
Connecting chaos in the Coupled Brusselator System

F. Drubia, A. Mayora-Cebollerob, C. Mayora-Cebollerob, S. Ibáñeza,
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Abstract

A family of vector fields describing two Brusselators linearly coupled by dif-

fusion is considered. This model is a well-known example of how identical

oscillatory systems can be coupled with a simple mechanism to create chaotic

behavior. In this paper we discuss the relevance and possible relation of two

chaotic regions. One of them is located using numerical techniques. The

another one was first predicted by theoretical results and later studied via

numerical and continuation techniques. As a conclusion, under the constrains

of our exploration, both regions are not connected and, moreover, the former

one has a big size, whereas the later one is quite small and hence, it might

not be detected without the support of theoretical results. Our analysis in-

cludes a detailed analysis of singularities and local bifurcations that permits

to provide a global parametric study of the system.
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1. Introduction1

Many phenomena in nature can be modeled in terms of the interaction2

among elementary dynamical units. A neural network, either biological or3

artificial, is a paradigmatic example. Each neuron communicates with its4

neighbors in the network through electrochemical signals giving rise to dy-5

namical systems exhibiting an extraordinary complexity. Another classical6

context, which is the one that we consider in this paper, is that provided by7

chemical reactors where substances can move from one reactor to another8

according to simple rules (see, for instance, [1, 2]).9

Among the many questions that can be asked when studying coupled sys-10

tems, here we are mainly focused on how simple couplings of simple dynam-11

ics can generate complex behaviors. In particular, we consider homogeneous12

networks of differential equations linearly coupled by diffusion13

u′
i = F (ui) +

r∑
j=1

aijΛ(uj − ui), (1)

where ui ∈ Rk for each i = 1, . . . , r ; aij = aji ∈ {0, 1}; Λ is a k × k diagonal14

matrix; and F is a C∞ family of vector fields.15

The seminal work of Turing [1], where he studied the arising of oscillatory16

behavior in a ring of diffusively coupled linear systems, led Smale [2] to won-17

der whether globally attracting periodic orbits could be generated in a model18

of identical differential equations linearly coupled by diffusion when the in-19

ternal dynamics of each uncoupled system reduces to a globally attracting20

equilibrium point. Indeed, Smale provided an example of such dynamical be-21
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havior with two identical 4-dimensional systems linearly coupled by diffusion.22

Later, other examples were given but coupling identical systems of dimension23

2 or 3 [3, 4]. With the stimuli provided by all these results, it is worth ask-24

ing what other dynamics can be generated through diffusion processes and,25

in particular, the possibility of chaotic behaviors emerging. A positive an-26

swer to this question was given in [5], where authors proved the existence of27

strange attractors in a model consisting of two Brusselators linearly coupled28

by diffusion.29

The Brusselator is a theoretical model of a chemical reaction introduced30

by Prigogine et al. [6]:31  x′ = A− (B + 1)x+ x2y,

y′ = Bx− x2y,
(2)

with A,B positive constants. This system exhibits quite simple dynamics:32

first quadrant is invariant, and there is a supercritical Hopf bifurcation when33

B = A2 + 1. When B < A2 + 1 there is a unique globally attracting equi-34

librium point at (A,B/A), and if B > A2 + 1 there is a unique globally35

attracting periodic orbit.36

Based on this model, in [5] a system composed of two coupled Brussela-37

tors, with coupling parameters λ1 and λ2, is proposed:38 

x′
1 = A− (B + 1)x1 + x2

1y1 + λ1(x2 − x1),

y′1 = Bx1 − x2
1y1 + λ2(y2 − y1),

x′
2 = A− (B + 1)x2 + x2

2y2 + λ1(x1 − x2),

y′2 = Bx2 − x2
2y2 + λ2(y1 − y2).

(3)

Notice that (3) is a simple example of the general formulation given in (1).39

We refer to (3) as the Coupled Brusselator System, CBS in the sequel. All40
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parameters in (3) are positive, and in the absence of interaction, i.e., when41

λ1 = λ2 = 0, we have two isolated identical Brusselators.42

Numerical evidences of the existence of chaotic behavior in model (3) had43

been previously found in [7]. However, arguments used in [5] to show the ex-44

istence of strange attractors in (3) are analytic. Namely, it was argued the45

existence of a local bifurcation (a 3-dimensional nilpotent singularity of codi-46

mension 3) that unfolds Shilnikov homoclinic bifurcations. It is well-known47

that these global bifurcations imply the appearance of strange attractors.48

We explain all these technical details in Section 2.49

One of the goals of this paper is to elucidate whether there is a relation50

between the chaotic region found by Schreiber and Marek [7], SM in what fol-51

lows, and the one detected by Drubi, Ibáñez and Rodŕıguez [5], hereinafter52

denoted as DIR. In Figure 1, the chaotic attractors of both regions are illus-53

trated. Since SM and DIR are contained in two different parametric planes54

with A and λ2 fixed, we consider a one-parameter family of (B, λ1)-planes55

that links both. Within this framework, we show that there is no connection56

between them, namely, SM can be continued up to a region in the plane con-57

taining DIR, but not meeting DIR. Most importantly, we observe a notable58

difference in the size of these two zones in the parameter space; SM is large59

while DIR is very small. Then, the chaotic region SM is globally more rele-60

vant than the chaotic region DIR. However, we have located another small61

chaotic region in the biparametric plane of DIR, and the presence of several62

small chaotic regions may be of special relevance. We especially highlight the63

fact that only analytical tools allow us to detect numerically the small-sized64

chaotic dynamics, which would otherwise go unnoticed with numerical ex-65
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Figure 1: 3-D representation of chaotic attractors. (A) Chaotic attractor of DIR region with

A = 2.828812321130726, B = 11.479799259891854, λ1 = 1.2055, λ2 = 1.679725368058570,

and (x1, y1, x2, y2) = (2.057176, 4.956813, 3.600131, 3.390639). (B) Chaotic attractor of SM

region with A = 2.0, B = 6.375300171526684, λ1 = 1.2, λ2 = 80.0, and (x1, y1, x2, y2) =

(1.9, 3.0, 2.1, 2.9).

plorations alone. Therefore, the location of DIR has a remarkable theoretical66

interest.67

Structure of the paper is as follows. In Section 2 we describe the analytical68

tools that allow us to prove the existence of chaotic behaviors in a given family69

of vector fields. Singularities arising in the CBS are discussed in Section 3.70

We include both, a global analysis of singularities and partial bifurcation71
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diagrams that extend the theoretical results. These diagrams are obtained72

withMatCont [8]. The map of local bifurcations includes nilpotent cases [5,73

9] and also Hopf-Pitchfork singularities [10]. Numerical results are provided74

in Section 4. They include 2-parameter studies of the chaotic regions SM75

and DIR that show, among other details, the different size of the regions.76

A three-parameter continuation analysis performed using AUTO [11] shows77

that both regions are not connected.78

2. Theoretical results: Singularities and chaos79

Literature is plenty of examples where numerical analysis permits argu-80

ing the existence of chaotic dynamics in given families of dynamical systems81

[12, 13, 14]. Conversely, proofs based on the use of analytical tools are un-82

common. However, nowadays there exist methods that can be of general use83

when proving the existence of chaos in the case of families of vector fields.84

We refer to the study of singularities, those ones that unfold global configura-85

tions that explain the genesis of strange attractors. An extensive discussion86

about the relationship between singularities and chaos can be found in [15].87

Recall that an attractor is said chaotic if it contains a dense orbit with a88

positive Lyapunov exponent. This last condition explains why orbits diverge89

within the attractor or, in other words, the high sensitivity of the system to90

initial conditions. Before understanding the aforementioned tools, we have91

to comment some results about the existence of strange attractors in maps.92

In [16], Benedicks and Carleson proved the existence of strange attractors93

in the Hénon family for a positive measure set of parameter values. Later94

on, using techniques introduced in [16], Mora and Viana [17] proved that in95
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any generic 1-parameter family of 2-dimensional diffeomorphisms unfolding96

a point of homoclinic tangency, there exists a positive measure set of param-97

eters for which the diffeomorphism exhibits (Hénon-like) strange attractors.98

By point of homoclinic tangency we mean any quadratic tangency between99

the invariant manifolds of a saddle type fixed point.100

Now, assume that X is a 3-dimensional vector field with a saddle-focus101

equilibrium point p whose eigenvalues λ and −ρ ± iω satisfy λ > ρ > 0.102

Under these conditions, a homoclinic orbit γ(t) such that limt→±∞ γ(t) = p103

is said of Shilnikov type. In [18], Shilnikov proved the existence of infinitely104

many periodic orbits of saddle type in each neighborhood of the homoclinic105

orbit. Later, in [19, 20], it was proved that the first return map around106

the homoclinic orbit exhibits an infinity of Smale horseshoes. Each horse-107

shoe map contains an infinite number of transverse homoclinic points, that108

is, points where the invariant manifolds of a saddle type fixed point meet109

transversely. When the vector field is unfolded to create a homoclinic bifur-110

cation, horseshoes are destroyed in processes where transverse intersections111

are created/destroyed in pairs through homoclinic tangencies. Therefore, the112

existence of strange attractors follows from [17] (see also [21, 22, 23]).113

On the other hand, in [24] (see also [25, 26], and [27] for additional re-114

lated technical details), it was proved that Shilnikov homoclinic bifurcations,115

and hence Hénon-like strange attractors, arise in any generic unfolding of a116

3-dimensional nilpotent singularity of codimension 3, that is, a singularity117

where the 1-jet is linearly conjugated to118

x′ = y, y′ = z, z′ = 0.

The essential argument is the fact that any generic unfolding can be written119
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as a perturbation of a vector field exhibiting a Bykov cycle, that is, a het-120

eroclinic cycle formed by two saddle-focus equilibria with different stability121

indexes, two branches of the 1-dimensional invariant manifolds are coincident122

and the two-dimensional invariant manifolds intersect transversely. A Bykov123

cycle is a codimension-two configuration which generically unfolds Shilnikov124

homoclinic orbits and hence, the existence of nilpotent singularities implies125

the emergence of chaotic behavior in a given family.126

There exist other singularities that unfold chaotic dynamics. In fact, three127

is not the lowest codimension that it is required to achieve this. Indeed, as it128

has been argued in [28, 29] (see also references therein), there exist Hopf-Zero129

singularities of codimension 2 which generically unfold Shilnikov homoclinic130

orbits. However, from the point of view of applications, one should notice131

that part of the required generic conditions depends on the full jet of the132

singularity and they must be checked with numerical techniques.133

Remark 1. Although the detection of the appropriate singularities is an134

user-friendly tool to prove the existence of chaotic behavior in a given family,135

the method does not provide a precise location of chaotic dynamics neither in136

the phase-space nor in the parameter space. In order to illustrate the chaotic137

behavior numerically, an alternative method must be used.138

3. Study of singularities and bifurcations139

The CBS (3) has an equilibrium point at (A,B/A,A,B/A) for all param-140

eter values (the trivial equilibrium point). It belongs to the invariant plane141

Π = {x1 = x2, y1 = y2}. The dynamics on this invariant plane corresponds142
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to that of two isolated Brusselators. Moreover, it easily follows that the CBS143

is invariant under the symmetry144

(x1, y1, x2, y2) → (x2, y2, x1, y1). (4)

For simplicity, we consider a change of variables given by ξ1 = (x2−x1)/2,145

ξ2 = (y2 − y1)/2, η1 = (x2 + x1)/2, and η2 = (y2 + y1)/2. In the new146

coordinates, the CBS takes the form147 

ξ′1 = −(B + 1)ξ1 + (η21 + ξ21)ξ2 + 2η1η2ξ1 − 2λ1ξ1,

ξ′2 = Bξ1 − (η21 + ξ21)ξ2 − 2η1η2ξ1 − 2λ2ξ2,

η′1 = A− (B + 1)η1 + (η21 + ξ21)η2 + 2ξ1ξ2η1,

η′2 = Bη1 − (η21 + ξ21)η2 − 2ξ1ξ2η1.

(5)

Notice that, with respect to these new variables, the trivial equilibrium point148

is (0, 0, A,B/A) and the invariant plane is rewritten as Π = {ξ1 = 0, ξ2 = 0}.149

In [5], it is proved that all equilibrium points of (5) satisfy the relations150

below151

ξ2 = −(1 + 2λ1)ξ1
2λ2

, η1 = A, η2 =
ABλ2 + A(1 + 2λ1)ξ

2
1

(A2 + ξ21)λ2

, (6)

where A2 + ξ21 ̸= 0 since A > 0, and ξ1 is a solution of the fifth-degree152

polynomial equation153

ξ1 (ξ
4
1 + (2A2 + p)ξ21 + A4 + A2p+ q) = 0, (7)

with

p =
2λ2(B + 2λ1 + 1)− 4A2(1 + 2λ1)

1 + 2λ1

and q =
4A2(A2(1 + 2λ1)−Bλ2)

1 + 2λ1

.
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Lemma 1. Let154

V1 = {(A,B, λ1, λ2) ∈ V : A4 + A2p+ q > 0, 2A2 + p > −2
√

A4 + A2p+ q},
V2 = {(A,B, λ1, λ2) ∈ V : A4 + A2p+ q < 0},
V3 = {(A,B, λ1, λ2) ∈ V : A4 + A2p+ q > 0, 2A2 + p < −2

√
A4 + A2p+ q},

where V = {(A,B, λ1, λ2) ∈ R4 : A > 0, B > 0, λ1 > 0, λ2 > 0}.155

1. If (A,B, λ1, λ2) ∈ V1, the CBS in (5) has only one equilibrium point: the156

trivial singularity (0, 0, A,B/A), which undergoes a supercritical Hopf157

bifurcation when B = A2 + 1.158

2. If (A,B, λ1, λ2) ∈ V2, the CBS in (5) has three equilibrium points: the159

trivial singularity and Q± = (ξ±1,q, ξ
±
2,q, η

±
1,q, η

±
2,q) with160

ξ±1,q = ±

√√√√√A2(1 + 2λ1)− λ2 −Bλ2 − 2λ1λ2 +

√
λ2

(
−4 (A+ 2Aλ1)

2 + (1 +B + 2λ1)
2 λ2

)
1 + 2λ1

and ξ±2,q, η
±
1,q, and η±2,q provided by formulas in (6).161

3. If (A,B, λ1, λ2) ∈ V3, the CBS has five equilibrium points: the trivial162

singularity, the points Q± defined above and P± = (ξ±1,p, ξ
±
2,p, η

±
1,p, η

±
2,p)163

with164

ξ±1,p = ±

√√√√√A2(1 + 2λ1)− λ2 −Bλ2 − 2λ1λ2 −
√

λ2

(
−4 (A+ 2Aλ1)

2 + (1 +B + 2λ1)
2 λ2

)
1 + 2λ1

and ξ±2,p, η
±
1,p, and η±2,p provided by formulas in (6).165

Proof. Write the second factor on the left hand side of (7) as ξ41 + βξ21 + γ166

with β = 2A2 + p and γ = A4 + A2p + q. The result follows immediately167

taking into account that any z2 + βz + γ = 0 has no positive real root for168

γ > 0 and β > −√
4γ; one positive real root for γ < 0; and two positive real169

roots for γ > 0 and β < −√
4γ.170
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Furthermore, we note that the singularities P± and Q± also undergo Hopf171

bifurcations but their hypersurface expressions are too long to be included172

here.173

In summary, there always exists the trivial singularity in the CBS (5),174

which stays on the invariant plane Π = {ξ1 = 0, ξ2 = 0}, but two or four175

nontrivial singularities, which are symmetric with respect to Π, can appear176

when parameters A, B, λ1 and λ2 satisfy the conditions stated in Lemma 1.177

3.1. Local bifurcations at the trivial singularity178

The characteristic polynomial of the Jacobian matrix at (0, 0, A,B/A)179

associated to (5) can be written as P (µ) = (µ2 + c1µ + c0)(µ
2 + d1µ + d0),180

where c1 = 1 + A2 − B + 2λ1 + 2λ2, c0 = A2(1 + 2λ1) + 2λ2(1 + 2λ1 − B),181

d1 = 1 + A2 −B, and d0 = A2.182

Remark 2. We are only interested in all possible bifurcations for an equi-183

librium point under conditions of Z2-symmetry.184

The Jacobian matrix has at least one zero eigenvalue for all parameter185

values in186

P =
{
(A,B, λ1, λ2) ∈ V : B = (A2 + 2λ2)(1 + 2λ1)/(2λ2)

}
.

Therefore, under some additional open conditions, the CBS (5) undergoes a187

Pitchfork bifurcation at the trivial singularity (0, 0, A,B/A) on the bifurca-188

tion hypersurface P , which is the transition from V1 to V2 or from V2 to V3.189

On the other hand, there exists a bifurcation surface on P ,190

DZ0 =
{
(A,B, λ1, λ2) ∈ P : B = 1 + A2 + 2λ1 + 2λ2

}
,
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such that the Jacobian matrix of (5) at the trivial singularity has a double191

zero eigenvalue with geometric multiplicity one and a pair of eigenvalues with192

nonzero real part. Up to degenerations at the higher order terms, DZ0 is a193

bifurcation surface of codimension 2. There is no parameter value for which194

the trivial singularity has a 2-dimensional center manifold with a restricted195

linear part identically zero.196

The Jacobian matrix has at least a pair of pure imaginary eigenvalues on197

the bifurcation hypersurfaces of codimension 1,198

H1 = {(A,B, λ1, λ2) ∈ V : B = 1 + A2 + 2(λ1 + λ2), λ1 >
4λ2

2+2λ2A2−A2

2A2

}
,

which corresponds to the Hopf bifurcations occurring transversally to Π, and199

H2 =
{
(A,B, λ1, λ2) ∈ V : B = 1 + A2, A2(1 + 2λ1 − 2λ2) + 4λ1λ2 ̸= 0

}
,

which corresponds to Hopf bifurcation for the isolated Brusselator system on200

the invariant plane Π.201

The hypersurfaces P and H2 have a common border along the bifurcation202

surface203

HP =

{
(A,B, λ1, λ2) ∈ V : B = 1 + A2, λ1 =

(−1 + 2λ2)A
2

2(A2 + 2λ2)
, λ2 >

1

2

}
on which the Jacobian matrix at (0, 0, A,B/A) has a pair of pure imaginary204

eigenvalues and a zero eigenvalue. Therefore, HP is a bifurcation surface of205

Hopf-Pitchfork singularities of codimension at least 2. In [10], it is proved206

that several cases of codimension 2, 3 and 4 are generically unfolded by the207

CBS.208

Finally, the Jacobian matrix has two pairs of pure imaginary eigenvalues209

when the CBS is uncoupled (λ1 = λ2 = 0) and B = A2 +1. Although it is an210

12



Codim≥ 3

Codim≥ 2

Codim≥ 1
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HDZ0

Figure 2: Local bifurcations scheme (arrows indicate that a local bifurcation is unfolded

by other of higher codimension): Pitchfork (P), Hopf (Hi, i = 1, 2), Double-Zero (DZ0),

Hopf-Pitchfork (HP), Hopf-Hopf (HH), and Hopf-Double-Zero (HDZ0) bifurcations for

the trivial singularity. Bifurcations framed in a dashed box correspond to parameter values

on the boundary of V .

interesting configuration, it appears for parameter values on the boundary211

of V . In [30], this problem was studied in the context of linear diffusion212

couplings of two Hopf bifurcations. Other degenerate cases for the eigenvalues213

of the Jacobian matrix at the trivial singularity of (5) occur when A = 0.214

Although these degenerate configurations (Hopf-Hopf and Hopf-Double-Zero215

bifurcations, denoted by HH and HDZ0, respectively) may be important,216

the techniques that are used exceed the classical ones of the local bifurcation217

theory and belong to the context of singular perturbation problems.218

In Figure 2, we sketch the set of bifurcations described above.219

3.2. Local bifurcations at the nontrivial singularities220

The CBS in (5) has exactly three singularities for parameter values on the221

hypersurface of codimension 1,222

SN =

{
(A,B, λ1, λ2) ∈ V : λ2 =

4A2(1 + 2λ1)
2

(1 +B + 2λ1)2
, B > 3 + 6λ1

}
, (8)

the trivial singularity and two nonhyperbolic equilibria S± = (ξ±1 , ξ
±
2 , η

±
1 , η

±
2 )
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with ξ±2 , η
±
1 and η±2 provided in (6) and

ξ±1 = ±
√

A2(−3 +B − 6λ1)

1 +B + 2λ1

.

The equilibrium points S± undergo a saddle-node bifurcation for parameter223

values on SN , if the appropriate open conditions are fulfilled.224

From now on, we focus on the local bifurcation analysis of S+ due to the225

symmetry with respect to Π of these nontrivial singularities. Moreover, on226

the hypersurface SN , the number of parameters are reduced from four to227

three: A, B, and λ1.228

The characteristic polynomial of the Jacobian matrix at S+ associated to

(5) can be written as P (µ) = µ(µ3 + e2µ
2 + e1µ+ e0), where

e2 =
1
κ2
B
(4A2(B2 + κ2)− κ2

B(B + 1 + 4λ1)) ,

e1 =
1
κ3
B
(32A4Bκ2 + κ4

B(1 + 3λ1)

−8A2 (κ3(2 + 5λ1) +B3λ1 +B2(2 + 9λ1 + 10λ2
1) +Bκ2(4 + 9λ1))) ,

e0 =
4A2κ2

κ3
B

(κ2(1 + 6λ1)−B3 +B2(2λ1 − 1) +B(1 + 8A2 + 12λ1 + 20λ2
1)) ,

with κ = κ(λ1) = 1 + 2λ1 and κi
B = (κ+B)i for i = 2, 3, 4.229

The surface

HZ = {(A,B, λ1, λ2) ∈ SN : e0 = e1e2, e1 ≥ 0}

contains the Hopf-Zero bifurcations of codimension at least 2, i.e., parameter230

values where the Jacobian matrix at the equilibrium S+ has a pair of pure231

imaginary eigenvalues and a zero eigenvalue.232

Additionally, there exists another bifurcation surface on SN of codi-

mension at least 2, DZ = {(A,B, λ1, λ2) ∈ SN : e0 = 0}, on which the

14



Jacobian matrix of (5) at S+ has a double zero eigenvalue with geomet-

ric multiplicity one and two additional eigenvalues µ1 =
(
p+

√
q
)
/(4B) and

µ2 =
(
p−√

q
)
/(4B), where

p = 1−B3 + 10λ1 + 28λ2
1 + 24λ3

1 + 3B2(1 + 2λ1) +B(1 + 4λ1 − 4λ2
1),

q = B6 − 6B5(1 + 2λ1) + (1 + 2λ1)
4(1 + 6λ1)

2 +B4(−1 + 12λ1 + 12λ2
1)

+ 4B3(7 + 48λ1 + 88λ2
1 + 56λ3

1)−B2(1 + 48λ1 + 184λ2
1 + 256λ3

1 + 80λ4
1)

− 2B(1 + 2λ1)
2(19 + 182λ1 + 460λ2

1 + 312λ3
1).

We can rewrite DZ as233

DZ = {(A,B, λ1, λ2) ∈ SN : A =
√
B − 1− 6λ1(B + 1 + 2λ1)/(2

√
2B)

}
.

We have, except other degenerations hold, Bogdanov-Takens bifurcations.234

On the other hand, the curve

HDZ = {(A,B, λ1, λ2) ∈ SN : e0 = e2 = 0, e1 ≥ 0}
= {(A,B, λ1, λ2) ∈ DZ : e1 ≥ 0,

B3 − 3B2(1 + 2λ1)− (1 + 2λ1)
2(1 + 6λ1) +B(−1− 4λ1 + 4λ2

1) = 0} .
contains the Hopf-Double-Zero bifurcation curve of codimension at least 3235

(when the condition e1 > 0 is fulfilled), i.e., parameter values where the236

Jacobian matrix at the equilibrium S+ has a pair of pure imaginary eigen-237

values and two zero eigenvalues. This type of singularities has been studied238

in [31, 36, 37].239

On DZ there exists another bifurcation curve of codimension at least 3,

T Z = {(A,B, λ1, λ2) ∈ SN : e0 = e1 = 0}

= {(A,B, λ1, λ2) ∈ DZ : (1 + 2λ1)
2(5 + 48λ1 + 120λ2

1 + 72λ3
1)

+B(1 + 16λ1 + 60λ2
1 + 88λ3

1 + 48λ4
1) −B2(3 + 22λ1 + 48λ2

1 + 40λ3
1)

+B3(1 + 2λ1 + 4λ2
1) = 0} ,
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on which the Jacobian matrix has at least three zero eigenvalues. The bifur-240

cation diagram for these singularities was studied in [24, 25, 26].241

Finally, on T Z there exists a unique Quadruple-Zero bifurcation point of

codimension at least 4,

QZ = {(A,B, λ1, λ2) ∈ SN : e0 = e1 = e2 = 0}

= {(A,B, λ1, λ2) ∈ T Z : B3 − 3B2(1 + 2λ1) +B(−1− 4λ1 + 4λ2
1)

− (1 + 2λ1)
2(1 + 6λ1) = 0} .

An approximated value of the QZ bifurcation point is given by

A ≈ 2.6021429374, B ≈ 11.2982916304,

λ1 ≈ 1.2506765846, λ2 ≈ 1.5159732650.

In order to guarantee the existence and uniqueness of such a bifurcation242

point in a given interval, we use a simple Computer Assisted Proof (CAP)243

based on the Interval Newton method.244

Theorem 2. The CBS in (5) has a unique QZ bifurcation point in the in-245

terval B = 11.298291631694442903248 and λ1 = 1.2506765847958935996.246

Proof. The QZ bifurcation point is a solution to e0 = e1 = e2 = 0 in SN .247

Moreover, from e0 = e1 = 0, it follows that QZ ⊂ T Z. Then, the QZ248

bifurcation point satisfies249

f(B, λ1) = 0, (9)

where f(B, λ1) = ((1 + 2λ1)
2(5 + 48λ1 + 120λ2

1 + 72λ3
1) + B(1 + 16λ1 +250

60λ2
1 +88λ3

1 + 48λ4
1) − B2(3 + 22λ1 + 48λ2

1 + 40λ3
1) + B3(1 + 2λ1 + 4λ2

1),251

B3 − 3B2(1 + 2λ1) +B(−1− 4λ1 + 4λ2
1)− (1 + 2λ1)

2(1 + 6λ1)).252
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Using the interval Newton method [32] to the nonlinear system (9) and

taking as first interval

Z = X × Y = {B ∈ [11.2982817, 11.2983017], λ1 ∈ [1.2506666, 1.2506866]}

we obtain

N(Z) = Zmid − [Df(Z)]−1f(Zmid)

= {[11.29829162903248, 11.29829163169444]
×[1.25067658435996, 1.25067658479589]} ⊂ Z,

with Zmid the midpoint of interval Z.253

Hence, there exists a unique (B∗, λ∗
1) ∈ N(Z) such that f(B∗, λ∗

1) = 0.254

All calculations were performed in MATLAB using the interval arithmetic255

toolbox INTLAB [33] and the code is provided in Appendix A. □256

In [5], it was proved that the CBS generically unfolds a 4-dimensional257

singularity of codimension 4 at QZ, which is an organizing center of chaotic258

dynamics. Particularly, there are values (A,B, λ1, λ2) arbitrarily close to QZ259

for which, restricted to a normally attracting 3-dimensional invariant mani-260

fold, the CBS has Shilnikov homoclinic orbits and hence strange attractors.261

In Figure 3, we sketch the set of bifurcations described above for the262

nontrivial singularity S+.263

3.3. Numerical exploration of the parameter space264

To conclude this study of singularities and local bifurcations in the model,

we explore numerically the parameter space. As our goal is to study if the

chaotic regions SM and DIR are connected or not, we define a linking parameter

α ∈ [0, 1] and a convex combination given by

A(α) = αA1 + (1− α)A0, λ2(α) = αλ2,1 + (1− α)λ2,0,
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Codim≥ 4

Codim≥ 3

Codim≥ 2

Codim≥ 1

QZ

T Z HDZ

DZ HZ

SN

Figure 3: Saddle-Node (SN ), Double-Zero (DZ), Hopf-Zero (HZ), Triple-Zero (T Z),

Hopf-Double-Zero (HDZ), and Quadruple-Zero (QZ) bifurcations for the nontrivial sin-

gularity S+.

α A = A(α) λ2 = λ2(α)

0 2 80

0.5 2.414406160565363 40.839862684029285

0.75 2.621609240848044 21.259794026043927

1 2.828812321130726 1.679725368058570

Table 1: Relevant parameter values for numerical exploration.

with A1 = 2.828812321130726, A0 = 2, λ2,1 = 1.679725368058570 and λ2,0 =265

80, such that parameters corresponding to the chaotic region SM are obtained266

when α = 0 and parameters corresponding to DIR when α = 1. The param-267

eter values used in this paper are summarized in Table 1.268

Figure 4 shows, for different values of the linking parameter α, the color-269

coded parametric plane (B, λ1) as a function of the number and type of270

equilibria. In particular, we record the number of equilibrium points and their271

corresponding stability in plots (D), (E), (F) and (A) for α = 0, α = 0.5,272

α = 0.75 and α = 1, respectively. In plots (B) and (C), two enlarged273
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Figure 4: Color-coded regions with different number and type of equilibria, (A)-(F). Con-

tinuation analysis (performed with MatCont) for fixed λ1, (A1)-(A4) and (D1)-(D3).

See more details in the text.
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areas of plot (A) are shown. The limit of each color region is associated274

with a particular bifurcation. For instance, a vertical white line corresponds275

to the Hopf bifurcation H2 while an oblique white line is related to the276

Hopf bifurcation H1. Moreover, a dashed black line represents the Pitchfork277

bifurcation P and a dashed white line is the Saddle-Node bifurcation SN .278

The transition line between the yellow and magenta regions is associated with279

Hopf bifurcations of singularities Q±. In (C), the transition lines between280

grey, dark pink and light pink regions are related with Hopf bifurcations281

of singularities Q± and P±. In addition, we perform several one-parameter282

continuation studies for α = 0 (see plots (D1)-(D3) for different values of λ1283

as indicated by horizontal orange lines in (D)) and α = 1 (see plots (A1)-284

(A4) for different values of λ1 as indicated by horizontal orange lines in (A))285

in which the named bifurcations are represented with colored points.286

In (D1) and (D2), which correspond to α = 0, we observe three Hopf287

bifurcation points, two of them symmetric with respect to Π and located on288

the boundary between the yellow and magenta regions, and the other one on289

the vertical white line (associated to H2). The (B, λ1) planes for α = 0.5 and290

α = 0.75 are very similar. In all these cases, we have a Pitchfork bifurcation291

P . On the contrary, the system begins to have many more bifurcations when292

α is close to 1, mainly due to the proximity of high codimension bifurcations293

such as the Quadruple-Zero codimension-four bifurcation point QZ. When294

α = 1, there are more Hopf bifurcations (as we can see in (A2) and (A3))295

that originate from the equilibria outside the invariant plane Π (H3 and H4296

in Figure 5). Via cascades of period-doubling bifurcations, they may create297

several small chaotic regions.298
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Figure 5: Biparametric continuations (performed with MatCont) in the (B, λ1) plane

for (A) α = 0, (B) α = 0.75 and (C) α = 1. (C1)-(C2) are two enlarged regions of (C).

See more details in the text.

Finally, in Figure 5 we present bifurcation diagrams in the plane (B, λ1)299

for α = 0, α = 0.75 and α = 1 to complete the study given in Figure 4.300

21



Although all parameters in the model are positive, continuation extends301

through λ1 ≤ 0 to show a complete bifurcation diagram. Pitchfork (P),302

Saddle-Node (SN ) and several Hopf bifurcation curves (H1, H2, H3 and303

H4) are shown in (A), (B) and (C). Generalized Hopf (GH), Hopf-Zero (HZ),304

Bogdanov-Takens (BT ) and Hopf-Pitchfork (HP) bifurcation points in the305

graphs are also highlighted. In (C1) and (C2), we zoom in on two regions of306

plot (C) to correctly visualize the bifurcation points and curves.307

4. Chaotic behavior: connections between organizing centers308

In this section we provide numerical results that allow us to explore in309

detail the chaotic regions SM (the macro-chaos) and DIR (the micro-chaos) and310

study a possible connection between them. We utilize two main techniques to311

illustrate the different chaotic regions: the well-known Lyapunov exponents312

and the spike-counting method which consists in detecting the number of313

spikes (maxima) of the attracting limit cycles of the system.314

Figures 6 and 7 show biparametric sweeps for different parametric planes.315

In the case of spike-counting maps, the darkest shade of blue indicates sta-316

tionary behavior, the dark red regions are chaotic and each of the remaining317

colors is associated to periodic behavior with different number of spikes. In318

the Lyapunov exponents maps, the yellow-red color scale is used for the first319

positive Lyapunov exponent (chaotic region), while the gray scale is associ-320

ated with first negative Lyapunov exponent and with the second Lyapunov321

exponent when the first is zero (regular behavior).322

In Figure 6, (A) and (B) show biparametric sweeps in the plane (λ1, λ2),323

that contains the chaotic region SM, with the results of spike-counting tech-324
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nique and Lyapunov exponents. In this case, A = 2 and B = 5.9, which are325

the values given in [7]. As the analyses of this paper are performed in the bi-326

parametric plane (B, λ1), we show the sweeps in such plane for the region SM.327

(C) and its enlarged regions (C1) and (C2) represent biparametric sweeps in328

the (B, λ1) plane where the chaotic region SM is (the values A and λ2 are fixed,329

see Table 1 for α = 0). The magenta lines in (C1) are period-doubling (PD)330

bifurcation curves that we obtain using the continuation software AUTO.331

We use the initial condition (x1, y1, x2, y2) = (2.1, 2.9, 1.9, 3.0) to obtain all332

the panels. It is noteworthy that the chaotic region is of significant size333

and can be easily detected with standard techniques. In addition, typical334

“shrimp” structures can be observed within the chaotic region [34, 35].335

If we study other parametric planes, chaotic regions are not present at336

all or they are very small. Most significantly, we may detect tiny chaotic337

regions by combining continuation techniques and theoretical studies, i.e.,338

locating the appropriate high codimension bifurcation points to know where339

we should search. In Figure 7, we show how the parametric plane (B, λ1) has,340

at least, two chaotic regions when A and λ2 are fixed for α = 1 (see Table341

1). However, the size of these regions is so small (minimum and maximum342

values of the parameters vary in a range of the third-fourth decimal digit)343

that, without additional theoretical information, it would be impossible to344

detect them numerically.345

In panels (A) and (B) of Figure 7, we apply the spike counting and346

the Lyapunov exponents techniques, respectively, in a neighborhood of the347

chaotic region DIR. A magnification of a part of the sweeping shown in (A)348

is given in (A1). Moreover, we present in (C) the spike-counting results in349
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Figure 6: Spike-counting and Lyapunov exponents associated with the chaotic region SM

in the parametric planes (λ1, λ2) and (B, λ1). See more details in the text.
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the (λ1, λ2) plane for B = 11.4802 and A fixed at the value α = 1 (see Table350

1). Here, the initial condition is set to (x1, y1, x2, y2) = (2.057175842256981,351

4.956812708388363, 3.600131217519688, 3.390639134503412). In any case, we352

emphasize that the detection of the chaotic region DIR relies heavily on the353

analytical results provided in [5]. Namely, in that paper it is proved that354

any generic unfolding of a QZ singularity includes generic unfoldings of355

Triple-Zero singularities where it has been proved that strange attractors356

are present. Moreover, in [5] it is proved that the CBS is a generic unfolding357

of the QZ point.358

In Figure 7, (D) and (D1) correspond to a small chaotic region which is359

a continuation of region SM, the large chaotic zone contained in the (B, λ1)360

plane with A and λ2 fixed at the values provided in Table 1 for α = 0. The361

initial condition is set to (x1, y1, x2, y2) = (4.9683, 5.7519, 0.3418, 10.4385).362

In Figure 8, we show the numerical results that allow us to discover the tiny363

chaotic region connected to SM. They include different families of period-364

doubling curves shown in the parametric space (B, λ1, α). First, we compute365

several period-doubling curves (blue, green and red) in the plane α = 0366

(those already shown in panel (C1) of Figure 6). We show how the red and367

green ones can be continued up to the horizontal plane α = 1. To make368

this connection, some intermediate steps are required. In the case of the red369

curve, a total of five continuations are made. Three of them are continuations370

in horizontal planes (α = 0, 0.985, 1). For the other two, in order to move up371

in the vertical direction, convenient values of λ1 are fixed. These consecutive372

continuations are necessary to deal with numerical difficulties, since a single373

continuation in (B,α) did not reach the plane α = 1. The case of the green374
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curve is similar but with more intermediate steps. The location of these375

period-doubling curves in the plane α = 1 gives the region of the plane376

(B, λ1) on which the numerical sweepings of panel (D) of Figure 7 were377

performed. In fact we see how a period-doubling curve (green) reaches the378

small chaotic region detected in the plane α = 1, the one that connects with379

SM. Two additional period-doubling curves (purple) were computed in the380

plane α = 1. All curves are included in panel (A) of Figure 8. The other381

panels contain projections in the planes (B, λ1), (B,α) and (λ1, α) for a382

better visualization. From this analysis we can conclude that chaotic regions383

SM and DIR are not connected (see panel (B) of Figure 8).384

Finally, we notice that the location of attractors in the phase-space also385

provides information about their relevance in the dynamics of the coupled386

system. In panels (A)-(C) of Figure 9, we show the attracting invariant sets387

for the case α = 0 (see Table 1) projected on the three-dimensional space388

(x1, y1, x2), for a selection of values on the (B, λ1)-plane. Firstly, two symmet-389

ric equilibrium points (in red) and a large limit cycle (in blue) on the invariant390

plane Π are observed in (A), where B = 5.5 and λ1 = 0.4 (with initial con-391

dition (x1, y1, x2, y2) = (1.425984, 3.180712, 1.425984, 3.180712) for the peri-392

odic orbit in the invariant plane Π, and (x1, y1, x2, y2) = (3.421747, 1.825940,393

0.578253, 1.857930) and its symmetric one respect to the invariant plane394

Π for the equilibrium points). Secondly, two symmetric periodic orbits395

(in red) and a large limit cycle (in blue) on Π are presented in (B), for396

B = 5.602058319039463 and λ1 = 1.2 (with initial condition (x1, y1, x2, y2) =397

(2.134227, 2.342226, 2.134227, 2.342226) for the orbit in Π, and (x1, y1, x2, y2)398

= (1.978711, 1.046154, 6.691137, 0.966066) and its symmetric one for the pe-399
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Figure 8: (A) Connection of period doubling bifurcation curves (performed with AUTO)
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riodic orbits outside the invariant plane). And thirdly, two symmetric chaotic400

attractors (in red and green) and a large limit cycle on the plane Π (in blue)401

are shown in (C), where B = 6.375300171526684 and λ1 = 1.2 (with initial402

condition (x1, y1, x2, y2) = (3.730940, 1.626618, 3.730940, 1.626618) for the403

periodic orbit in Π, and (x1, y1, x2, y2) = (2.1, 2.9, 1.9, 3.0) and its symmetric404

one for the chaotic attractors). In plots (A1), (B1) and (C1), the (x1, x2)405

projection of the attractors is shown to observe the symmetry more clearly.406

We highlight that, in this case, the periodic orbits and the chaotic attractors407

are all of similar size and share common regions in the phase-space. In panels408

(D)-(F) of Figure 9, we show the attracting invariant sets for the case α = 1409

(see Table 1). First, two symmetric equilibrium points (in red) and a peri-410

odic orbit (in blue) on the invariant plane Π are presented in (D), for B =411

11.479226348021538 and λ1 = 1.2055 (with initial condition (x1, y1, x2, y2) =412

(0.309490, 11.193851, 0.309490, 11.193851) for the periodic orbit in the invari-413

ant plane Π, and (x1, y1, x2, y2) = (1.990186, 5.045707, 3.667439, 3.342718)414

and its symmetric one respect to the invariant plane Π for the equilib-415

rium points). Second, two symmetric periodic orbits (in red) and a peri-416

odic orbit (in blue) on the invariant plane Π are shown in (E), for B =417

11.479461517086209 and λ1 = 1.2055 (with initial condition (x1, y1, x2, y2) =418

(0.309490, 11.193851, 0.309490, 11.193851) for the orbit in Π, and (x1, y1, x2,419

y2) = (1.970296, 5.072571, 3.691614, 3.324793) and its symmetric one for the420

periodic orbits outside the invariant plane Π). In (D1) and (E1), the projec-421

tion on the plane (x1, x2) of such attractors is given. (E2) is an enlargement422

of a region of (E1) to show that the red marks are, in fact, periodic orbits.423

Next, we represent together in (F) the attractors for two different values of424
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connected to SM). See more details in the text.
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the parameters B and λ1. Thus, we can compare the chaotic attractors de-425

tected in DIR (setting B = 11.479799259891854, λ1 = 1.2055, and the initial426

conditions (x1, y1, x2, y2) = (2.057176, 4.956813, 3.600131, 3.390639) and its427

symmetric one respect to Π) with those that we found in the chaotic region428

connected to SM (setting B = 27.287198018812745, λ1 = 1.198739299073543,429

and the initial conditions (x1, y1, x2, y2) = (4.9683, 5.7519, 0.3418, 10.4385)430

and its symmetric one respect to the invariant plane). Namely, there are two431

periodic orbits on the invariant plane Π (in blue and magenta) and two pairs432

of symmetric chaotic attractors with respect to Π (in black, the attractor of433

DIR; and in red, the one of the chaotic region connected to SM). We set the434

initial condition (x1, y1, x2, y2) = (0.309490, 11.193851, 0.309490, 11.193851)435

for the blue periodic orbit, whose parameter values coincide with those used436

for the chaotic attractor of DIR. For the magenta periodic orbit, the pa-437

rameter values are the ones used to represent the chaotic attractor of the438

chaotic region connected to SM, and the initial conditions are (x1, y1, x2, y2) =439

(0.106083, 15.390842, 0.106083, 15.390842) and its symmetric. In (F1) and in440

the enlargement (F2), the projection on the plane (x1, x2) of attractors is441

shown. In (F3), we zoom in on the pointed zone in (F) to have a better442

image of the attractors. In (F4) and (F5), (x1, x2) projections of the chaotic443

attractors for the different parameter values are given. The chaotic attractor444

in (F5) is related to the chaotic region DIR while the one in (F4) corresponds445

to this of the chaotic region connected to SM. Notably, one can observe how446

in the case of α = 1 the periodic orbits and the chaotic attractors are of dif-447

ferent magnitude. Essentially, the (periodic) attractors located on the plane448

of symmetry are much larger.449
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The three different chaotic regions studied in this paper (SM, DIR and the450

region connected to SM when α = 1) are generated through classical period-451

doubling bifurcations initiated on limit cycles arising in Hopf bifurcations.452

In Figure 10, we show the continuation of these periodic orbits and we locate453

the first period-doubling (in green) and fold bifurcations (in black) of limit454

cycles. In (A), we present the results of the one-parameter continuation455

on the (B, x1) plane for α = 0 (see Table 1). Indeed, we locate the Hopf456

bifurcation points and show the stable limit cycles created at the supercritical457

Hopf bifurcation that will give rise later to a cascade of period-doubling458

bifurcations that leads to the chaotic region SM. A 3D image of the limit459

cycles in the (x1, B, y1) space is presented in (B) and a chaotic attractor is460

shown in (A-B). We provide similar images in (C), (C1), (D) and (C1-D)461

but for the chaotic region connected to SM for α = 1. We should notice that462

both the size of the chaotic region and the chaotic attractor itself are really463

small, contrary to the case α = 0, where they are quite large and therefore464

easy to detect numerically. In (E), (E1), (F) and (E1-F), we present similar465

images but in the chaotic region DIR (with α = 1, see Table 1). We zoom466

in on a region of (E) to correctly visualize in (E1) the limit cycles of the467

Hopf bifurcation that generates the chaotic region DIR. We can see that the468

parametric region is now much smaller than in the previous cases.469

Conclusions470

The CBSmodel is a nice example of how chaos can emerge when two simple471

dynamics (identical oscillations) are coupled by means of a simple mechanism472

of interaction (linear diffusion). Two chaotic regions are known from the473
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literature, the first (SM) detected in [7] only with numerical techniques, and474

the second (DIR) found in [5] exploring numerically the neighborhood of475

a singularity for which theory predicts the genesis of strange attractors in476

any generic unfolding. To study a possible connection between both chaotic477

regions, we introduce a linking parameter α ∈ [0, 1] and a family of (B, λ1)478

planes in the (A,B, λ1, λ2)-space such that the plane for α = 0 contains the479

region SM and the one for α = 1, the region DIR. Our numerical exploration480

of such a three-parameter family shows no connection between those chaotic481

regions. Of course, this is not surprising since a family of dynamical systems482

may exhibit disjoint chaotic regions. The interest of finding a connection483

between those chaotic regions was in fact to establish a link between the484

chaotic region SM and a singularity.485

In our study we conclude that DIR is quite small and it could remain hid-486

den for numerical exploration unless theoretical results were used. Therefore,487

the study of singularities is not only useful to prove the existence of chaos,488

as it can also help to locate small chaotic regions. Furthermore, as it follows489

from Section 3, the CBS exhibits a very rich map of singularities. Some of490

them, and not only Triple-Zero singularities, unfold chaotic behaviors. This491

is the case of Hopf-Zero singularities (see [28, 29]), Hopf-Pitchfork singulari-492

ties (see explanations in [10]) and Hopf-Double-Zero singularities (see details493

in [36, 37]), all of them present in the CBS. It might be also interesting to494

analyze the size that the chaotic regions arising from these organizing cen-495

ters can achieve. More importantly, although the size of DIR is small, other496

Triple-Zero singularities may unfold larger chaotic regions.497

It is clear that the bifurcation diagrams of the CBS model (3) show a498
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notorious complexity and deeper explorations could be of great interest. A499

more detailed study of local and global bifurcations on the invariant plane500

Π = {x1 = x2, y1 = y2} is particularly relevant and will be a topic for future501

research. Note that orbits on Π correspond to synchronized solutions. Most502

significantly, all attractors contained in Π or close enough to Π are related503

with the synchronization phenomena exhibited in the model and, certainly,504

many of these attractors will be unfolded by singularities located on the505

invariant plane.506
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Appendix A. INTLAB code for the CAP of the existence of the523

Quadruple-Zero bifurcation point524

format compact long infsup525

% System526

f = @(B, lam1) [(1+2*lam1)^2*(5+48*lam1+120*lam1^2+72*lam1^3)+...527

B*(1+16*lam1+60*lam1^2+88*lam1^3+48*lam1^4)-...528

B^2*(3+22*lam1+48*lam1^2+40*lam1^3)+...529

B^3*(1+2*lam1+4*lam1^2),...530

B^3-3*B^2*(1+2*lam1)+B*(-1-4*lam1+4*lam1^2)-...531

(1+2*lam1)^2*(1+6*lam1)];532

% Interval for B533

X = midrad(11.2982917, 1e-5);534

% Interval for lam1535

Y = midrad(1.2506766, 1e-5);536

% Interval Newton method537

intervalNewtonMethod_Brusselator(f, X, Y)538

function intervalNewtonMethod_Brusselator(f, X, Y)539

% Mid point of the interval540

mid_point= infsup([mid(X) mid(Y)], [mid(X) mid(Y)]);541

% f(mid_point)542

f_mid_point = intval(f(sup(mid_point(1,1)), sup(mid_point(1,2))));543

% Jacobian matrix544

Jac = @(B, lam1)[16*lam1-2*B*(40*lam1^3+48*lam1^2+22*lam1+3)+...545

3*B^2*(4*lam1^2+2*lam1+1)+60*lam1^2+88*lam1^3+48*lam1^4+1,...546

(8*lam1+4)*(72*lam1^3+120*lam1^2+48*lam1+5)+...547

B*(192*lam1^3+264*lam1^2+120*lam1+16)+B^3*(8*lam1+2)+...548

(2*lam1+1)^2*(216*lam1^2+240*lam1+48)-B^2*(120*lam1^2+96*lam1+22);...549

3*B^2-4*lam1+4*lam1^2-6*B*(2*lam1+1)-1,...550

B*(8*lam1-4)-6*B^2-(6*lam1+1)*(8*lam1+4)-6*(2*lam1+1)^2];551
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% Evaluation of the Jacobian matrix552

Jac_XY = intval(Jac(X, Y));553

% Inverse of the Jacobian matrix554

inv_Jac_XY = intval(inv(Jac_XY));555

% N556

N = mid_point.’ - inv_Jac_XY * f_mid_point.’;557

% Computation of the intersection558

newX = intersect(N(1, 1), X);559

newY = intersect(N(2, 1), Y);560

if newX==N(1, 1) && newY==N(2, 1) && N(1, 1)~=X && N(2, 1)~=Y561

% There exists a unique solution in N562

disp(’Unique solution in N’)563

disp(N)564

elseif isnan(newX) || isnan(newY)565

% There is no solution in the interval566

disp(’No solution in the interval’)567

else568

% We keep looking for the solution569

intervalNewtonMethod_Brusselator(f, newX, newY)570

end571

end572
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Physique théorique 40 (4) (1984) 441–461.627

[21] A. J. Homburg, Periodic attractors, strange attractors and hyperbolic628

dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity629

15 (4) (2002) 1029–1050. doi:10.1088/0951-7715/15/4/304.630
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