0.25, 0.50, 0.75, 1.0, 1.25 and 1.5 s, using a variable value of Ag computed using
Smart CFBS: measured water level surface (− • −), measured bed level surface (− ◦ −),
computed water level surface (−4−), measured bed level surface (−N−)
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Figure 11: Time step evolution in test case B for the water waves speed as in (36), (−•−),
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Figure 12: Numerical results and experimental data for the dam break test case B at times
t = 1.0 and 1.5 s, when CFL limitation related to the bed speed is removed
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Figure 14: Results for the knickpoint test case. Initial bed level (· · ·), measured bed and
water level (− • −) and computed (−4−) at times t = 165, 223, 345, 589 and 851 s with
variable value of Ag computed using Smart CFBS
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Figure 15: Time step evolution for the water waves speed, as in (36), (−•−), and for the
bed wave speed as in (37), (− ◦ −) during time simulation

4.4. 2D Numerical modeling of dam failure407

Another important problem related to erosion process is the dam failure408

by overtopping. This feature was studied by Tingsanchali et al. in [44]. In409

this problem the inclusion of the slope failure model is quite relevant. The410

laboratory setup employed during the experiment is displayed in Figure 16.411

In the present work the laboratory data from case B1 is employed for validat-412

ing the computational predictions. It must be stressed that being the flow413

mostly one-dimensional, it is important to check the numerical performance414

of the solution in a 2D mesh to ensure that it is not governed by the mesh415

topology. This case is of great interest, as it allows a direct comparison in a416

wide variety of flow conditions.417

Following prior work developed in [26] the 2D numerical simulation has418

been performed using a coarse unstructured triangular mesh, with a maxi-419

mum cell size of 0.01m2. The mesh together with the initial water depth is420

displayed in Figure 17. CFL is imposed equal to 0.5. Free boundary con-421

dition is considered at the outflow section. Figure 18 displays the bed level422

evolution when using Smart CFBS formulation. At the crest of the dike423

strong erosion occurred because of the strong initial discontinuity of water424

depth and the severe slope downwards the gate. The granular material of the425

dike is completely mobilized rapidly in time and it is grabbed downstream426

the dam by the flow.427

Figure 19(a) shows the bed and water surface calculated after 120 s when428

using Smart CFBS formulation. As the bed level was temporally measured429
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Figure 16: Sketch of the dam failure experimental setup

Figure 17: Detail of the triangular mesh and initial condition for the water depth
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Figure 18: Computed results of the bed level evolution when using a variable value of Ag

built with Smart CFBS and at times t = 0, 30, 80 and 120 s

at three points SA, SB and SC, placed downwards the dam, the compari-430

son between experimental data and computed results are displayed in Figure431

19(b). Numerical results are able to handle the strong morphodynamics432

changes which take place without displaying numerical oscillations and ad-433

ditionally, well tracking the experimental data. On the other hand, the ex-434

perimental and computed water reservoir surface level is displayed in Figure435

19(c). Figure 19(d) depicts the overtopping discharge obtained numerically436

and experimentally. Both measurements provide high quality and useful in-437

formation about this type of phenomena. Numerical schemes allows to obtain438

a good detail of forecasting capacity for the bed and water level evolution439

together with an efficient computational cost.440
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Figure 19: (a) Initial bed level (- - -), computed water level surface (−4−) and bed level
surface (−N−) at t = 120 s. (b) Bed level surface evolution in time measured at stations
SA (−◦−) (−�−), SB (−•−), and SC (−4−) and computed at stations SA (− ?−),SB
(−�−), and SC (−�−). (c) Evolution in time of the measured water reservoir level (−◦−)
and computed water reservoir level (−•−). (d) Evolution in time of the measured (−◦−)
and computed (− • −) overtopping discharge

For this test case, the time step evolution associated to each wave speed441

is also studied, Figure 20. Initially, heavier restrictions are required by the442

water flow, as the overtopping event has not provoked yet the dike failure.443

However, as time advances and the geomorphic changes become more severe,444

time step restrictions come from the bed celerity. At the end of time simula-445

tion, where most of the sediment particle movement has occurred, the time446

step is newly governed by flow characteristics. In view of these results, it is447

proved the efficiency of the solver, as only when important bed changes exist448

the classical time step of water flow is decreased.449

Additionally to the study of the time step evolution this test case has450

been chosen also for comparing the computational time cost with respect to451

the coupled-Jacobian technique used in [25] (CJM) and the weakly-coupled452

model (WCM) proposed in this work. For this purpose three meshes with453
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Figure 20: Time step evolution for the water waves speed, as in (36), (−•−), and for the
bed wave speed, as in (37), (− ◦ −) during time simulation

increasing number of elements are considered. In Table 3 are displayed the454

ratio between the computational cost when employing [25] and when consid-455

ering the procedure explained in this work. Results plotted above belongs456

to the second mesh. Noticeable computational efficiency is achieved, being457

more important as the level of mesh refinement is increased. The computa-458

tional cost time with the CJM is penalized by the high number of algebraic459

operations need for computing the eigenvalues and eigenvectors. In order to460

support this fact and employing the second mesh, the time step evolution,461

associated to the CJM and to WCM is displayed in Figure 21. Despite of462

presenting a bigger time step on average when using the CJM, the computa-463

tional cost is higher.464

N. of elements Ratio of computational cost time = CJM/WCM
2000 8.46
4100 10.15
8300 13.72

Table 3: Summary of ratios of computational cost time when using the JCM technique
and the WCM technique

Together with the computational cost time, the RMSE (Root median465

square error) for the three stations SA, SB and SC obtained when using466

the coupled-Jacobian model from [25] (CJM) and the weakly-coupled model467

(WCM) proposed in this work, is displayed in Table 4. The weakly-coupled468

model provides computational results close to the experimental ones whilst469
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Figure 21: Time step evolution following the CJM technique in [25], (− ◦ −), and the
WCM technique explained in this work, (− • −) during time simulation

the computational time is decreased.470

N. of elements RMSE(m) SA RMSE(m) SB RMSE(m) SC
CJM WCM CJM WCM CJM WCM

2000 0.065 0.039 0.042 0.034 0.058 0.037
4100 0.043 0.021 0.028 0.019 0.038 0.023
8300 0.028 0.014 0.019 0.012 0.025 0.015

Table 4: Summary of the RMSE associated to each station when using the JCM technique
and the WCM technique

4.5. 2D Dam break with an abrupt expansion471

This experiment was numerically reproduced in [26] with a coupled model.472

It consist of a dam break over a dry and erodible bed experiment. It was473

performed at the laboratory of the Civil and Environmental Engineering474

Department of the UCL [45, 46]. The laboratory set up employed in the475

experiment is shown in Figure 22. The sediment was uniform sand with the476

following properties: median diameter d50 = 1.65 mm, density ρs = 2630477

kg m−3, friction angle ϕ = 15o, negligible cohesion, porosity p = 0.42 and478

Manning’s factor equal to n = 0.0185 sm−1/3. During the development of the479

experiment the water fluctuation was measured at different points as well as480

the final bed surface at several cross sections, Figure 23 and Tables 5, 6. An481

unstructured mesh is considered and CFL condition is imposed equal to 0.5.482

This experimental case represents a complete challenge as it gathers sev-483

eral highlighted situations which can occur in the real engineering life: an484
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Figure 22: Sketch of the experimental flume: side view (upper) and plan view (lower)

Figure 23: Plan view of the experimental flume. Locations of the probes (left) and the
cross sections (right)

Probe Xcoordinate(m) Y coordinate(m)
U1 3.75 0.125
U2 4.20 0.125
U3 4.20 0.375
U4 4.45 0.125
U5 4.45 0.375
U6 4.95 0.125
U7 4.95 0.375

Table 5: Position of the probes

area where the flow is genuinely one-dimensional, an abrupt expansion which485

provokes the change to a two-dimensional flow, important velocity gradients486

which create a recirculating area, moving shocks close to the wall zone and487

moreover a severe local erosion together with a noticeable sediment deposi-488

tion area. It constitutes the perfect benchmark for checking the assessment489
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Section Xcoordinate(m)
S1 4.10
S2 4.20
S3 4.30
S4 4.40
S5 4.50

Table 6: Position of the sections

of the numerical schemes against sudden and strong changes in the flow and490

the bed. Due to these characteristics other authors have also studied recently491

this test case [21, 11, 24].492

This experimental test is very sensitive to bed deformation since the flow493

evolves over an initially dry bed: sediment particles start to bounce as soon494

as the water reaches their position. As it was observed in the work of [45,495

46] once the water overtakes the corner of the channel the flow expands,496

causing the water depth to decrease and the bed level suffers a dramatic497

local erosion. Close to the wall area the flow tends to slow down and the498

material grabbed upstream is settled. In this zone of the channel the loss499

of energy is so strong that a bed sharp surface emerges. Downstream, the500

sediment grains are pushed outward the domain and eventually intersects501

driving to settling zones. At the last time, the drainage of water leads to502

soften the bed surface although the minimum and maximum sediment peak503

areas are clearly identified.504

Once the experiment has been qualitatively described, computed and505

experimental data are faced. Comparison between the water level measured506

and the numerical solution is showed in Figure 24. The majority of the probes507

achieve a good trend in relation with the experimental data. Probes U3 and508

U4 are the ones which provide less accurate results. This is justified by the509

fact that they are located close to the expansion (probe U3) and close to the510

wall (probe U4), where three dimensional flow structures are generated due511

to the sudden expansion and the shock against the lateral side. With the512

present mathematical model, where the set of equations is depth-averaged,513

the vertical accelerations are neglected and consequently, this flow behavior514

cannot be properly treated [11].515

Figure 25 gathers the measured bed level after the dam break event and516

the numerical predictions at control sections S1, S2, S3, S4 and S5. In all517

the sections the computed bed surface is able to follow the measured evolu-518

tion. Section S1 which is the closest to the expansion does not obtain neither519
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the maximum nor the minimum of sediment peaks, although the prediction520

follows the sediment movement pattern: particles are grabbed from left and521

settled to the right bank. In control sections, S2, S3 and S4, the computed522

bed surface follows correctly the tendency of the final bed morphology al-523

though the final bed slopes are less sharp than the ones recorded after the524

experiment. As it has been noted before, since the mathematical model is525

depth-averaged the vertical accelerations are not considered. Consequently,526

the erosion/deposition rates are decreased and differences in the granular527

material lying close to the right wall are expected. Section S5, positioned528

far away from the area of stronger influence, obtains a good tendency when529

comparing with the experimental data.530

Comparison of the computational cost time and the accuracy obtained531

when using the coupled-Jacobian model (CJM) from [25] and the weakly-532

coupled model (WCM) proposed in this work is displayed in Table 7. For533

the sake of brevity only the RMSE associated to section S2 is showed. The534

CJM technique provides more accurate results in this case at the cost of535

increasing the computational time.536

N. of elements Ratio of computational cost time : CJM/WCM RMSE(m) : S2
CJM WCM

2000 5.23 0.015 0.024
4300 8.15 0.009 0.015
8100 14.02 0.006 0.012

Table 7: Summary of ratios of computational cost time and the RMSE for section S2 when
using the CJM technique and the WCM technique

5. Conclusions537

A 2D numerical scheme for wave flows over mobile beds has been de-538

tailed. The numerical scheme solves a weak coupled model which includes539

the 2D SWE and the 2D Exner sediment continuity equation. It is written540

considering a finite volume method based on a Roe type solver and allows541

to verify that stable results can be obtained without employing coupled-542

Jacobian and computationally expensive scheme. Following prior works the543

generalization for several solid discharge laws has been taken into account.544

The explicit scheme has shown dynamic stability, always controlled by an545

augmented CFL condition.546
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The first two experimental cases considered, developed in 1D, have been547

performed to solve dam break situations over dry/wet initial conditions and548

with different morphodynamic configuration. Advance front celerity has been549

well captured in the dam break as well as the bed changes. Regarding the 1D550

knickpoint test case, the existence of variable flow regime or morphodynamic551

discontinuities does not ruin the forecast capacity of the numerical scheme552

leading to stable results.553

Regarding the bidimensional cases, the comparison with the exact so-554

lutions showed that the computed results are similar to the ones obtained555

with a coupled-Jacobian model. In the next experiment, the dike collapse by556

overtopping, numerical performance of the solution in a 2D mesh is checked557

under severe changes in the bed surface level. Self-stable results have been558

obtained for both the water level and the bottom changes. Finally, in the 2D559

dam break with an abrupt expansion numerically reproduced, the free surface560

and bed level predictions have been well computed in time and space.561

Since in practical applications, both stability and efficiency characteris-562

tics are required, the main challenge of this work has been to combine the563

interactions between flow and bed without using a coupled-Jacobian matrix564

as the proposed in [25] with a higher computational effort. Also, when plot-565

ting the time step restrictions associated to the water wave celerities and to566

the bed wave celerity it has been checked how only severe changes in bot-567

tom morphology affect the time step restriction of the weakly-coupled model568

proposed in this work.569

Lastly, regarding the point of efficiency and as a future research, the570

proposed explicit finite-volume Godunov-type numerical scheme should be571

compared in terms of efficiency and accuracy with other implicit numerical572

techniques suggested in the literature [31, 47]. When employing an implicit573

strategy the time step chosen can be bigger in relation with an explicit how-574

ever, the main drawback is the convergence speed of the linear solver em-575

ployed for computing the solution of the algebraic system. A throughly study576

should be addressed.577
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Figure 24: Temporal comparison between experimental (− ◦ −) and computed (− • −)
results for the water level at probes U1-U7
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Figure 25: Comparison of the experimental (−◦−) and computed (−•−) final bed surface
at cross sections S1-S5
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