
An efficient solution for hazardous geophysical flows

simulation using GPUs

A. Lacasta1,, C. Juez1,, J. Murillo1,, P. Garćıa-Navarro1,,

Abstract

The movement of poorly sorted material over steep areas constitutes a haz-
ardous environmental problem. Computational tools help in the predictions
of such landslides. The main drawback is the high computational effort re-
quired for obtaining accurate numerical solutions. In order to overcome this
problem, this work proposes the use of GPUs for decreasing significantly the
simulation time. The numerical scheme implemented in GPU is based on a
finite volume scheme and it was validated in previous work with exact so-
lutions and experimental data. The computational times obtained with the
Graphical Hardware technology are compared against Single-Core (sequen-
tial) and Multi-Core (parallel) CPU implementations.

Keywords: CUDA; GPU; Landslides; Numerical modeling; Shallow Flow;
Coulomb forces; Finite Volume

1. Introduction

Landslides play an important role on the evolution of landscape and con-
stitute an important environmental topic. They can be responsible for dra-
matic civil damages and that is the reason why the building of defenses and
barriers is required. The computational tools are a suitable partner for devel-
oping a careful design of such elements. Over recent years, reliable predictions
of the spreading of granular material have been obtained (Pirulli et al., 2007;
Pirulli and Mangeney, 2008; Moretti et al., 2012; Bouchut et al., 2008) and
numerical results have been validated with respect to series of experiments

Email address: alacasta@unizar.es (A. Lacasta)
1LIFTEC, CSIC-Universidad de Zaragoza, Spain

Manuscript accepted in Computers and Geosciences July 7, 2014

based on granular dry flows (Savage and Hutter, 1989; Iverson and Denlinger,
2001; Pouliquen and Forterre, 2002; Lajeunesse et al., 2004; Mangeney et al.,
2010). In particular, Murillo and Garćıa-Navarro (2012); Juez et al. (2013)
have recently presented a robust finite volume upwind scheme which includes
the presence of steep slopes leading to obtain promising results.

Once the forecasting capacity of the computational tool has been reached
another important concern is the improvement of the efficiency in terms of
the computational cost. This type of geophysical flow involves the study of
huge domains where the accuracy of the results is tied to the resolution of the
Digital Terrain Model considered. Hence, a high number of cells is usually
needed in the simulation. For this reason, the hardware GPU emerges as a
promising strategy for handling this environmental and up to date problem.

In terms of scientific computation, the last four decades have followed
Moore’s law (Moore, 2003) where the number of transistors on a chip in-
creased exponentially. This integration allowed to obtain faster and faster
applications just recompiling the code for this new processors. Unfortunately,
power has become the primary design constraint for chip designers, where
both energy and power dissipation create a technological barrier for the inte-
gration capacity (Dreslinski et al., 2010). Nevertheless, Multi-Core microar-
chitecture together with an adequate programming model (OpenMP is one of
the most extended) brings a chance to exploit the parallelism of some parts
of the code (Sharma and Gupta, 2013). Moreover, Multi-Core paradigm
has a large power consumption rate when performing small tasks and, for
these purposes the Many-Core systems appears to be a very interesting op-
tion (Borkar, 2007). Many-Core architectures are those composed of smaller
and not so complex cores that, usually have special purposes. Industrial
implementation of this solution has been obtained in the field of Graphical
Processing, where several efforts have been devoted to make more powerful
devices. Indeed, this technology has been historically oriented to a very par-
ticular task of performing shading operations when rendering graphics. The
purpose of the present work is to apply this hardware to the simulation of
hazardous and high time consuming geophysical flows.

The outline of this work is as follows: Section 2 is devoted to explain the
mathematical model and numerical scheme used for modeling and solving the
landslides behavior. In Section 3, the implementation on GPU is described.
Section 4 gathers several experimental and realistic cases considered for test-
ing the GPU performance. The differences on the computational cost time
between the sequential, pararell and GPU strategies is discussed in Section

2

5. Finally in Section 6 the conclusions are summarized.

2. Mathematical model and numerical scheme

2.1. Mathematical model

The mathematical model considered for reproducing the landslides phe-
nomenon is based on the shallow flow equations, where the general three-
dimensional conservation laws are depth averaged. The pressure distribution
is considered hydrostatic and as frictional terms, only Coulomb type friction
forces are assumed. Bearing in mind these hypothesis, the 2D equations are
written in global coordinates as follows:

∂U

∂t
+ ∂F(U)

∂x
+ ∂G(U)

∂y
= Sτ + Sb (1)

where

U = (h,hu, hv)T (2)

are the conserved variables with h representing granular material depth in
the z coordinate and (u, v) the depth averaged components of the velocity
vector. The fluxes are given by

F = (hu,hu2 + 1

2
gψh

2, huv)T

G = (hv, huv, hv2 + 1

2
gψh

2)T (3)

with gψ = g cos2ψ and ψ the direction cosine of the bed normal with respect
to the vertical. The physical basis of this gravity projection is explained in
Juez et al. (2013) and it is of utmost importance for not ruining the numerical
predictions when the simulation involves the presence of steep slopes.

The term Sτ notes the frictional effects in the bed, and is defined as

Sτ = (0,−τb,x
ρ
,−τb,y

ρ
)T (4)

with τb,x, τb,y the bed shear stress in the x and y directions respectively and
ρ the density of the granular mass. Since the geophysical flows considered
in this work are dense, the main rheological properties are governed by the

3

frictional forces. These interactions between the sand grains are computed
by means of the Coulomb law. This formula is based on the internal friction
angle of the material, θb.

On the other hand, the term Sb is defined for gathering the information
relative to the pressure force exerted over the bottom.

Thanks to the hyperbolic character of (1) it is possible to obtain a Jaco-
bian matrix, Jn, which is built by means of the flux normal to a direction
given by the unit vector n, En = Fnx +Gny,

Jn = ∂En

∂U
= ∂F
∂U

nx + ∂G
∂U

ny (5)

whose components are

Jn =
⎛⎜⎝

0 nx ny(gψh − u2)nx − uvny vny + 2unx uny(gψh − v2)ny − uvnx vnx unx + 2vny
⎞⎟⎠ (6)

The eigenvalues of this Jacobian matrix constitute the basis of the upwind
technique which is detailed in the next subsection.

2.2. Numerical scheme

System in (1) is integrated in a grid cell Ωi and the Gauss theorem is
applied, being the vector n outward to the cell Ωi, as displayed in Figure 1

∂

∂t
∫
Ωi

UdΩ + ∮
∂Ωi

Endl = ∫
Ωi

(Sτ + Sb)dΩ (7)

The second integral in (7) can be explicitly expressed as a sum over the
cell edges,

∂

∂t
∫
Ωi

UdΩ + NE∑
k=1

(En)klk =
NE

∑
k=1

Snτ lk +
NE

∑
k=1

Snblk (8)

where lk is the corresponding edge length and Snb and Snτ are suitable inte-
grals of the bed slope and friction source terms (Juez et al., 2013),

Snb = (0, −gψh∂z
∂x
nx,−gψh∂z

∂y
ny)

T

(9)

Snτ = (0, ρgψh tan θbnx, ρgψh tan θbny)T (10)

4

l3

n3e1
e2

e3

Uj1
UiUj2

Uj3

Figure 1: Cell parameters

where nx and ny are the components of the unit vector n of each edge of each
computational cell.

The numerical scheme is constructed by defining a local linearization in
terms of an approximate Jacobian matrix J̃ at each k edge between neigh-
boring cells defined through the normal flux En

(δEn)k = J̃n,kδUk (11)

with δ(En)k = (Ej −Ei)nk
, δUk =Uj −Ui, and Ui and Uj the initial values

at cells i and j sharing edge k.
From this approximate Jacobian matrix a set of three real eigenvalues λ̃mk

and eigenvectors ẽmk are obtained. The vector of conserved variables, δU, is

projected onto the matrix eigenvectors basis, P̃, as

δUk = P̃kÃk =
3

∑
m=1

(α̃ẽ)mk (12)

with

P̃k = (e1,e2,e3)k Ãk = (α1 α2 α3)T
k

(13)

The source terms are also projected onto the matrix eigenvectors basis,
P̃, to guarantee the exact equilibrium between fluxes and source terms

(Sn,b,Sn,τ)k = P̃kB̃k =
3

∑
m=1

(β̃ẽ)m
k

(14)

with

5

B̃k = (β1 β2 β3)T
k

(15)

Gathering all the previous information the volume integral in the cell at
time tn+1 is expressed as

Un+1
i =Un

i −
NE

∑
k=1

3

∑
m=1

(λ̃−α̃ − β̃−)mk emk lk∆tAi (16)

The sign minus in (16) implies that only the incoming waves are con-
sidered for updating the values of each cell. It is worth remarking that the
feature of steep slopes has to be retained in the numerical scheme (Juez et al.,
2013). Additionally, two numerical fixes regarding the friction term are also
needed for computing physical solutions (Murillo and Garćıa-Navarro, 2012):
they are necessary for avoiding unphysical solutions by means of decreasing
the wave source strengths, Bk.

In order to avoid the presence of instabilities the time step ∆t has to
be taken small enough so that there is no interactions of waves between
neighboring cells.

∆t ≤ CFL∆tλ̃ ∆tλ̃ = min(χi, χj)
max ∣λ̃m∣

(17)

with CFL=1/2 in the case of triangular unstructured grids. The term χi is
the relevant distance, which in a 2D framework must consider the volume of
the cell i and the length of the shared k edges (Murillo and Garćıa-Navarro,
2010),

χi = Ai

maxk=1,NE lk
(18)

Due to the fact that the numerical scheme is controlled by a explicit global
time step, the only way of reducing the computational cost is by means of
using a high performance computing technique. This latter is explained in
the following section.

6

3. Implementation of the numerical scheme

The implementation of the model follows a time-stepping process where,
until the simulated time is reached, the numerical scheme (16) is applied over
the whole domain. The way this process is performed is illustrated in Figure
2. The main operations of the numerical scheme are displayed in green and
pink. The calculation of the fluxes is performed following the edges and the
updating process as well as the boundary calculation are performed looping
by cells. Both processes go from 1 to nedges and ncells respectively.

Launch Application
Generate the computational

structures on CPU
Read input files t<tmax Calculate the Wall fluxes Update the inlet cell Contributions Update Cells Update Boundaries t%tdump=0? Write Output Files

Close applicationFree Computational Resources

Yes

Numerical Engine

Figure 2: Flowchart of the simulation process. Green function is performed looping by
cell edges, while the pink is a loop following the cells.

In order to make the process faster, some of the parts can be paralellized
or even adapted to perform the operation in the GPU. Nowadays most of
the processors are designed with multi-threading capabilities. Despite these
capabilities, it is not direct to perform operations using every single core.
Figure 3 displays a typical iterative process using a 1 core of a Multi-Core
processor.

A[]

void generateOperation(int *A){

 for(i=0;i<48;i++){

 A[i]= ...

 }

}

generateOperation(A)

Figure 3: Sequential iteration over vector A[]

When possible, the iterative process may be split into different sub-
processes allowing the processing of different elements at the same time by
different processing units. This is feasible when the loop contains straight-
line code (a single basic block with no jumps) and when there is no data
dependency between iterations (element i − 1 is not required for the element
i). If dataflow does not satisfy the previous condition, the manner of pro-
cessing the elements to make them parallelizable must be re-structured.
OpenMP is a very useful standard to perform shared-memory paraleliza-
tion. This standard implements parallel primitives in many programming

7

languages such as C or Fortran making really easy to implement a parallel
solution in a reasonable time. The main disadvantage of this kind of par-
alellization is that the Multi-Core processors are not growing as much as the
most recent Many-Core architectures, where a lot of specialized processing
units allow to make many more operations than in the multi-core unit. An
example of a parallel loop using OpenMP is displayed in Figure 4.

A[]

void generateOperation(int *A){

 #pragma omp parallel for

 for(i=0;i<48;i++){

 A[i]= ...

 }

}

Figure 4: Parallel iteration over vector A[] using 4 cores

Many-Core processors provide a hardware architecture to perform a large
number of independent operations in a parallel manner. The main difference
between Multi-Core threads and Many-Core threads is the lightweight of the
second solution as well as the hardware support of a larger number of the
latter (> 1000s). Unlike the Multi-Core thread, where each thread processes
a group of elements, in the Many-Core paradigm, each thread will process
just one element.

CUDA (Compute Unified Device Architecture) was released in order to
perform this kind of parallelization on the NVIDIA’s GPUs. It provides both
a software model and a set of compilation tools that support the NVIDIA
Many-Core GPUs. An example of a CUDA instance for the previous loop is
displayed in Figure 5.

A[]

generateOperation<<<4,12>>>(A)

global void generateOperation(int* A){

i=threadId+

 BlockId*ThreadsPerBlock

 A[i]= ...

}

Figure 5: Massively parallel iteration over vector A[] using a Many-Core architecture.

The improvement on the implementation of the numerical solver will

8

be achieved by means of the translation of the processes sketched in fig-
ure (2)into both solutions OpenMP for the Shared-Memory level paralelism
in Multi-Core hardware and the CUDA based solution for the Many-Core
GPUs architecture.

3.1. Implementation on GPU

The GPU contains a large number of processors working all together ap-
plying the same operation over different elements. In order to obtain high
performance in the GPU implementation it is necessary to understand the
way the model works. NVIDIA GPUs are formed by Streaming Multiproces-
sors (SMs). Each Multiprocessor is composed by Streaming Processors (SPs)
that represent the minimum processing unit. In the case of the Tesla Series
GPUs, there are 14-16 SMs and they are composed by 32 SPs (Glaskowsky,
2009). From the Software point of view, there are groups of blocks that con-
tain threads. More specifically, each block contains blockDim threads and the
number of blocks gridDim must be larger than the number of elements (nelem)
to be processed (nelem ≤blockDim*gridDim). Each block will be processed
by a SM in groups of 32 elements which form a warp taking into account
that each Streaming Processor will process each element of the warp. More
details about CUDA and NVIDIA GPUs can be found in (NVIDIA, 2011).
Implementation on GPU has been developed using the approach of Lacasta
et al. (2014) for unstructured meshes and adapting the required elements
into these new model. A general overview of the CUDA implementation of
the simulation process described in Figure 2 is highlighted in Listing 1.

Listing 1: Overview of the CUDA implementation.

1 ...

2 // Configuration of the parameters

3 Threads=256;

4 edgeBlocks=nEdge/Threads;

5 cellBlocks=nCell/Threads;

6 while(t<tmax){

7 // Calculate the fluxes

8 calculateEdgeFluxes<<<edgeBlocks,Threads,0,executionStream>>>(...);

9 // Establish the minimum dt obtaining the ID of the

10 // minimum dt

11 // (*) Explained at Listing 3

12 cublasIdamin(...,nEdge,vDt,1,id);

13 // And assign it

14 newDt<<<1,1,0,executionStream>>>(dt,vDt,id);

15 // Update the elapsed time (in GPU)

9

16 updateT<<<1,1,0,executionStream>>>(cuda_t,dt);

17 // Retrieves the value of t to CPU

18 cudaMemcpy(t,cuda_t,sizeof(double),cudaMemcpyDeviceToHost);

19 // Update the cell values

20 assignFluxes<<<cellBlocks,Threads,0,executionStream>>>(...);

21 // Verify whether it is neccessary to dump data and

22 // if so, process it.

23 // (*) Detailed in Listing 4

24 if(t<t_dump){

25 // Transfer data from GPU to CPU and write it

26 // into an output file

27 }

28 }

As it was justified in Juez et al. (2013) the topology of the mesh plays
an important role on the quality of the numerical results. Only unstructured
meshes avoids the presence of preferential directions. Because of this ne-
cessity, it is not straightforward to obtain an efficient solution for the GPU
processing. Moreover, special attention on those parts that are not intrinsic
parallel is required (such as the selction of the global time step).
To obtain an efficient solution three special considerations are highlighted.

Using Structure of Arrays (SoA) in spite of Arrays of Structures (AoS)
to store data. Because of the manner of processing the elements, SoA
provides improvements when accessing to consecutive elements and this
will be maximized if conserved variables (h,hu, hv) are stored consecu-
tively as h0...hncellshu0...huncellshv0...hvncells instead of h0hu0hv0...hnhunhvn.
When a thread within a warp reads the variable h(i) it is likely that
the following thread requires h(i + 1). In other words, this approach
improves the data locality and allows to the GPU to obtain coalesced
memory access.

To maximize coalescence when accessing by cells it is required to reorder
the mesh, (Lacasta et al., 2014). One strategy is to fit the connectivity
matrix into a banded matrix. Figure 6 shows the effect of applying a
reordering method in the connectivity matrix when using unstructured
meshes. In order to obtain the previous ordering, bandwidth reduc-
tion methods are very useful. RCM algorithm is one of them. These
methods have been traditionally used to obtain better perfomance in
iterative methods by means of reducing the bandwidth of the matrix.

10

Similarly, the idea can be applied to the connectivity matrix and this
provides a reordered cells indexing that improves the spatial locality
and provides coalescence when accessing by cells.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30
 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Figure 6: Upper: Unstructured mesh (left) and unstructured mesh postprocessed with
RCM algorithm (right). Lower: Connectivity matrix for the original unstructured mesh
(left) and for the reordered unstructured mesh (right). (Note that there exists a point if
m(i, j) = 1).

The ordering when processing by edges. In the previous point, RCM
achieves coalesced accesses when processing by cells, but it is not
enough to process by edges. Actually, it is likely that when calculating
by edges (when accessing to the two neighbouring cells of the edge) this
reordered mesh may introduce penalty (Lacasta et al., 2014). To avoid

11

this, reordering the edges (reordering the pair of cells) will strongly in-
crease the performance of the GPU memory accesses when accessing by
cells to the primitives values. The edge ordering is graphically detailed
in Figure 7. This reordering will allow to process the pair of cells (0,1)
for the thread which process edge 0 and the pair (0,2) for the thread
which process edge 1 despite the pair (19,23) that would be processed
in the edge 1 without the edge ordering.

 0 5 10 15 20 25 30

 0

 5

 10

 15

 20

 25

 30

 35

 0

 5

 10

 15

 20

 25

 30

 35

 40

E
d
g
e
 i
d
e
n
ti
fi
e
r

 0 5 10 15 20 25 30

 0

 5

 10

 15

 20

 25

 30

 35

 0

 5

 10

 15

 20

 25

 30

 35

 40

E
d
g
e
 i
d
e
n
ti
fi
e
r

Figure 7: Unstructured mesh RCM processed edges ordering. Original ordering (left),
qsort postprocesed ordering (right)

Applying all these previous improvements it is possible to achieve great
speed-ups comparing with a sequential or a multi-core implementation of the
numerical scheme. This is discussed in Section 5.

4. Results

This section is devoted to describe the test cases considered as bench-
marking for evaluating the performance of GPU implementation with respect
to Single-Core and Multi-Core CPU implementations. The first three tests
are based on experimental works previously used by the authors for validat-
ing the numerical scheme (Juez et al., 2013). The computational cost was
huge in comparison with the simulation time. The cause of this problem
has a twofold nature: first, the number of cells involved in the computation
is large, since the scale of interest in these tests was in the order of mm.

12

Additionally, due to the explicit numerical scheme considered, there is a re-
striction in the time step used for updating the solution. In these test cases,
the time step is highly penalized due to the small area of the cells and the
fast flows.

The last test case considered constitutes a practical application, based on
a real topography which is located in Spain (Garćıa-Ruiz et al., 2005).

All the numerical results have been computed using unstructured meshes
to avoid numerical effects associated to the presence of preferential flow prop-
agation directions as it was justified in Juez et al. (2013). Additionally, the
CFL imposed in the numerical scheme has been equal to 0.5 in all the cases.

4.1. Spreading of cylindrical granular mass

The numerical simulation described in this test case is related with the
experimental work developed by Lajeunesse et al. (2004). It has been chosen
due to the simplicity of the initial configuration. During this experiment
the spreading of a granular mass, originally retained within a cylinder, was
recorded over a flat plane. The material was characterized with an internal
friction angle θb=32. The test case considered is Test A, where the initial
height of the sand was 39.48 mm and the radius was 70.5 mm. The number
of cells involved in the simulation has been 320000.

Figure 8 displays a 3D views of the temporal evolution of the sand depth
and velocity, from the beginning, when the mass is enclosed within the cylin-
der up to the final stage when all the granular mass has achieved an equilib-
rium condition and it is stopped.

4.2. Spreading of a granular mass including the presence of an obstacle

The development of this experiment was motivated by the presence of
obstacles in real events. The presence of these obstacles causes the birth and
propagation of quick moving shocks. The experimental work was carried out
by Juez et al. (2013) and it is still under review. The setup of the experiment
consists of a rough inclined plane with a changing slope and with an obstacle
in the middle of the flow way. The initial condition is given by a semispherical
cap full of sand. When this cap is pulled out, the granular material is free
for evolving downwards its original position until surrounding the obstacle.
The internal friction angle of the material was characterized as θb = 26 and
the number of cells included in the simulation was 460000.

13

The temporal evolution of the granular flow is displayed in Figure 8. The
front of the avalanches moves quickly until reaching the obstacle. Then, the
flow is divided in two directions up to achieve a static equilibrium stage.

4.3. Spreading of a granular mass over a parabolic chute

This test case is another step in complexity, since the bed slope changes
in the longitudinal and transversal direction. The original experiment was
carried out by (Gray et al., 1999) and it was based on a semispherical cap full
of sand which was suddenly removed over a parabolic chute. The material
was characterized with a internal friction angle θb=30. The number of cells
considered in the calculus has been 670000.

Numerical results are plotted in Figure ??. The material flows quickly
downstream up to reach the horizontal area. In that position, the velocity
of the front is reduced by the smaller bed slope. Hence, the granular mass
starts to spread transversally and finally, an uneven surface level is obtained
at the equilibrium stage.

4.4. Landslide in a practical application

The final test considered for the validation of the GPU implementation
is based on a real topography of a catchment (Garćıa-Ruiz et al., 2005). The
Arnas catchment is located in the northern Spain Pyrenees, in the Borau
valley, and has a surface of 2.84 km2, ranging in altitude from around 900 to
1340 meters. Geologically, the catchment lies over Eocene flysch formations
and has suffered land use and coverage changes in recent decades, generating
a mixed vegetation cover which ranges from forest patches, dense and open
shrubs, grassland cover and bare land. The assumption made by the authors
is that the part of the bare terrain is composed by poorly sorted material and
the idea is to verify the maximum run out and potential consequences of a
massive mobilization of that material. In Figure ?? is plotted the fixed bed
rock and onto it the moving granular material. Due to the large dimensions
of the catchment, the number of cells involved in the calculus is over 869000,
making this type of phenomena a suitable candidate for GPU strategy.

5. Computational load

The necessity of refined mesh for tests 1, 2 and 3 is justified by the
important effect of the bed slope in the phenomena and then, an accurate
representation of the topography is required. This means that the time-step

14

length restricted by the CFL condition, is very low and then many time-steps
are required to complete the simulation. Moreover, each time-step has a very
high computational cost because of the number of cells. On the other hand,
the last test case does not require such refinement because of the uncertainty
of the data acquisition. Indeed, the mesh has been designed using the most
accurate available LIDAR data for the topography, being the resolution of
5mx5m.

In order to analyze the computational load of the numerical engine as well
as the gain obtained using both Single-Core and Multi-Core approaches, a
sequential version using an Intel Core i7 3770k@3.5 GHz is compared against
an OpenMP (4 Threads) parallel version and a GPU version without taking
into account the improvements proposed on the paper (not optimized) and
against an optimized version running on a NVIDIA Tesla c2075 GPU. All the
implementations have been tested in the previous four cases and the compu-
tational cost as well as the speed-ups of the parallel versions are highlighted
in Table 1 and in Figure 8.

Taking into account both factors, small time-step size and high number
of cells, the cost of the simulations for the sequential version of the numerical
engine for tests cases 1 2 and 3 is three orders of magnitude larger than the
real time. On the other hand, the parallel Multi-Core version, with 4 cores
of the same CPU, can accelerate the computation between 2.25 and 2.65
times. The GPU improves the simulation cost between 34.88 and 49.40 times
compared with the sequential version. Moreover, if the mesh is reordered,
the computational cost is smaller and a speed-up between 49.96 and 59.85 is
obtained.

The main reason for discrepancies on the speed-up of cases 1, 2 and 3
against test case 4 is that the number of calculations in the latter is higher
compared with the number of calculations for the other cases, i.e. there are
more cells that satisfy h > 0 in test 4. Therefore, the more cells are involved
in the calculus, the larger speed-ups can be obtained with the GPU.

6. Conclusions

A finite volume scheme for modeling landslides has been implemented on
GPU. Unstructured meshes have been considered, since this grid topology is
the only one which avoid misleading preferential flow directions.

The computational times have been compared with those obtained when
considering Single-Core and Multi-Core processors. The GPU implementa-

15

 1

 10

 100

 1000

 10000

 100000

Test 1 - Cylindrical Test 2 - Obstacle Test 3 - Parabolic Test 4 - Landslide

Lo
g(

C
om

pu
ta

tio
na

l C
os

t)
 (

s)

Intel Core i7 3770 k @ 3.50 GHz (Seq)
Intel Core i7 3770 k @ 3.50 GHz (4 Core)

Tesla c2075
Tesla c2075 + Mesh Optimization

 0

 10

 20

 30

 40

 50

 60

Test 1 - Cylindrical Test 2 - Obstacle Test 3 - Parabolic Test 4 - Landslide

S
pe

ed
-U

p

Intel Core i7 3770 k @ 3.50 GHz Tesla c2075 Tesla c2075 + Mesh Optimization

Figure 8: Computational time (upper) using logarithmic scale and speed-up (lower) for
the compared implementations

Seq. 4 Cores GPU Std. GPU Opt

Case ncells t(s) t(s) sup t(s) sup t(s) sup

Test 1 319354 191.15 81.63 2.34 5.48 34.88 3.83 49.96

Test 2 458684 2274.13 912.94 2.49 64.03 35.52 45.59 49.89

Test 3 670940 5217.70 2319.48 2.25 140.68 37.09 104.12 50.11

Test 4 869149 22929.15 8657.59 2.65 464.16 49.40 383.13 59.85

Table 1: Detail of computational cost and speed-up for the compared implementations
using the four cases.

tion and specially, the application of cell and wall ordering algorithms, have
driven to obtain noticeable improvements in the speed-up of the test cases.

16

Borkar, S., 2007. Thousand core chips: A technology perspective, in: Pro-
ceedings of the 44th Annual Design Automation Conference, ACM, New
York, NY, USA. pp. 746–749.

Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Lagrée, P.Y., 2008. On
new erosion models of Savage-Hutter type for avalanches. Acta Mechanica
199, 181–208.

Dreslinski, R., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T., 2010.
Near-threshold computing: Reclaiming moore’s law through energy effi-
cient integrated circuits. Proceedings of the IEEE 98, 253–266.

Garćıa-Ruiz, J., Arnaez, J., Begueŕıa, S., Seeger, M., Marti-Bono, C., Regues,
D., Lana-Renault, N., White, S., 2005. Runoff generation in an inten-
sively disturbed, abandoned farmland catchment, Central Spanish Pyre-
nees. Catena 59, 79–92.

Glaskowsky, P.N., 2009. Nvidia’s fermi: The first complete GPU comput-
ing architecture. A white paper prepared under contract with NVIDIA
Corporation , 126.

Gray, J., Wieland, K., Hutter, K., 1999. Gravity-driven free surface flow
of granular avalanches over complex basal topography. Proc. Royal Soc.
London Ser. A, 455, 1841.

Iverson, R., Denlinger, R., 2001. Flow of variably fluidized granular masses
across three-dimensional terrain. A Coulomb mixture theory. Journal of
Geophysical Research 106, 537–552.

Juez, C., Murillo, J., Garćıa-Navarro, P., 2013. 2D simulation of granular
flow over irregular steep slopes using global and local coordinates. Journal
of Computational Physics 255, 166–204.

Lacasta, A., Morales-Hernández, M., Murillo, J., Garćıa-Navarro, P., 2014.
An optimized gpu implementation of a 2d free surface simulation model
on unstructured meshes. Advances in Engineering Software -, (Under Re-
view).

Lajeunesse, E., Mangeney-Castelnau, A., Villote, J.P., 2004. Spreading of a
granular mass on a horizontal plane. Physics of Fluids 16, 2371–2381.

17

Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A.,
2010. Erosion and mobility in granular collapse over sloping beds. Journal
of Geophysical Research 115, F03040.

Moore, G., 2003. No exponential is forever: but ”forever” can be delayed!
[semiconductor industry], in: Solid-State Circuits Conference, 2003. Digest
of Technical Papers. ISSCC. 2003 IEEE International, pp. 20–23 vol.1.

Moretti, L., Mangeney, A., Capdeville, Y., Stutzmann, E., Huggel, C.,
Schneider, D., Bouchut, F., 2012. Numerical modeling of the Mount Steller
landslide flow history and of the generated long period seismic waves. Geo-
physical Research Letters 39, L16402.

Murillo, J., Garćıa-Navarro, P., 2010. Weak solutions for partial differential
equations with source terms: Application to the shallow water equations.
Journal of Computational Physics 229, 4327–4368.

Murillo, J., Garćıa-Navarro, P., 2012. Wave Riemann description of friction
terms in unsteady shallow flows: Application to water and mud/debris
floods. Journal of Computational Physics 231, 1963–2001.

NVIDIA, 2011. NVIDIA CUDA C Programming Guide.

Pirulli, M., Bristeau, M., Mangeney-Castelnau, A., Scavia, C., 2007. The
effect of the earth pressure coefficients on the runout of granular material.
Environmental Modelling and Software 22, 1437–1454.

Pirulli, M., Mangeney, A., 2008. Results of Back-Analysis of the Propaga-
tion of Rock Avalanches as a Function of the Assumed Rheology. Rock
Mechanics and Rock Engineering 41, 59–84.

Pouliquen, O., Forterre, Y., 2002. Friction law for dense granular flows:
application to the motion of a mass down a rough inclined plane. Journal
of Fluid Mechanics 453, 133–151.

Savage, S., Hutter, K., 1989. The motion of a finite mass of granular material
down a rough incline. Journal of Fluid Mechanics 199, 177–215.

Sharma, S., Gupta, K., 2013. Parallel performance of numerical algorithms
on multi-core system using openmp, in: Meghanathan, N., Nagamalai, D.,
Chaki, N. (Eds.), Advances in Computing and Information Technology.

18

Springer Berlin Heidelberg. volume 177 of Advances in Intelligent Systems

and Computing, pp. 279–288.

19

