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Report on Some ring-shaped potentials as a generalized 4-D isotropic

oscillator. Periodic orbits by Sebastián Ferrer and Eva Tresaco.
Response to reviewers’ comments. Minor revisions.

These are the changes in the report considering the reviewer’s comments,

1 Section 3 has been restructured, including both commensurability con-
ditions for circular-circular orbits, and all other orbits.
The summary that was taken verbatim from your report has been re-
moved. It was included in that Section to point where your comment
should be taken into consideration during the first review, and then we
forgot to delete it.

2 In Section 3.1 it has been included a better explanation of the meaning
and implications of Figure 2.
Concerning the use of the values of A1 and A2 i.e. polar coordinates
instead of the initial conditions in cartesian (q1, q2) and (q3, q4), we
agree that polar variables are more appropriated if we refer to the res-
onance conditions, however the aim of using (q1, q2) was the numerical
computation of the orbit in order to visualize it. We find the cartesian
coordinates clearer to identify the orbit as a circular or rosetta-type
orbit. The correspondence between both variables is explicitly written
in the paper, each set of cartesian coordinates determine a value of Ai,
see Formula(5).
We have also modified the references to the commensurability condi-
tions when circular-circular or rosetta orbits.

3 Concerning Section 4.4, rewrite the resonance relations in terms of
(x, y, z) would result in cumbersome expressions that in our opinion
will not clarify the text. In order to make clearer the steps to satisfy
the resonance conditions, we have added a brief explanation to point
out that A1 and A2 are given by (q1, q2) and (q3, q4), besides, it is
explained that (q3, q4) are determined by the 3-D orbit (x, y, z).
Factor 2 on p.22 was a misprint.

4 Finally we have added a new paragraph in the Introduction on p.4
about the geometric properties of the system.
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1 Introduction

This paper deals with with a 4-D integrable dynamical system defined by the

parametric Hamiltonian function

HO =
1

2

(

Q2
1+Q2

2+Q2
3+Q2

4 + ω (q21 +q22 +q23 +q24)+
a

q21 + q22
+

b

q23 + q24

)

, (1)

(where ω, a and b are parameters), and its relation with two families of 3-

D integrable Hamiltonian systems H = 1

2
‖X‖2 + Vi with axial symmetry,

namely systems with potentials given by

V1 = − µ
√

x2
1 + x2

2 + x2
3

+
P

x2
1 + x2

2

+
Qx3

(x2
1 + x2

2)
√

x2
1 + x2

2 + x2
3

, (2)

dubbed as Smorodinsky-Winternitz potential (see Mardoyan 2003), and

V2 =
Ω2

2
(x2

1 + x2
2 + x2

3) +
P

2x2
3

+
Q

2(x2
1 + x2

2)
, (3)

(where µ, Ω, P and Q are parameters). Note that, written in spherical vari-

ables, potentials V1 also appear in the literature under the Pöschl-Teller form

V1 = −µ
r

+
P +Q

4 r2 sin2 φ
2

+
P −Q

4 r2 cos2 φ
2

.

The particular case of the system (1) when a = b was considered by Ki-

bler and Négadi (1984a) when they studied the Hartmann potential using

the Kustaanheimo-Stiefel transformation. In this sense, the proposed Hamil-

tonian (1) represents a generalization of theirs.

Potentials Vi belong to a larger family of integrable systems which are

known to be separable (Makarov et al. (1967)). These potentials have re-

ceived special attention since the pioneer work of Hartmann et al., due to

its relation to the Benzene molecule, as well as other models in quantum
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chemistry and nuclear physics. When we take Q = 0 in potential V1 we

have the Hartmann (1972) model. Continuing the study done by Kibler and

Négadi (1984a), the solution was detailed by Kibler and Winternitz (1987) in

parabolic coordinates. With respect to potential V2, the case P = 0 has been

studied by Quesne (1988). Finally, Kibler et al. (1992) developed a complete

study of both potential models.

The ring-shaped features come from the fact that coefficients have to be

taken within specific ranges. Systems defined by these potentials are super-

integrable but not maximally super-integrable, having four globally defined

single-valued integrals of motion. They admit two maximally super-integrable

systems as limiting cases, viz, the Coulomb-Kepler system and the isotropic

harmonic oscillator system in three dimensions. This is related with the fact

that Schrödinger equation is separable, among others, in spherical, parabolic

and spheroidal coordinates. All finite trajectories are quasi-periodic; they

become truly periodical if a commensurability condition is imposed on an

angular momentum component. Kibler et al. (1994) studied in detail the coef-

ficients of the interbasis expansions between three bases (spherical, parabolic

and spheroidal) in the case of potential V1. For the path integral approach

applied to these and related systems we mention the review paper of Grosche

(1992) and references therein. Recently the normalized wavefunctions and ex-

plicit expressions for their radial average values have been presented by Chen

et al. (2002), where an updated list of references on these problems is given.

Similar studies for potential V2 were done by Kibler and Winternitz (1990),

and Kibler et al. in 1996.
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This paper deals with the relation of these 3-D systems with a 4-D in-

tegrable dynamical system defined by the Hamiltonian function (1), focused

on aspects related to classical dynamics. With respect to quantum mechanics

approach, we refer to the classic paper of Calogero (1969) (Sect. 2) which,

with minor changes, can be applied to the two coupled one degree of freedom

systems defining our model.

Also, it is presented a description of the periodic solutions found. The role

of periodic orbits in Hamiltonian systems was first recognized by Poincaré

(1892), stating that periodic orbits are the only opening through which we

may try to penetrate the stronghold when studying complex dynamical sys-

tems, also Deprit and Henrard (1969) considered periodic solutions as the

skeleton around which the dynamic is organized. Accordingly, we may find

many studies in the literature focused on the analysis of periodic trajectories

in order to get information of the behavior of the dynamical model. Today

periodic orbits are at the basis of both classical and quantum mechanics, see

for example recent works [21], [22] or [23].

It is clear that, like with any other superintegrable system, the system

defined by the Hamiltonian function (1) opens different lines for analysis:

analytical, numerical, geometric and topological. For a general view on this

the reader may consult Fassò (2005) and references therein. Here, having

established the connection among the 3-D and 4-D models [10], we focus on

conditions for periodic orbits. Geometric properties connected to invariant

manifolds as well as symmetries of the system, which complement the work

presented here, make the content of another paper (see Balsas et al. 2009).
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This paper is organized as follows. In Section 2, assuming ω > 0, we carry

out the integration of system defined by Hamiltonian (1), which is given by

means of elementary functions. Section 3 presents an analysis of some families

of periodic orbits. In Section 4 we establish the relation between the oscillator

and the systems defined by potentials (2) and (3) respectively, making use of

well known point transformations in 4-D and their canonical extensions; for

each case there is a linear system which relates parameters P and Q of the

potentials with integrals and parameters of the 4-D oscillator.

2 The biparametric oscillator and its integration

Prior to show the relation of both families of ring-shaped systems with the

system defined by the Hamiltonian function (1), we focus first on the inte-

gration of our oscillator. The Hamiltonian function (1) defines an integrable

system in ∆ = R4 − {(0, 0)×R2}⋃ {R2×(0, 0)}.

2.1 Still another canonical extension. Superintegrability

There is a large literature on the issue of integrability and superintegrability

which we do not consider necessary to treat here. We wish only mention that

Liouville-Arnold conditions for integrability are satisfied for our system.

Let us consider a canonical extension, the polar-polar transformation

(q1, q2, q3, q4) → (ρ1, ρ2, α1, α2), considered previously by Kibler and Win-

ternitz (1987), and given by

q1 = ρ1 cosα1, q2 = ρ1 sinα1, q3 = ρ2 cosα2, q4 = ρ2 sinα2 (4)
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and its canonical extension, (Q1, Q2, Q3, Q4) → (P1, P2, A1, A2)

P1 =
q1Q1 + q2Q2

√

q21 + q22
, A1 = q1Q2−q2Q1, P2 =

q3Q3 + q4Q4
√

q23 + q24
, A2 = q3Q4−q4Q3

(5)

Then, the Hamiltonian (1) in the new variables reads

HO =
1

2

(

P 2
1 + P 2

2 +
A2

1

ρ2
1

+
A2

2

ρ2
2

+ ω(ρ2
1 + ρ2

2) +
a

ρ2
1

+
b

ρ2
2

)

(6)

Note that α1 and α2 are cyclic, thus A1 and A2 are first integrals. Taking

into account that will have to deal with the quadratures of

α̇1 =
∂HO

∂A1

=
A1

ρ2
1

, α̇2 =
∂HO

∂A2

=
A2

ρ2
2

(7)

after we have integrate the rest of the system.

Introducing the quantities

k1 = A2
1 + a, k2 = A2

2 + b, (8)

our Hamiltonian may be written as

HO =
1

2

(

P 2
1 + P 2

2 + ω(ρ2
1 + ρ2

2) +
k1

ρ2
1

+
k2

ρ2
2

)

, (9)

in other words, the two dimensional Smorodinsky-Winternitz system (see

Evans 1990) in the variables (ρ1, ρ2, P1, P2). Other authors call this Hamilto-

nian (9) a set of two non-interacting isotonic systems with the same frequency.

Apart from the constants of motion defined by the energies of each degree of

freedom, it is well known that there is a another integral of motion given by

C = (ρ1P2 − ρ2P1)
2 + k1

ρ2
2

ρ2
1

+ k2

ρ2
1

ρ2
2

. (10)

Thus our Hamiltonian defines a superintegrable system, but we will not

elaborate on this issue here. Just note that those systems, apart from being in-

tegrable in the Liouville-Arnold sense, they possess more constants of motion
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than degrees of freedom. Moreover, if the number N of independent constants

takes the value N = 2n− 1, then the system is called maximally superinte-

grable. Apart from the three well known classic cases, more recently other

less simple models such as the Calogero-Moser, the Smorodinsky-Winternitz

and the hyperbolic Calogero-Sutherland-Moser have been identify as super-

integrable n-dimensional systems (López et al. 1999).

2.2 The explicit solution

The system is made separable in two subsystems of one degree of freedom,

defined by the Hamiltonian functions

Ha =
1

2

(

P 2
1 +

A2
1 + a

ρ2
1

+ ωρ2
1

)

, Hb =
1

2

(

P 2
2 +

A2
2 + b

ρ2
2

+ ωρ2
2

)

, (11)

such that

HO = Ha + Hb. (12)

We integrate the differential system defined by (6) immediately, following

closely the approach given by Deprit (1991). It is based on a slight varia-

tion of the Hamilton-Jacobi scheme that he calls Delaunay transformation.

Introducing

Q̃ = 2Ha − ωρ2
1 −

A2
1 + a

ρ2
1

,

and the quantities a1 and b1

a1+b1 =

√

2
(Ha

ω
+

√

A2
1 + a

ω

)

, a1−b1 =

√

2
(Ha

ω
−

√

A2
1 + a

ω

)

, (13)

we may write

Q̃ =
ω

ρ2
1

(a2
1 − ρ2

1)(ρ
2
1 − b21).
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We see that the equation Q̃ = 0 has real roots when Ha ≥
√

ω (A2
1 + a). The

system defined by the Hamiltonian Ha is reduced to

dρ1

dτ
= P1 =

√

Q̃,
dα1

dτ
=
A1

ρ2
1

,

i.e., to two quadratures whose integral are

ρ1(τ) =

√

a2
1 sin2

√
ω τ + b21 cos2

√
ω τ, α1(τ) =

A1

a1 b1
√
ω

tan−1

(

a1

b1
tan

√
ω τ

)

.

Note that in the literature this solution may be also obtained as a particular

case of the so-called Pinney-Ermakov equation (see Cariñena et al 2007).

Analogous computations for the Hamiltonian Hb in Eq. (11), with quan-

tities a2 and b2 given by

a2 +b2 =

√

2
(Hb

ω
+

√

A2
2 + b

ω

)

, a2−b2 =

√

2
(Hb

ω
−

√

A2
2 + b

ω

)

, (14)

produce

ρ2(τ) =

√

a2
2 sin2

√
ω τ + b22 cos2

√
ω τ, α2(τ) =

A2

a2 b2
√
ω

tan−1

(

a2

b2
tan

√
ω τ

)

.

The equilibrium points of the reduced systems are the zeros of the poten-

tial functions, i.e. ρ4
i = ki/ω, (i = 1, 2), which correspond to circular orbits

with minimal energies Ha =
√
ωk1 and Hb =

√
ωk2).

In each of the two separable subsystems the generic solution is a rosetta

type-orbit, periodic or not, see Fig. 1. In particular, circular orbits appear as

a limit case of the rosetta, but considering here as another orbit type due to

their simplicity.

Therefore, it can be stated that the generic solution of the Hamiltonian

system (1) is a pair of no periodic rosetta orbits, obtaining three different
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q
1

q
2

q
3

q
4

Fig. 1 Generic solution of the 4-D hamiltonian (1). Left projection (q1, q2), right

(q3, q4).

families classes, two rosetta orbits, one circular and one rosetta, or two cir-

cular orbits.

As our hamiltonian system is separable in two subsystems in (ρ1, α2) and

(ρ2, α2), related by means of the energy of the complete system, we may take

advantage of this property to obtain periodic orbits of the complete system,

as we will see in the next section.

3 Analysis of periodic orbits

In this Section we present an analysis of the orbits of the 4-D dynamical

system, studying the resonances needed to obtain a periodic orbit. From

the solutions given in Section 2.2 note that the radii ρ1 and ρ2 are periodic

quantities with period Tρ = π/
√
ω. The angular quantities α1 and α2 are

also periodic with periods Tα1
and Tα2

, respectively. Nevertheless, note that

in general

αi(nTρ) = nπ
Ai

ai bi
√
ω

6= 2mπ (i = 1, 2),
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where m, n, are integers.

Therefore, we will only find periodic solutions of the 4-D Hamiltonian (1)

when these two resonance conditions

a1 b1
√
ω/A1 ∈ Q, a2 b2

√
ω/A2 ∈ Q, (15)

are satisfied.

In case of a pair of circular orbits only one commensurability relation is

needed, by means of Eq. (13) and Eq. (14) we can rewrite a1 b1
√
ω/A1 =

(
√

A2
1 + a/

√
ω)

√
ω/A1, and so the resonance condition for circular-circular

orbits is

mA2

√

A2
1 + a = nA1

√

A2
2 + b, m, n ∈ Z, (16)

while Eq. (15) must be satisfied for all other rosetta-circular or rosetta-rosetta

pairs of orbits.

3.1 Computing periodic solutions

In order to search for periodic orbits, we take fixed values of the parameters

a, b and total energy H0(= Ha + Hb), and compute closed trajectories for

each subsystems Ha,Hb separately.

The simplest case is to consider circular orbits, whose radius are ρi = (ki/ω)1/4.

We illustrate them in Fig. 2 by plotting the phase portrait of any of these

subsystems, Ha or Hb, for some given values of the parameters. The phase

portrait represents multiple curves corresponding to different initial condi-

tions in the same phase plane, and provides useful information about the

system’s trajectories. Indeed Fig. 2 depicts a stable steady state in a phase
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space, where the fixed point corresponds to a circular orbit. The existence of

this orbit in one of the separable subsystems (11) results in a 3-dimensional

family of invariant tori, or a 2-tori out of a pair of circular orbits. Note that

these tori may be seen as foliations of the Lagrangian tori associated to the

system (1) when we take into account the existence of the reduced integral

(10) of the reduced system (9) which has all orbits periodic. For more details

see Balsas et al. (2009).

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

ρ
1

ρ’
1

Fig. 2 Phase portrait of a typical subsystem with hamiltonian Ha or Hb, where a

center is depicted.

In order to compute periodic orbit for a given value of the parameters of

the problem a and b, we consider a certain value of the energy of the complete

system and we take some initial conditions (q1, q2) of a circular orbit for the

system Ha. The energy of this orbit imposes a value for Hb, obtaining a

second circular orbit (q3, q4) which is related to the first one by means of the

energy.
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The largest circular orbit (q1, q2) implies a greater value of the energy Ha,

leading to a smaller Hb value for the circular orbit in the (q3, q4) plane. These

orbits do not produce in general a 4-D periodic orbit. We must choose the

appropriated initial conditions of both orbits so that the resonance condition

(16) is satisfied, and so we can obtain a periodic orbit in the complete system

with period the product of the period of the orbits (q1, q2) and (q3, q4).

Remind that the commensurability conditions (15) apply to rosetta-type

orbits, and therefore this same procedure applies for all orbits type. Fig. 3

depicts another example of a 4-D periodic orbit whose projections (q1, q2)

and (q3, q4) are a pair of rosetta orbits.

Hence, thanks to the separability property of the 4-D Hamiltonian system,

−2 0 2

−3

−2

−1

0

1

2

3

q
1

q
2

−2 0 2

−3

−2

−1

0

1

2

3

q
3

q
4

Fig. 3 Example of 4-D periodic orbit out of two rosetta 2-D periodic orbits. Left

(q1, q2), right (q3, q4).
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we have a simply way of computing 4-D periodic orbits of the complete prob-

lem out of 2-D orbits of its subsystems satisfying the periodicity relations.

4 Hartmann and Isotropic potentials. Families of periodic orbits

In this section are presented two families of three dimensional systems involv-

ing ring shaped potentials, the Hartmann and the Isotropic systems, which

are reductions of the initial Hamiltonian (1). It is also described some partic-

ular periodic orbits of both potentials, and the generation of initial conditions

of 4-D orbits of (1) through the computation of periodic orbits of the 3-D

reduced systems.

4.1 The oscillator and the generalized Hartmann potentials

We show first the relation of the Hamiltonian system (1) and the generalized

Hartmann potentials V1 defined by Eq. (2). In order to do that we will use

the transformation (r, φ, λ, ψ) → (q1, q2, q3, q4) given by

q1 =
√
r sin

φ

2
cos

λ− ψ

2
, q3 =

√
r cos

φ

2
sin

λ+ ψ

2
,

q2 =
√
r sin

φ

2
sin

λ− ψ

2
, q4 =

√
r cos

φ

2
cos

λ+ ψ

2
,

(17)
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with (r, φ, λ, ψ) ∈ R+ × (0, π) × [0, 2π] ×
(

−π
2
,
π

2

)

, and whose jacobian is

−r sinφ/8. Later on we will need the inverse transformation written as

r = q21 + q22 + q23 + q24 ,

sinφ =
2
√

(q21 + q22)(q
2
3 + q24)

q21 + q22 + q23 + q24
, cosφ =

q23 + q24 − q21 − q22
q21 + q22 + q23 + q24

,

sinλ =
q1q3 + q2q4

√

(q21 + q22)(q
2
3 + q24)

, cosλ =
q1q4 − q2q3

√

(q21 + q22)(q
2
3 + q24)

,

sinψ =
q1q3 − q2q4

√

(q21 + q22)(q
2
3 + q24)

, cosψ =
q1q4 + q2q3

√

(q21 + q22)(q23 + q24)
,

(18)

these variables are well known in the literature, see the works of Kibler

and Négadi, Ikeda and Miyachi (1971), and the classical physics book of

Synge (1960). In Cornish (1984), we find a reference to the work of Barut et

al. (1979), where the variables are introduced starting from the transforma-

tion (ζA, ζB) → (x, y, z, σ)

x+ iy = 2ζAζ̄B , z = ζAζ̄A − ζB ζ̄B , σ = arg ζAζB,

where ζA y ζB are two complex variables. We find them also in Stiefel and

Scheifele (1971), although no further use of them. As these variables are

related to Euler angles of rotation, we propose to denote them as Euler

projective variables.

The canonical extension associated to the transformation (17) is obtained

as a Mathieu transformation, satisfying
∑

Qidqi = Rdr+Φdφ+Λdλ+Ψdψ.
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Therefore, the relations among the momenta are given by

R =
1

2
∑

q2i
(q1Q1 + q2Q2 + q3Q3 + q4Q4),

Φ =
(q1Q1 + q2Q2)(q

2
3 + q24) − (q3Q3 + q4Q4)(q

2
1 + q22)

2
√

(q21 + q22)(q23 + q24)
,

Λ =
1

2
(−q2Q1 + q1Q2 + q4Q3 − q3Q4),

Ψ =
1

2
(q2Q1 − q1Q2 + q4Q3 − q3Q4).

(19)

The Hamiltonian (1) in the new variables may be written as

H = 4r

[

ω

8
+

1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

+
Ψ2 − 2ΛΨ cosφ

2 r2 sin2 φ
+
c+ d cosφ

2r2 sin2 φ

]

,

(20)

where

c =
a+ b

2
, d =

a− b

2
.

Note that λ and ψ are cyclic variables, and so Λ and Ψ are first integrals. In

other words the differential systems is described by

dr

dτ
=
∂H
∂R

,
dφ

dτ
=
∂H
∂Φ

,
dR

dτ
= −∂H

∂r
,

dΦ

dτ
= −∂H

∂φ
,

and two quadratures λ =
∫

(∂H/∂Λ) dτ and ψ =
∫

(∂H/∂Ψ) dτ .

Using Poincaré notation and introducing a change of independent variable

τ → s given by dτ = 4r ds, the Hamiltonian K = (H − h)/(4r) takes the

expression

K =
ω

8
+

1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

+
Ψ2 − 2ΛΨ cosφ

2 r2 sin2 φ
+
c+ d cosφ

2r2 sin2 φ
− h

4r
,

(21)

where h is a fix value of the Hamiltonian H for chosen initial conditions, and

the flow is defined now on the manifold K = 0. We prefer to use a slightly
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different form, we consider the Hamiltonian

K̃ =
1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

− h

4r
+

(Ψ2 + c)/2

r2 sin2 φ
+

(d/2 − ΛΨ) cosφ

r2 sin2 φ
(22)

in the manifold K̃ = −ω
8

.

Notice that this system has two cyclic variables λ and ψ. Therefore, de-

noting

K∗ =
1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

− h

4r

the differential system defined by (22) is given by

dr

ds
=
∂K̃
∂R

= R,

dφ

ds
=
∂K̃
∂Φ

=
Φ

r2
,

dR

ds
= −∂K̃

∂r
= −∂K

∗

∂r
+
Ψ2 + c+ (d− 2ΛΨ) cosφ

r3 sin2 φ
,

dΦ

ds
= −∂K̃

∂φ
= −∂K

∗

∂φ
− (Ψ2 + c)/2

r2
∂

∂φ

( 1

sin2 φ

)

− (d/2 − ΛΨ)

r2
∂

∂φ

( cosφ

sin2 φ

)

,

(23)

and two quadratures

λ =

∫

∂K̃
∂Λ

ds =

∫

Λ− Ψ cosφ

r2 sin2 φ
ds, (24)

ψ =

∫

∂K̃
∂Ψ

ds =

∫

Ψ − Λ cosφ

r2 sin2 φ
ds. (25)

If we consider now the differential system defined by the Hamiltonian

function with potential V1 in spherical variables (r, φ, λ),

x1 = r sinφ cosλ, x2 = r sinφ sinλ, x3 = r cosφ, (26)

and their momenta (R,Φ,Λ), we will have

H1 = H0 +
P +Q cosφ

r2 sin2 φ
where H0 =

1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

− µ

r
,
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and the differential system will be written as

dr

ds
=
∂H1

∂R
= R,

dφ

ds
=
∂H1

∂Φ
=

Φ

r2
,

dR

ds
= −∂H1

∂r
= −∂H0

∂r
+
P +Q cosφ

r3 sin2 φ
,

dΦ

ds
= −∂H1

∂φ
= −∂H0

∂φ
− P

r2
∂

∂φ

( 1

sin2 φ

)

− Q

r2
∂

∂φ

( cosφ

sin2 φ

)

,

(27)

and the quadrature

λ =

∫

∂H1

∂Λ
ds =

∫

Λ

r2 sin2 φ
ds. (28)

We check that these last equations coincide with Eqs (23) and (24) when

we restrict to the manifold Ψ = 0, taking h = 4µ, c = 2P, d = 2Q,

and we identify the variable s with the physical time t. Moreover, in this case

the quadrature (25) takes the form

ψ =

∫

∂K̃
∂Ψ

ds = −
∫

Λ cosφ

r2 sin2 φ
ds. (29)

Thus, we have shown that the dynamics of the oscillator defined by the

Hamiltonian function (1) includes the family of the generalized Hartmann

potentials. Note that we may interchange the role played by Λ and Ψ . Further,

when we restrict to the Hartmann case (Q = 0), we may simplify the 4-D

potential reducing it to only one parameter a = b.

4.2 Relation with generalized 3-D isotropic potentials

There is still another family of potentials related to our system (1), the

isotropis potential V2, defined by Eq. (3). Let us consider now the transfor-
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mation

q1 = r cosα cosβ, q2 = r cosα sinβ, q3 = r sinα cos γ, q4 = r sinα sin γ,

(30)

with Jacobian −r3 sin 2α/2 i.e., α ∈ (0, π/2)
⋃

(π/2, π). This transformation

was used by Kibler and Negali, (1984).

The associated canonical extension (q,Q) → (r, α, β, γ,R,A,B,C) reads

R =
1

√

∑

q2i
(q1Q1 + q2Q2 + q3Q3 + q4Q4),

A =
(q3Q3 + q4Q4)(q

2
1 + q22) − (q1Q1 + q2Q2)(q

2
3 + q24)

√

(q21 + q22)(q
2
3 + q24)

,

B = −q2Q1 + q1Q2,

C = −q4Q3 + q3Q4,

(31)

while the inverse transformation, needed for the construction of the explicit

transformation with the old variables, takes the form

r =
√

q21 + q22 + q23 + q24 ,

cosα =

√

q21 + q22
q21 + q22 + q23 + q24

, sinα =

√

q23 + q24
q21 + q22 + q23 + q24

cosβ =
q1

√

q21 + q22
, sinβ =

q2
√

q21 + q22
,

cos γ =
q3

√

q23 + q24
, sinγ =

q4
√

q23 + q24
.

(32)

The Hamiltonian (1) in these variables is given by

H =
1

2

(

R2 +
A2

r2
+

C2

r2 sin2 α

)

+
ω

2
r2 +

B2 + a

2r2 cos2 α
+

b

2r2 sin2 α
. (33)

Note that β and γ are cyclic, thus B and C are first integrals. In other words

the differential systems is described by

dr

dτ
=
∂H
∂R

,
dα

dτ
=
∂H
∂A

,
dR

dτ
= −∂H

∂r
,

dA

dτ
= −∂H

∂α
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and two quadratures

β =

∫

∂H
∂B

dτ =

∫

B

r2 cos2 α
dτ, γ =

∫

∂H
∂C

dτ =

∫

C

r2 sin2 α
dτ. (34)

If we restrict to the subsystem defined by (r, α, γ,R,A,C), and we consider

the transformation defined by

x1 = r sinα cos γ, x2 = r sinα sinγ, x3 = r cosα, (35)

the system defined corresponds to the one given by the family of potentials

V2, choosing the constants as follows

ω = Ω2, a = P −B2 y b = Q,

and we identifying τ with the physical time t.

Only when B = −C the dynamics of the 4-D oscillator belongs to the

manifold q2Q1 − q1Q2 + q4Q3 − q3Q4 = 0. Notice that the 3-D isotropic

oscillator is obtained either choosing B = a = b = 0, or if b = 0 and a = −B2.

Kibler and Winternitz (1990) studied the case P = 0, and a similar analysis

for the general case may be found in Kibler et al., (1996).

Finally, as it has been described along this section, differential systems

with potentials V1 and V2 are related to our system (1). Therefore, once we get

a 4-D periodic orbit of the system (1) we can apply the relations between the

4-D oscillator and the family of Hartmann and isotropic potentials, to obtain

the corresponding 3-D periodic orbits. Fig. 4 shows the orbits obtained for

both potentials, when we apply the transformations to the initial condition

of a particular 4-D periodic orbit. This 4-D orbit was depicted in Fig. 3.
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Fig. 4 Periodic orbits obtained through 4-D orbit shown in Fig. 3. Left: Hartmann

orbit in cylindric coordinates (26). Right: Isotropic orbit in spherical coordinates

(35).

4.3 Some particular periodic orbits of the Hartmann and Isotropic

potentials

Finally, we search for some particular periodic orbits of the Hartmann and

Isotropic potentials, and their relation with the 4-D trajectories of the initial

Hamiltonian (1).

In order to identify the special ring-shaped solutions, it is convenient to

express the Hamiltonian defined by the potentials V1 and V2 in symplectic

cylindric variables (λ, ρ, z, Λ, P, Z),

H1 =
1

2

(

P 2 + Z2 +
Λ2

ρ2

)

− µ
√

ρ2 + z2
+
P̃

ρ2
+

Qz

ρ2
√

ρ2 + z2
, (36)

and

H2 =
1

2

(

P 2 + Z2 +
Λ2

ρ2

)

+
Ω2

2
(ρ2 + z2) +

P̃

2z2
+

Q

2ρ2
, (37)

where we have denoted the parameter P ≡ P̃ to avoid confusion with the

cylindric momentum P . Note that both potentials are axially symmetric with

the cyclic variable λ =
∫

(Λ/ρ2)dt.
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Then, we will focus on the characterization of three type of possible pe-

riodic solutions, namely the ones defined by ρ constant, z constant, or both.

(i) (ρ, z) constant

Related to V2 potentials, the family of orbits is composed of circles around

the Oz axis is given by

Ṗ =
∂H2

∂ρ
=
Λ2

ρ3
−Ω2 ρ+

Q

ρ3
= 0, Ż =

∂H2

∂z
= −Ω2 z +

P̃

z3
= 0. (38)

The solution is (ρ0, z0) =
(

4

√

(Λ2 +Q)/Ω2, 4

√

P̃ /Ω2

)

. Now λ =
∫

(Λ/ρ2
0)dt,

when Λ = 0 it reduces to a circle of equilibria.

Looking for similar type of solutions in V1 potentials we find

Ṗ =
∂H1

∂ρ
=
Λ2 + 2P̃

ρ3
− µ ρ

(ρ2 + z2)3/2
+
Qz (3ρ2 + z2)

ρ3(ρ2 + z2)3/2
= 0, (39)

Ż =
∂H1

∂z
=

Q− µz

(ρ2 + z2)3/2
= 0. (40)

Then, solutions (ρ0, z0) are z0 = Q/µ and ρ0 =
√
x/µ, where x is a

positive root of the polynomial equation which may be readily obtained from

Eq. (39).

(ii) ρ constant

A second special type of solutions are those satisfying that ρ is constant

i.e. trajectories on a cylinder. Searching for them in the isotropic family V2

we get ρ0 = 4

√

(Λ2 +Q)/Ω2 and the differential equation

z̈ = −Ω2 z +
P̃

z3
. (41)

By means of its Hamiltonian function Eq. (37), an alternative to Eq. (41)

can be written as

ż = Z =

√

D −Ω2z2 − P̃

z2
,
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where D = 2 (H2 −Ω
√

Λ2 +Q). Then, introducing the variable u = z2, and

differentiating we obtain

∫

du
√

−Ω2u2 +Du− P̃
= 2(t− t0),

i.e. we get a solution that oscillates on the cylinder in the circumferences ρ0.

Likewise, trying to identify this type of periodic solutions in the Hartmann

family, we find that the answer is negative.

(iii) z constant

A third special type of orbits are planar trajectories with z constant.

Again, for the isotropic family they are easily identified in the plane z0 =

4

√

P̃ /Ω2 with ρ satisfying

ρ̈ = −Ω2 ρ+
Λ2 +Q

ρ3
.

With respect to the possible solution for the Hartmann family, in the

plane z0 = Q/µ, the differential equation to be studied is reduced to the

analysis of the elliptic integral

−
∫

dv

v2

√

−4µQ2 v3 − (2H1Q2 + µ2(2P̃ + Λ2)) v2 + 2µ3 v + 2µ2H1

=
1

µ
(t−t0),

(42)

where we have made use of the intermediary variable v related to ρ by v2 =

(ρ2 + z2
0)

−1.

4.4 From three to four dimensions

At last, note that any of these particular periodic orbits or a generic one can

be used in order to generate initial conditions of a 4-D periodic orbit of the
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Hamiltonian system (1). Here is briefly described the procedure performed

in the case of Isotropic potentials. Analogous treatment has to be followed

for the Hartmann potential family.

Once we have a set of initial conditions of a periodic orbit for the potential

V2 with a given value of the parameters P and Q, the inverse transformation

of the relation between the 4-D oscillator and the 3-D isotropic potential,

x = r sinα cos γ, y = r sinα sin γ, x = r cosα,

described in Section (4.2), allows us to obtain the spherical variables (r, α, γ)

and their derivatives. By means of the formulas detailed in that section,

Eq. (30) and Eq. (31), the coordinates and moments (q3, q4, Q3, Q4) are de-

rived straightaway.

Our goal is to obtain a 4-D periodic orbit, thence it is mandatory to

impose the commensurability conditions (15) for both separable systems

(q1, q2, Q1, Q2) and (q3, q4, Q3, Q4),

√

A1
2 + a

A1

=
m1

n1

,

√

A2
2 + b

A2

=
m2

n2

,

where we have been set the parameter of the initial Hamiltonian (1), ω = 1,

for the sake of simplicity. Note that each set of initial conditions in cartesian

coordinates determines a value of A1 = q1Q2 − q2Q1 and A2 = q3Q4 − q4Q3.

On the other hand, as we are jumping from 3-D to 4-D motion, the

variables β,B in Eq. (30) and Eq. (31) are undetermined, from which it

follows that (q1, q2, Q1, Q2) joint with the parameter a, will be determined

only taking into account the fulfillment of the commensurability relation. In
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this way we obtain a complete set of variables and parameters needed to

integrate the 4-D Hamiltonian Eq. (1) providing a 4-D periodic orbit.

Next we present two figures depicting two examples related to the previ-

ous study. In Fig. 5 we represent the 4-D orbit obtained through one of the

particular orbits of the V2 family, with z constant, above described. While

Fig. 6 shows the 4-D orbit originated out of a generic periodic orbit in which

none of (ρ, z) remain constant.
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Fig. 5 Corresponding 4-D trajectory of V2 orbit with z constant

Conclusion and future work

We have established the relation of two families of ring-shaped type systems

with a generalized integrable 4-D isotropic oscillator. This allows a unified

treatment which is of interest both in quantum and classical studies. In par-

ticular conditions for periodic families have been established. Topological

aspects of this system, including its foliation by means of the first integrals

will be presented in another paper (see Balsas et al.).
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